1
|
Li Y, Li Z, Ran H, Fan Z, Yang F, Chen H, Zhou B. Characterization and Analysis of the Functional Differences of the Two Eclosion Hormones in Regulating Molting in the White Shrimp Litopenaeus vannamei. Int J Mol Sci 2024; 25:12813. [PMID: 39684523 DOI: 10.3390/ijms252312813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Litopenaeus vannamei, with an annual production of 5-6 million tons and a value of USD 50-60 billion, is a cornerstone of global aquaculture. However, molting-related losses of 5-20% significantly impact this industry, and the physiological mechanisms of molting remain unclear. This study aims to elucidate the role of eclosion hormone (EH) in molting regulation and enhances the understanding of molting physiology in L. vannamei. This study investigated the role of (EH) in L. vannamei molting regulation. Two EH cDNAs, LvEH I and LvEH II, were identified, and their expression patterns across tissues and seven molting stages (A, B, C, D0, D1, D2, and D3) were analyzed. LvEH I was predominantly expressed in the gill, epidermis, and eyestalk, while LvEH II was mainly expressed in the eyestalk and brain. LvEH I was highly expressed in the eyestalk, epidermis, and gills at the D2 and D3 stages of molting, whereas LvEH II was highly expressed in both the D2 (brain) and D3 (eyestalk) stages. RNA interference (RNAi) targeting LvEH I revealed its critical role in molting, as silencing LvEH I disrupted the expression of molting-regulation genes, ETH, CCAP, CHH, EH II, CDA, and bursicon (Burs), significantly delaying the molting process. These findings highlight both LvEH I and LvEH II as indispensable for normal molting in L. vannamei and provide a foundation for developing effective molting management strategies to reduce industry losses.
Collapse
Affiliation(s)
- Yunjiao Li
- Fisheries Research Institute of Sichuan Academy of Agricultural Sciences, Yibin 644000, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China
| | - Zecheng Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China
| | - Hongmei Ran
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China
| | - Zihan Fan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China
| | - Fan Yang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China
| | - Bo Zhou
- Fisheries Research Institute of Sichuan Academy of Agricultural Sciences, Yibin 644000, China
| |
Collapse
|
2
|
Zhou L, Li S, Wang Z, Li F, Xiang J. An eclosion hormone-like gene participates in the molting process of Palaemonid shrimp Exopalaemon carinicauda. Dev Genes Evol 2017; 227:189-199. [PMID: 28417205 DOI: 10.1007/s00427-017-0580-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/07/2017] [Indexed: 12/01/2022]
Abstract
Molting behavior is an important physiological process related to metamorphosis, growth, and reproduction in crustaceans. Previous studies indicated that the molting process was controlled by 20-hydroxyecdysone (20E) and upstream hormones, peptides, and environmental factors, which regulate 20E function. Eclosion hormone (EH) in insect is a kind of neuropeptide that is regulated by 20E and triggers ecdysis behavior at the end of molting process. However, the function of eclosion hormone gene during the molting process in crustaceans is still largely unknown. In the present study, an eclosion hormone-like gene EcEHL was identified from Exopalaemon carinicauda. The deduced amino acid sequence of EcEHL contained a signal peptide, a typical eclosion domain, and six conserved cysteine residues forming three putative disulfide bonds. EcEHL was predominantly expressed in the epidermis, gill, and eyestalk of shrimp. In situ hybridization analysis showed that EcEHL transcripts were localized in gill cells and in medulla externa X-organ, medulla terminalis X-organ, sinus gland, and lamina ganglionaris of eyestalks. During the molting process of shrimp, EcEHL showed the highest expression level in shrimp at the premolt stage. The expression level of EcEHL in shrimp at mid premolt stage was up-regulated by injection of exogenous 20E. Silencing of EcEHL using double-stranded RNA delayed both the molting process and ecdysis rate of E. carinicauda. Furthermore, injection of exogenous 20E to shrimp at mid premolt stage (D2) could remarkably speed up the molting process and also raise the ecdysis rate of E. carinicauda. The results revealed that EcEHL might participate in the molting process of shrimp and its expression was regulated by 20E. These data will help us to understand the molecular mechanism of molting in crustacean.
