1
|
Park K, Kwak IS. Growth retardation and suppression of ubiquitin-dependent catabolic processes in the brackish water clam Corbicula japonica in response to salinity changes and bioaccumulation of toxic heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122554. [PMID: 37717895 DOI: 10.1016/j.envpol.2023.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The brackish water clam (Corbicula japonica) is constantly exposed to stressful salinity gradients and high levels of heavy metals in the freshwater-saltwater interface of estuary environments, which are introduced from upstream regions and land. To identify the key molecular pathways involved in the response to salinity changes and heavy metal bioaccumulation, we obtained the transcriptomes of C. japonica inhabiting different salinities and heavy metal distributions in Gwangyang Bay (Korea) using RNA sequencing. Among a total of 404,486 assembled unigenes, 5534 differentially expressed genes were identified in C. japonica inhabiting different conditions, 1549 of which were significantly upregulated and 1355 were significantly downregulated. Correlation analyses revealed distinct gene expression patterns between the low and high conditions of salinity and heavy metal bioaccumulation. Functional annotation revealed significant downregulation of genes involved in "ubiquitin-dependent protein catabolic process," "tricarboxylic acid cycle," and "intracellular protein transport" in C. japonica from the high condition compared to the low condition. Transcription and translation pathways were significantly enriched in the high condition. Additionally, upon comparison of the low and high conditions by qRT-PCR and proteasome enzyme activity analyses, our findings demonstrated that environmental stress could suppress the ubiquitin-proteasome complex (UPC). Additionally, transcriptomic changes under high salinity stress conditions may be related to an increase in cellular protection by defense enzymes, which leads to more energy being required and a disruption of energy homeostasis. Ultimately, this could cause growth retardation in the clam C. japonica. In summary, this study provides the first evidence of UPC suppression induced by a combination of high salinity and heavy metal bioaccumulation stress in C. japonica, which could compromise the survival and growth of estuarine bivalves.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
2
|
Belivermiş M, Swarzenski PW, Oberhänsli F, Melvin SD, Metian M. Effects of variable deoxygenation on trace element bioaccumulation and resulting metabolome profiles in the blue mussel (Mytilus edulis). CHEMOSPHERE 2020; 250:126314. [PMID: 32234623 DOI: 10.1016/j.chemosphere.2020.126314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
The dissolved oxygen concentration of the world's oceans has systematically declined by 2% over the past 50 years, and there has been a notable commensurate expansion of the global oxygen minimum zones (OMZs). Such wide-scale ocean deoxygenation affects the distribution of biological communities, impacts the physiology of organisms that may affect their capacity to absorb and process contaminants. Therefore, the bioaccumulation efficiencies of three contrasting radionuclides, 110mAg, 134Cs and 65Zn were investigated using controlled aquaria in the blue mussel Mytilus edulis under three contrasting dissolved oxygen regimes: normoxic; 7.14 mg L-1, reduced oxygen; 3.57 mg L-1 and hypoxic 1.78 mg L-1 conditions. Results indicated that hypoxic conditions diminished 110mAg uptake in the mussel, whereas depuration rates were not affected. Similarly, hypoxia appeared to cause a decrease in the 65Zn bioaccumulation rate, as evidenced by both weakened uptake and rapid elimination rates. Effects of hypoxia on the metabolome of mussels were also explored by untargeted Nuclear Magnetic Resonance (NMR) spectroscopic methods. The metabolic response was characterised by significantly greater abundance of several amino acids, amino sulfonic acids, dicarboxylic acids, carbohydrates and other metabolites in the lowest oxygen treatment, as compared to the higher oxygen treatments. Clearance rates significantly dropped in hypoxic conditions compared to normoxia. Results suggest that hypoxic conditions, and even partly moderate hypoxia, alter ventilation, an-aerobic, oxidative and osmoregulation metabolism of this mussel, which may further influence the trace element bioaccumulation capacity.