Collapse
Affiliation(s)
- Lihong Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Zhiwei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Pitts NL, Mykles DL. Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:328-340. [PMID: 27989866 DOI: 10.1016/j.cbpa.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
In decapod crustaceans, molting is controlled by the pulsatile release of molt-inhibiting hormone (MIH) from neurosecretory cells in the X-organ/sinus gland (XO/SG) complex in the eyestalk ganglia (ESG). A drop in MIH release triggers molting by activating the molting gland or Y-organ (YO). Post-transcriptional mechanisms ultimately control MIH levels in the hemolymph. Neurotransmitter-mediated electrical activity controls Ca2+-dependent vesicular release of MIH from the SG axon terminals, which may be modulated by nitric oxide (NO). In green shore crab, Carcinus maenas, nitric oxide synthase (NOS) protein and NO are present in the SG. Moreover, C. maenas are refractory to eyestalk ablation (ESA), suggesting other regions of the nervous system secrete sufficient amounts of MIH to prevent molting. By contrast, ESA induces molting in the blackback land crab, Gecarcinus lateralis. Double-label immunofluorescence microscopy and quantitative polymerase chain reaction were used to localize and quantify MIH and NOS proteins and transcripts, respectively, in the ESG, brain, and thoracic ganglion (TG) of C. maenas and G. lateralis. In ESG, MIH- and NOS-immunopositive cells were closely associated in the SG of both species; confocal microscopy showed that NOS was localized in cells adjacent to MIH-positive axon terminals. In brain, MIH-positive cells were located in a small number of cells in the olfactory lobe; no NOS immunofluorescence was detected. In TG, MIH and NOS were localized in cell clusters between the segmental nerves. In G. lateralis, Gl-MIH and Gl-crustacean hyperglycemic hormone (CHH) mRNA levels were ~105-fold higher in ESG than in brain or TG of intermolt animals, indicating that the ESG is the primary source of these neuropeptides. Gl-NOS and Gl-elongation factor (EF2) mRNA levels were also higher in the ESG. Molt stage had little or no effect on CHH, NOS, NOS-interacting protein (NOS-IP), membrane Guanylyl Cyclase-II (GC-II), and NO-independent GC-III expression in the ESG of both species. By contrast, MIH and NO receptor GC-I beta subunit (GC-Iβ) transcripts were increased during premolt and postmolt stages in G. lateralis, but not in C. maenas. MIH immunopositive cells in the brain and TG may be a secondary source of MIH; the release of MIH from these sources may contribute to the difference between the two species in response to ESA. The MIH-immunopositive cells in the TG may be the source of an MIH-like factor that mediates molt inhibition by limb bud autotomy. The association of MIH- and NOS-labeled cells in the ESG and TG suggests that NO may modulate MIH release. A model is proposed in which NO-dependent activation of GC-I inhibits Ca2+-dependent fusion of MIH vesicles with the nerve terminal membrane; the resulting decrease in MIH activates the YO and the animal enters premolt.
Collapse
Affiliation(s)
- Natalie L Pitts
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
4
|
|
5
|
Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJP. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 2010; 9:5296-310. [PMID: 20695486 DOI: 10.1021/pr100570j] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptides and protein hormones constitute a very important group of signaling molecules, regulating central physiological processes such as reproduction, development, and behavior. Using a bioinformatics approach, we screened the recently sequenced genome of the parasitic wasp, Nasonia vitripennis, for the presence of these signaling molecules and annotated 30 precursor genes encoding 51 different mature neuropeptides or protein hormones. Twenty-four of the predicted mature Nasonia neuropeptides could be experimentally confirmed by mass spectrometry. We also discovered a completely novel neuropeptide gene in Nasonia, coding for peptides containing the C-terminal sequence RYamide. This gene has orthologs in nearly all arthropods with a sequenced genome, and its expression in mosquitoes was confirmed by mass spectrometry. No precursor could be identified for N-terminally extended FMRFamides, even though their putative G protein coupled receptor (GPCR) is present in the Nasonia genome. Neither the precursor nor the putative receptor could be identified for allatostatin-B, capa, the glycoprotein hormones GPA2/GPB5, kinin, proctolin, sex peptide, and sulfakinin, arguing that these signaling systems are truly absent in the wasp. Also, antidiuretic factors, allatotropin, and NPLP-like precursors are missing in Nasonia, but here the receptors have not been identified in any insect, so far. Nasonia (Hymenoptera) has the lowest number of neuropeptide precursor genes compared to Drosophila melanogaster, Aedes aegypti (both Diptera), Bombyx mori (Lepidoptera), Tribolium castaneum (Coleoptera), Apis mellifera (Hymenoptera), and Acyrthosiphon pisum (Hemiptera). This lower number of neuropeptide genes might be related to Nasonia's parasitic life.
Collapse
Affiliation(s)
- Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
6
|
Receptor guanylyl cyclases in Inka cells targeted by eclosion hormone. Proc Natl Acad Sci U S A 2009; 106:13371-6. [PMID: 19666575 DOI: 10.1073/pnas.0812593106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A signature of eclosion hormone (EH) action in insect ecdysis is elevation of cGMP in Inka cells, leading to massive release of ecdysis triggering hormone (ETH) and ecdysis initiation. Although this aspect of EH-induced signal transduction is well known, the receptor mediating this process has not been identified. Here, we describe a receptor guanylyl cyclase BdmGC-1 and its isoform BdmGC-1B in the Oriental fruit fly Bactrocera dorsalis that are activated by EH. The B form exhibits the conserved domains and putative N-glycosylation sites found in BdmGC-1, but possesses an additional 46-amino acid insertion in the extracellular domain and lacks the C-terminal tail of BdmGC-1. Combined immunolabeling and in situ hybridization reveal that BdmGC-1 is expressed in Inka cells. Heterologous expression of BdmGC-1 in HEK cells leads to robust increases in cGMP following exposure to low picomolar concentrations of EH. The B-isoform responds only to higher EH concentrations, suggesting different physiological roles of these cyclases. We propose that BdmGC-1 and BdmGC-1B are high- and low-affinity EH receptors, respectively.
Collapse
|
7
|
Morton DB, Stewart JA, Langlais KK, Clemens-Grisham RA, Vermehren A. Synaptic transmission in neurons that express the Drosophila atypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis. J Exp Biol 2008; 211:1645-56. [PMID: 18456892 PMCID: PMC2424211 DOI: 10.1242/jeb.014472] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insect ecdysis is a precisely coordinated series of behavioral and hormonal events that occur at the end of each molt. A great deal is known about the hormonal events that underlie this process, although less is known about the neuronal circuitry involved. In this study we identified two populations of neurons that are required for larval and adult ecdyses in the fruit fly, Drosophila melanogaster (Meigen). These neurons were identified by using the upstream region of two genes that code for atypical soluble guanylyl cyclases to drive tetanus toxin in the neurons that express these cyclases to block their synaptic activity. Expression of tetanus toxin in neurons that express Gyc-89Da blocked adult eclosion whereas expression of tetanus toxin in neurons that express Gyc-89Db prevented the initiation of the first larval ecdysis. Expression of tetanus toxin in the Gyc-89Da neurons also resulted in about 50% lethality just prior to pupariation; however, this was probably due to suffocation in the food as lethality was prevented by stopping the larvae from burrowing deep within the food. This result is consistent with our model that the atypical soluble guanylyl cyclases can act as molecular oxygen detectors. The expression pattern of these cyclases did not overlap with any of the neurons containing peptides known to regulate ecdysis and eclosion behaviors. By using the conditional expression of tetanus toxin we were also able to demonstrate that synaptic activity in the Gyc-89Da and Gyc-89Db neurons is required during early adult development for adult eclosion.