Collapse
Affiliation(s)
- Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey; International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco.
| | - Peter W Swarzenski
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco
| | - François Oberhänsli
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, 4215, Australia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, 98000, Monaco.
| |
Collapse
|
3
|
Transcriptomic Analysis of Gill and Kidney from Asian Seabass ( Lates calcarifer) Acclimated to Different Salinities Reveals Pathways Involved with Euryhalinity. Genes (Basel) 2020; 11:genes11070733. [PMID: 32630108 PMCID: PMC7397140 DOI: 10.3390/genes11070733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Asian seabass (or commonly known as barramundi), Lates calcarifer, is a bony euryhaline teleost from the Family Latidae, inhabiting nearshore, estuarine, and marine connected freshwaters throughout the tropical Indo-West Pacific region. The species is catadromous, whereby adults spawn in salinities between 28 and 34 ppt at the mouth of estuaries, with resultant juveniles usually moving into brackish and freshwater systems to mature, before returning to the sea to spawn again as adults. The species lives in both marine and freshwater habitats and can move quickly between the two; thus, the species' ability to tolerate changes in salinity makes it a good candidate for studying the salinity acclimation response in teleosts. In this study, the transcriptome of two major osmoregulatory organs (gills and kidneys) of young juvenile Asian seabass reared in freshwater and seawater were compared. The euryhaline nature of Asian seabass was found to be highly pliable and the moldability of the trait was further confirmed by histological analyses of gills and kidneys. Differences in major expression pathways were observed, with differentially expressed genes including those related to osmoregulation, tissue/organ morphogenesis, and cell volume regulation as central to the osmo-adaptive response. Additionally, genes coding for mucins were upregulated specifically under saline conditions, whereas several genes important for growth and development, as well as circadian entrainment were specifically enriched in fish reared in freshwater. Routing of the circadian rhythm mediated by salinity changes could be the initial step in salinity acclimation and possibly migration in euryhaline fish species such as the Asian seabass.
Collapse
|
4
|
Delgado-Gaytán MF, Gómez-Jiménez S, Gámez-Alejo LA, Rosas-Rodríguez JA, Figueroa-Soto CG, Valenzuela-Soto EM. Effect of salinity on the synthesis and concentration of glycine betaine in osmoregulatory tissues from juvenile shrimps Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 2020; 240:110628. [DOI: 10.1016/j.cbpa.2019.110628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
|
5
|
May MA, Bishop KD, Rawson PD. NMR Profiling of Metabolites in Larval and Juvenile Blue Mussels (Mytilus edulis) under Ambient and Low Salinity Conditions. Metabolites 2017; 7:metabo7030033. [PMID: 28684716 PMCID: PMC5618318 DOI: 10.3390/metabo7030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
Blue mussels (Mytilus edulis) are ecologically and economically important marine invertebrates whose populations are at risk from climate change-associated variation in their environment, such as decreased coastal salinity. Blue mussels are osmoconfomers and use components of the metabolome (free amino acids) to help maintain osmotic balance and cellular function during low salinity exposure. However, little is known about the capacity of blue mussels during the planktonic larval stages to regulate metabolites during osmotic stress. Metabolite studies in species such as blue mussels can help improve our understanding of the species’ physiology, as well as their capacity to respond to environmental stress. We used 1D 1H nuclear magnetic resonance (NMR) and 2D total correlation spectroscopy (TOCSY) experiments to describe baseline metabolite pools in larval (veliger and pediveliger stages) and juvenile blue mussels (gill, mantle, and adductor tissues) under ambient conditions and to quantify changes in the abundance of common osmolytes in these stages during low salinity exposure. We found evidence for stage- and tissue-specific differences in the baseline metabolic profiles of blue mussels, which reflect variation in the function and morphology of each larval stage or tissue type of juveniles. These differences impacted the utilization of osmolytes during low salinity exposure, likely stemming from innate physiological variation. This study highlights the importance of foundational metabolomic studies that include multiple tissue types and developmental stages to adequately evaluate organismal responses to stress and better place these findings in a broader physiological context.
Collapse
Affiliation(s)
- Melissa A May
- 5751 Murray Hall, School of Marine Sciences, University of Maine, Orono, ME 04469, USA.
| | - Karl D Bishop
- Biochemistry Department, Husson University, 1 College Circle, Bangor, ME 04401, USA.
| | - Paul D Rawson
- 5751 Murray Hall, School of Marine Sciences, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
6
|
Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Chem Biol Interact 2017; 276:65-74. [PMID: 28212821 DOI: 10.1016/j.cbi.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.