Collapse
Affiliation(s)
- David B Morton
- Department of Integrative Biosciences, Oregon Health and Science University, 611 SW Campus Drive, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
8
|
Lee SG, Kim HW, Mykles DL. Guanylyl cyclases in the tropical land crab, Gecarcinus lateralis: Cloning of soluble (NO-sensitive and -insensitive) and membrane receptor forms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:332-44. [DOI: 10.1016/j.cbd.2007.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/03/2007] [Accepted: 08/06/2007] [Indexed: 11/16/2022]
|
9
|
Lee SG, Bader BD, Chang ES, Mykles DL. Effects of elevated ecdysteroid on tissue expression of three guanylyl cyclases in the tropical land crab Gecarcinus lateralis: possible roles of neuropeptide signaling in the molting gland. J Exp Biol 2007; 210:3245-54. [PMID: 17766302 DOI: 10.1242/jeb.007740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Two eyestalk (ES) neuropeptides, molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), increase intracellular cGMP levels in target tissues. Both MIH and CHH inhibit ecdysteroid secretion by the molting gland or Y-organ (YO), but apparently through different guanylyl cyclase(GC)-dependent pathways. MIH signaling may be mediated by nitric oxide synthase (NOS) and NO-sensitive GC. CHH binds to a membrane receptor GC. As molting affects neuropeptide signaling, the effects of ecdysteroid on the expression of the land crab Gecarcinus lateralis β subunit of a NO-sensitive GC (Gl-GC-Iβ), a membrane receptor GC (Gl-GC-II) and a NO-insensitive soluble GC (Gl-GC-III) were determined. Gl-GC-Iβ isoforms differing in the absence or presence of an N-terminal 32-amino acid sequence and Gl-GC-III were expressed at higher mRNA levels in ES ganglia, gill,hepatopancreas, ovary and testis, and at lower levels in YO, heart and skeletal muscle. Three Gl-GC-II isoforms, which vary in the length of insertions (+18, +9 and +0 amino acids) within the N-terminal ligand-binding domain, differed in tissue distribution. Gl-GC-II(+18) was expressed highly in striated muscle (skeletal and cardiac muscles); Gl-GC-II(+9) was expressed in all tissues examined (ES ganglia, YO, gill, hepatopancreas, striated muscles and gonads); and Gl-GC-II(+0) was expressed in most tissues and was the dominant isoform in ES and thoracic ganglia. ES ablation, which increased hemolymph ecdysteroid, increased Gl-GC-II(+18) mRNA level in claw muscle. Using real-time RT-PCR, ES ablation increased Gl-GC-Iβ, Gl-GC-III and ecdysone receptor mRNA levels in the YOs ∼ten-, ∼four- and∼twofold, respectively, whereas Gl-GC-II mRNA level was unchanged. A single injection of 20-hydroxyecdysone into intact animals transiently lowered Gl-GC-Iβ in hepatopancreas, testis and skeletal muscle, and certain Gl-GC-II isoforms in some of the tissues. These data suggest that YO and other tissues can modulate responses to neuropeptides by altering GC expression.