Collapse
|
7
|
Zacchi FL, de Lima D, Flores-Nunes F, Mattos JJ, Lüchmann KH, de Miranda Gomes CHA, Bícego MC, Taniguchi S, Sasaki ST, Dias Bainy AC. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:94-103. [PMID: 28040644 DOI: 10.1016/j.aquatox.2016.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15days and then exposed to 100μgL-1 PHE for 24h and 96h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24h and 96h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24h and CYP2-like2 after 96h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96h) and GSTΩ-like (24h) in oysters kept at salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24h), GLYT-like, ARG-like (96h) and TAUT-like at 24h and 96h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Daína de Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karim Hahn Lüchmann
- Laboratory of Biochemistry and Molecular Biology - LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil
| | | | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
8
|
Gharbi A, Farcy E, Van Wormhoudt A, Denis F. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ben Naceur C, Maxime V, Ben Mansour H, Le Tilly V, Sire O. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:327-333. [PMID: 27490815 DOI: 10.1016/j.ecoenv.2016.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a relevant and accurate tool to estimate the biological hazards of micropollutants in the water.
Collapse
Affiliation(s)
- Chiraz Ben Naceur
- Institut Supérieur des Sciences Appliquées et de Technologie de Mahdia, Université de Monastir, Tunisia
| | - Valérie Maxime
- Université Bretagne Sud, FRE CNRS 3744, IRDL, 56017 Vannes, France
| | - Hedi Ben Mansour
- Institut Supérieur des Sciences Appliquées et de Technologie de Mahdia, Université de Monastir, Tunisia
| | | | - Olivier Sire
- Université Bretagne Sud, FRE CNRS 3744, IRDL, 56017 Vannes, France
| |
Collapse
|
10
|
Zhao X, Yu H, Kong L, Li Q. Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Euryhaline Adaptation of Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:535-544. [PMID: 27704223 DOI: 10.1007/s10126-016-9715-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The Pacific oyster Crassostrea gigas is a dominant aquaculture species in many intertidal zones throughout the Pacific and Atlantic Oceans and can tolerate a wide range of salinity. Studying the gene expression profiles of oyster gills had found differentially expressed genes (DEGs) involved in salinity tolerance. A systematic study of cellular response to salinity stress may provide insights into the mechanism of acquired salinity tolerance. Here, weighted gene co-expression network analysis (WGCNA) was carried out using RNA-seq data from gill transcriptome in response to different salinity. A total of 25,463 genes were parsed into 22 gene modules, of which 5 gene modules were identified as salinity-related modules. Brown module was the only one significantly correlated with salinity and free amino acids (FAAs) contents, which was associated with cellular metabolism, biosynthesis of amino acids, oxidation reduction, electron transport, nitrogen compound metabolism, and others. The enriched pathways in brown module were mainly about FAAs metabolism. The other four modules were significantly correlated with certain FAAs, and were over-represented in certain salinity. These results indicated that C. gigas triggered different FAAs in different salinity stress. This study represents the first RNA-seq gene network analysis in oysters responding to different salinity stresses. These results provide a systems-level framework to help understand the complexity of cellular process in response to osmotic stress and show the function and regulated genes of different FAAs at the molecular level.
Collapse
Affiliation(s)
- Xuelin Zhao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
11
|
Koyama H, Okamoto S, Watanabe N, Hoshino N, Jimbo M, Yasumoto K, Watabe S. Dynamic changes in the accumulation of metabolites in brackish water clam Corbicula japonica associated with alternation of salinity. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:59-70. [DOI: 10.1016/j.cbpb.2014.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 11/28/2022]
|
12
|
Lee DJ, Chi YT, Kim DM, Choi SH, Lee JY, Choi GW. Ectopic expression of CaRLK1 enhances hypoxia tolerance with increasing alanine production in Nicotiana spp. PLANT MOLECULAR BIOLOGY 2014; 86:255-70. [PMID: 25030225 DOI: 10.1007/s11103-014-0227-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/09/2014] [Indexed: 05/26/2023]
Abstract
In a previous report, the pepper receptor-like kinase 1 (CaRLK1) gene was shown to be responsible for negatively regulating plant cell death caused by pathogens via accumulation of superoxide anions. Here, we examined whether this gene also plays a role in regulating cell death under abiotic stress. The total concentrations of free amino acids in CaRLK1-overexpressed cells (RLKox) increased by twofold compared with those of the wild-type Nicotiana tabacum BY-2 cells. Additionally, alanine and pyruvate concentrations increased by approximately threefold. These accumulations were associated with both the expression levels of the isocitrate lyase (ICL) and malate synthase genes and their specific activities, which were preferentially up-regulated in the RLKox cells. The expression levels of ethylene biosynthetic genes (ACC synthase and ACC oxidase) were suppressed, but those of both the metallothionein and lesion simulating disease 1 genes increased in the RLKox cells during submergence-induced hypoxia. The specific activity of catalase, which is involved in protecting ICL from reactive oxygen species, was also induced threefold in the RLKox cells. The primary roots of the transgenic plants that were exposed to hypoxic conditions grew at similar rates to those in normal conditions. We propose that CaRLK1 maintains a persistent hypoxia-resistant phenotype.