Collapse
Affiliation(s)
- Sung Gu Lee
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
10
|
Zitnan D, Kim YJ, Zitnanová I, Roller L, Adams ME. Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen Comp Endocrinol 2007; 153:88-96. [PMID: 17507015 PMCID: PMC4955941 DOI: 10.1016/j.ygcen.2007.04.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 03/22/2007] [Accepted: 04/01/2007] [Indexed: 11/29/2022]
Abstract
Insect ecdysis sequence is composed of pre-ecdysis, ecdysis and post-ecdysis behaviors controlled by a complex cascade of peptide hormones from endocrine Inka cells and neuropeptides in the central nervous system (CNS). Inka cells produce pre-ecdysis and ecdysis triggering hormones (ETH) which activate the ecdysis sequence through receptor-mediated actions on specific neurons in the CNS. Multiple experimental approaches have been used to determine mechanisms of ETH expression and release from Inka cells and its action on the CNS of moths and flies. During the preparatory phase 1-2 days prior to ecdysis, high ecdysteroid levels induce expression of ETH receptors in the CNS and increased ETH production in Inka cells, which coincides with expression of nuclear ecdysone receptor (EcR) and transcription factor cryptocephal (CRC). However, high ecdysteroid levels prevent ETH release from Inka cells. Acquisition of Inka cell competence to release ETH requires decline of ecdysteroid levels and beta-FTZ-F1 expression few hours prior to ecdysis. The behavioral phase is initiated by ETH secretion into the hemolymph, which is controlled by two brain neuropeptides-corazonin and eclosion hormone (EH). Corazonin acts on its receptor in Inka cells to elicit low level ETH secretion and initiation of pre-ecdysis, while EH induces cGMP-mediated ETH depletion and consequent activation of ecdysis. The activation of both behaviors is accomplished by ETH action on central neurons expressing ETH receptors A and B (ETHR-A and B). These neurons produce numerous excitatory or inhibitory neuropeptides which initiate or terminate different phases of the ecdysis sequence. Our data indicate that insect ecdysis is a very complex process characterized by two principal steps: (1) ecdysteroid-induced expression of receptors and transcription factors in the CNS and Inka cells. (2) Release and interaction of Inka cell peptide hormones and multiple central neuropeptides to control consecutive phases of the ecdysis sequence.
Collapse
Affiliation(s)
- D Zitnan
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 84506 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
11
|
Chang JC, Yang RB, Chen YH, Lu KH. A novel guanylyl cyclase receptor, BdmGC-1, is highly expressed during the development of the oriental fruit fly Bactrocera dorsalis (Hendel). INSECT MOLECULAR BIOLOGY 2006; 15:69-77. [PMID: 16469070 DOI: 10.1111/j.1365-2583.2006.00609.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A novel receptor guanylyl cyclase (GC) has been identified from the oriental fruit fly Bactrocera dorsalis (Hendel) and has been designated BdmGC-1. Protein domain analysis revealed that BdmGC-1 possesses a characteristic domain organization similar to all known receptor GCs but with a unique carboxyl-terminal extension. When overexpressed in 293T cells, BdmGC-1 manifests as a cell-surface glycoprotein with a marked cGMP-generating activity but is unresponsive to all ligands known to activate mammalian receptor GCs. BdmGC-1 mRNAs were highly expressed during development but had low or no expression in adult tissues. On the basis of its unique sequence and distinct developmental expression pattern, BdmGC-1 represents a novel receptor GC that may play a critical role during the development of B. dorsalis.
Collapse
Affiliation(s)
- J-C Chang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
12
|
Truman JW. Hormonal Control of Insect Ecdysis: Endocrine Cascades for Coordinating Behavior with Physiology. VITAMINS & HORMONES 2005; 73:1-30. [PMID: 16399406 DOI: 10.1016/s0083-6729(05)73001-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- James W Truman
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Ott SR, Delago A, Elphick MR. An evolutionarily conserved mechanism for sensitization of soluble guanylyl cyclase reveals extensive nitric oxide-mediated upregulation of cyclic GMP in insect brain. Eur J Neurosci 2004; 20:1231-44. [PMID: 15341595 DOI: 10.1111/j.1460-9568.2004.03588.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble guanylyl cyclase (SGC) is the main receptor for the gaseous signalling molecule nitric oxide (NO) in vertebrates and invertebrates. Recently, a novel class of drugs that regulate mammalian SGC by NO-independent allosteric mechanisms has been identified [e.g. 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole, YC-1]. To assess the evolutionary conservation and hence the potential physiological relevance of these mechanisms, we have tested YC-1 on the brains of two model insects, the cockroach Periplaneta americana and the locust Schistocerca gregaria. YC-1 strongly potentiated the NO-induced elevation of total cyclic 3',5'-guanosine monophosphate (cGMP) and amplified the intensity and consistency of NO-induced cGMP-immunoreactivity in the brain. Our data indicate that the effect of YC-1 was independent of phosphodiesterase inhibition and thus mediated by direct sensitization of SGC. Immunohistopharmacology and co-labelling with antibodies against the SGC alpha-subunit confirmed that cGMP induced by co-application of NO and YC-1 is predominantly attributable to SGC. The staggering number of NO-responsive neurons revealed by YC-1 suggests that previous studies may have considerably underestimated the number of cellular targets for NO in the insect brain. Moreover, a subset of these targets exhibited cGMP-immunoreactivity without application of exogenous NO, demonstrating that YC-1 can be exploited for visualization of physiological cGMP signals in response to endogenous NO production. In conclusion, our discovery that YC-1 is a potent sensitizer of insect SGC indicates that a NO-independent regulatory site is an evolutionarily conserved feature of SGC. Our findings add considerable momentum to the concept of an as yet unidentified endogenous ligand that regulates the gain of the NO-cGMP signalling pathway.