Collapse
Affiliation(s)
- Dong Ju Lee
- School of Biological Sciences and Technology, Higher Education Center for Bioregulator Research, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea,
| | | | | | | | | | | |
Collapse
|
13
|
Zanette J, de Almeida EA, da Silva AZ, Guzenski J, Ferreira JF, Di Mascio P, Marques MRF, Bainy ACD. Salinity influences glutathione S-transferase activity and lipid peroxidation responses in the Crassostrea gigas oyster exposed to diesel oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1976-1983. [PMID: 21349572 DOI: 10.1016/j.scitotenv.2011.01.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/07/2011] [Accepted: 01/26/2011] [Indexed: 05/30/2023]
Abstract
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25, 15 and 9ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1mL.L(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill's catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde, MDA), but influenced diesel related responses. At 25ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25ppt and 1mL.L(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25ppt salinity. The MDA quickly returned to basal levels after 24h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1mL.L(-1) diesel was observed only at 35ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration.
Collapse
Affiliation(s)
- Juliano Zanette
- Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph. J Comp Physiol B 2011; 181:731-40. [DOI: 10.1007/s00360-011-0562-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 02/15/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
|
15
|
Aragão C, Costas B, Vargas-Chacoff L, Ruiz-Jarabo I, Dinis MT, Mancera JM, Conceição LEC. Changes in plasma amino acid levels in a euryhaline fish exposed to different environmental salinities. Amino Acids 2009; 38:311-7. [PMID: 19229587 DOI: 10.1007/s00726-009-0252-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/27/2009] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that Senegalese sole is partially euryhaline in the juvenile phase, being able to adapt to a wide range of salinities in a short-time period, due to changes at the osmoregulatory and metabolic level. This study aimed to assess the effects of acclimation of sole to a wide range of salinities, with a special emphasis on the role of plasma amino acids during this process. Sole juveniles were acclimated for 2 weeks to different salinities: 5, 15, 25, 38, and 55 g L(-1). Plasma levels of cortisol, glucose, osmolality, and free amino acids were assessed at the end. Changes in plasma levels of cortisol, glucose, and amino acids indicate that fish reared at 5 and 55 g L(-1) were facing extra energy costs. Amino acids seem to play an important role during salinity acclimation, either as energy sources or as important osmolytes for cell volume regulation.
Collapse
Affiliation(s)
- Cláudia Aragão
- CIMAR/CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ruiz JL, Souza MM. Osmotic stress and muscle tissue volume response of a freshwater bivalve. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:399-406. [PMID: 17462930 DOI: 10.1016/j.cbpa.2007.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 11/26/2022]
Abstract
The freshwater bivalve, Corbicula fluminea, when submitted to hyperosmotic solutions, behaves as a hyperosmoconformer; we have observed an increase in osmolality and ions in its extracellular fluid. Osmotic and ionic changes in its watery environment represent a challenge for the tissues of this mollusk. Thus we evaluated, in vitro, muscle tissue volume variations (based on wet weight change) under anisosmotic salines, as well the possible regulatory mechanisms involved in the processes. This tissue did not exhibit complete volume regulation under anisosmotic saline solutions, but showed less variation than would be predicted by Van't Hoff's law, and tissue volume remained essentially stable throughout 90 min of exposure. To minimize tissue swelling in hyposmotic situations, C. fluminea muscle mobilizes organic osmolytes (ninhydrin positive substances) and inorganic ions (K(+) and Cl(-)). While under hyperosmotic stimulus, apparently only inorganic osmolytes (Na(+) and Cl(-)) are mobilized by the tissue. Our results indicate ionic accumulation by the Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)/H(+) coupled to Cl(-)/HCO(3)(-) exchangers. Exposure of the muscle tissue to Ca(2+)-free anisosmotic saline did not result in a detectable inhibition of the mechanisms described above. The Ca(2+) gradient that derives from the absence of this ion, even apparently enhances the regulatory mechanisms. These responses of this freshwater mollusk in hyperosmotic solutions, and the muscle tissue under anisosmotic (hypo and hyperosmotic) saline solutions, have not been previously characterized in the manner and approach as reported here. Specifically, we analyze both organic and inorganic osmolytes mobilized under hyposmotic stress, and can infer the participation of Na(+) and Cl(-) pathways stimulated by hyperosmotic stress. From the perspective gained in this study, tissue volume responses may be used as models for toxicological investigations.
Collapse
Affiliation(s)
- Juliana L Ruiz
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil
| | - M M Souza
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil.
| |
Collapse
|
17
|
Valdez Domingos FX, Azevedo M, Silva MD, Randi MAF, Freire CA, Silva de Assis HC, Oliveira Ribeiro CA. Multibiomarker assessment of three Brazilian estuaries using oysters as bioindicators. ENVIRONMENTAL RESEARCH 2007; 105:350-63. [PMID: 17658507 DOI: 10.1016/j.envres.2007.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 06/09/2007] [Accepted: 06/18/2007] [Indexed: 05/16/2023]
Abstract
Oysters have been largely employed as bioindicators of environmental quality in biomonitoring studies. Crassostrea rhizophorae was selected to evaluate the health status of three estuarine areas impacted by anthropogenic activities along the Brazilian coast, in three estuarine complexes, ranging in latitude from 7 to 25 degrees S. In each estuary three sites were sampled in Winter and in Summer: a site considered as reference, and two sites next to contamination sources. Condition index was similar at all sites and estuaries, with the highest values found for Itamaracá oysters in Summer. Necrosis, hyperplasia, mucocyte hypertrophy and fusion of ordinary filaments were the main histopathological lesions observed. Muscle cholinesterase activity was overall similar, but with a strong seasonal effect. Inhibition or activation of branchial total ATPase and Na,K-ATPase activities at the contaminated sites was observed. The health status of these estuarine areas is quite similar, and the combined use of biomarkers is recommended.
Collapse
Affiliation(s)
- F X Valdez Domingos
- Departamento de Biologia Celular, Universidade Federal do Paraná. CP. 19031, CEP 81531-990, Curitiba, PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cornet M. Effects of seawater salinity fluctuations on primary tissue culture from the mussel Mytilus galloprovincialis Potential application to the detection of seawater genotoxicity. Toxicol In Vitro 2006; 20:1500-5. [PMID: 16806799 DOI: 10.1016/j.tiv.2006.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/31/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
The present results were obtained in the context of an attempt to develop an in vitro test intended to assess the genotoxicity of seawater. It is based on a short-term culture method of mussel mantle explants that gives mitotic cells in which DNA damage is likely to be detected. Its principle consists of the incorporation of the seawater to be tested in the culture medium. Two factors that influence cell proliferation were studied: (1) salinity of seawater and (2) basic composition of the culture medium i.e. replacement of Eagle's Basal Medium (BME) by Eagle's Minimum Essential Medium (MEM). When culture medium contained BME, a salinity change from 35 per thousand to 28 per thousand (that is the case for coastal or estuarine waters) resulted in a significant reduction of cell proliferation. In contrast, when culture medium was prepared with MEM, the same decrease of salinity did not change significantly the number of metaphase cells obtained. This suggested medium prepared with MEM allowed tissues in culture to better withstand the hypoosmotic shock generated by 28 per thousand seawater. This has been attributed to amino acids the concentration of which being higher in MEM than in BME. Direct and indirect mechanisms of osmoregulation are suggested to explain the observations. These results show that the test proposed could be used to assess the genotoxicity of coastal or estuarine seawater with salinity comprised from 28 per thousand to 35 per thousand, provided that MEM is used.