Collapse
Affiliation(s)
- Swidbert R Ott
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, E1 4NS, UK.
| | | | | |
Collapse
|
14
|
Langlais KK, Stewart JA, Morton DB. Preliminary characterization of two atypical soluble guanylyl cyclases in the central and peripheral nervous system of Drosophila melanogaster. ACTA ACUST UNITED AC 2004; 207:2323-38. [PMID: 15159437 DOI: 10.1242/jeb.01025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conventional soluble guanylyl cyclases form alpha/beta heterodimers that are activated by nitric oxide (NO). Recently, atypical members of the soluble guanylyl cyclase family have been described that include the rat beta2 subunit and MsGC-beta3 from Manduca sexta. Predictions from the Drosophila melanogaster genome identify three atypical guanylyl cyclase subunits: Gyc-88E (formerly CG4154), Gyc-89Da (formerly CG14885) and Gyc-89Db (formerly CG14886). Preliminary data showed that transient expression of Gyc-88E in heterologous cells generated enzyme activity in the absence of additional subunits that was slightly stimulated by the NO donor sodium nitroprusside (SNP) but not the NO donor DEA-NONOate or the NO-independent activator YC-1. Gyc-89Db was inactive when expressed alone but when co-expressed with Gyc-88E enhanced the basal and SNP-stimulated activity of Gyc-88E, suggesting that they may form heterodimers in vivo. Here, we describe the localization of Gyc-88E and Gyc-89Db and show that they are expressed in the embryonic and larval central nervous systems and are colocalized in several peripheral neurons that innervate trachea, basiconical sensilla and the sensory cones in the posterior segments of the embryo. We also show that there are two splice variants of Gyc-88E that differ by seven amino acids, although no differences in biochemical properties could be determined. We have also extended our analysis of the NO activation of Gyc-88E and Gyc-89Db, showing that several structurally unrelated NO donors activate Gyc-88E when expressed alone or when co-expressed with Gyc-89Db.
Collapse
Affiliation(s)
- Kristofor K Langlais
- Departments of Integrative Biosciences and Cell and Developmental Biology, Oregon Health Sciences University, Portland, OR 97239, USA
| | | | | |
Collapse
|
15
|
Abstract
The extremely large number of insects and members of allied groups alive today suggests that molting--shedding of an old cuticle--may be one of the most commonly performed behaviors on our planet. Removal of an old cuticle in insects is associated with stereotyped, species-specific patterns of behavior referred to as ecdysis. It has been recognized for decades that the initiation of ecdysis is under hormonal control, but until recently many of the key peptides that regulate ecdysis were unknown. The report in 1996 of a new ecdysis-triggering hormone (ETH) sparked an era of significant advances in our understanding of the regulation of molting. This article summarizes the current model of peptide regulation of ecdysis, a model that is based on a positive feedback loop between ETH and a brain peptide, eclosion hormone. Then the relationship of these regulatory peptides to the neural circuitry that is the ultimate driver of the behavior are described. Because insects can undergo both status quo (larval-larval) and metamorphic (larval-pupal and pupal-adult) molts, differences in ecdysis behavior at different life stages are described and potential sources of these differences are identified. Most of the work described is based on studies of ecdysis in the hawkmoth, Manduca sexta, but results from studies of ecdysis in the fruit fly Drosophila melanogaster are also discussed.
Collapse
Affiliation(s)
- Karen A Mesce
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|