Collapse
Affiliation(s)
- Michel Cornet
- UMR 5805, Environnements et Paléoenvironnements Océaniques (EPOC), Université Bordeaux 1-CNRS, Avenue des Facultés, 33405 Talence Cedex, France.
| |
Collapse
|
19
|
Shakhmatova EI, Berger VY, Natochin YV. Cations in molluscan tissues at sharply different hemolymph osmolality. BIOL BULL+ 2006. [DOI: 10.1134/s1062359006030095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Schein V, Fernandes Chittó AL, Etges R, Kucharski LC, van Wormhoudt A, Da Silva RSM. Effect of hyper or hypo-osmotic conditions on neutral amino acid uptake and oxidation in tissues of the crab Chasmagnathus granulata. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:561-7. [PMID: 15763511 DOI: 10.1016/j.cbpc.2004.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 11/25/2004] [Accepted: 12/08/2004] [Indexed: 11/22/2022]
Abstract
We investigated the transport of (14)C-methylaminoisobutyric acid ((14)C-MeAIB) and (14)C-alanine oxidation in hepatopancreas and jaw muscle of Chasmagnathus granulata submitted to 24, 72, and 144 h of hypo- or hyperosmotic stress. While (14)C-MeAIB uptake increased in jaw muscle and hepatopancreas from crabs submitted to hyperosmotic stress, it did not change in tissues from animals submitted to hypo-osmotic stress. Incubation of jaw muscle and hepatopancreas from control groups with 1 mM ouabain did not decrease (14)C-MeAIB uptake. However, ouabain prevented (14)C-MeAIB uptake in hepatopancreas at 24 h of hyperosmotic stress. In contrast, in jaw muscle from crabs submitted to the same conditions, (14)C-MeAIB uptake was not prevented by ouabain in the incubation medium. Jaw muscle from the control group produced four times more (14)CO(2) from (14)C-alanine than the hepatopancreas. During hypo-osmotic stress, amino acid oxidation does not seem to be one of the pathways implicated in the decrease of the amino acid pools in hepatopancreas and jaw muscle. In contrast, during hyperosmotic stress the reduction in (14)C-alanine oxidation appears to be one of the mechanisms involved in the increase of the amino acid pool in the hepatopancreas.
Collapse
Affiliation(s)
- Vanessa Schein
- Department of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Hoeger U, Abe H. β-Alanine and other free amino acids during salinity adaptation of the polychaete Nereis japonica. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:161-71. [PMID: 14720601 DOI: 10.1016/s1095-6433(03)00286-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The free amino acid pool was measured in the body wall muscle and in coelomic cells (eleocytes) of the polychaete Nereis japonica following adaptation to salinities between 6 and 44 per thousand. Beta-Alanine and glycine were the major amino acids comprising 35-60% of the total free amino acid pool in the body wall. In eleocytes, glutamate and lysine in addition to beta-alanine and glycine were the dominant free amino acids. In the body wall, the concentrations of beta-alanine were closely correlated with the ambient salinity between 12 and 35 per thousand. The concentrations of glycine rose initially but remained unchanged at concentrations above 26 per thousand. In both body wall and eleocytes, the mean total primary amine concentrations were correlated with the ambient salinities between 12 and 35 per thousand. The sum of amino acids determined by HPLC showed the same correlation in both tissues, but accounted only for 60-85% of the concentrations of total primary amines. The total protein content of the body wall was slightly higher at 44 per thousand compared to the lower salinities indicating dehydration of the tissues. Eleocytes swell at 6 per thousand and showed irregular amino acid concentrations indicating a loss of metabolic integrity.
Collapse
Affiliation(s)
- Ulrich Hoeger
- Laboratory of Marine Biochemistry, Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
22
|
Ben-Izhak Monselise E, Parola AH, Kost D. Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem Biophys Res Commun 2003; 302:427-34. [PMID: 12604366 DOI: 10.1016/s0006-291x(03)00194-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
15N NMR analysis reveals alanine production in Duckweed plants exposed to low intensity sinusoidally varying magnetic fields (SVMF) at 60 and 100Hz, and fed by 15N-labeled ammonium chloride. Alanine does not accumulate in the absence of SVMF. Addition of vitamin C, a radical scavenger, reduced alanine production by 82%, indicating the roll of free radicals in the process. Alanine accumulation in plants and animals in response to exposure to a variety of stress conditions, including SVMF, is a general phenomenon. It is proposed that alanine is a universal first stress signal expressed by cells.
Collapse
|