1
|
Aleem AM, Mitchener MM, Kingsley PJ, Rouzer CA, Marnett LJ. Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages. J Lipid Res 2024; 65:100615. [PMID: 39098584 PMCID: PMC11401187 DOI: 10.1016/j.jlr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
Collapse
Affiliation(s)
- Ansari M Aleem
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michelle M Mitchener
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Philip J Kingsley
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carol A Rouzer
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lawrence J Marnett
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Moayeri A, Mehdizadeh R, Karimi E, Aidy A, Ghaneialvar H, Abbasi N. Thymol Nanopolymer Synthesis and Its Effects on Morphine Withdrawal Syndrome in Comparison With Clonidine in Rats. Front Behav Neurosci 2022; 16:843951. [PMID: 35846786 PMCID: PMC9277302 DOI: 10.3389/fnbeh.2022.843951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
The drug delivery system is valuable in the treatment of the disease. A nanopolymer as a thymol and Thymbra spicata release system was synthesized and its effects on morphine withdrawal syndrome in comparison with clonidine in rats were studied. The nanopolymer was characterized by different methods, namely, IR, HNMR, CNMR, GPC, DLS, and AFM. Thymol in T. spicata extract was assessed. The loading and release rate of thymol and T. spicata extract on the nanopolymer were evaluated by HPLC. The median lethal dose (LD50) of the T. spicata extract, thymol, extract nanopolymer, and thymol nanopolymer was studied. The frequency of jumping, rearing, and teeth chattering in naloxone-induced morphine withdrawal syndrome was studied. Synthesized nanopolymer was desirable as a carrier for the drug. The loaded amount of extract and thymol on nanopolymer was estimated 55 ± 3.2% and 48 ± 2.6% and the drug released was 71 and 68%, respectively. LD50 of the T. spicata extract, thymol, extract nanopolymer, and thymol nanopolymer was 975, 580, 1,250, and 650 mg/kg, respectively. This study showed that thymol nanopolymer was more effective than clonidine to reduce the frequency of morphine withdrawal symptoms. Our results suggest that T. spicata extract, thymol, extract nanopolymer, and thymol nanopolymer are mighty in reducing the narcotic withdrawal signs. The mechanism of action and therapeutic potential is maybe similar to clonidine.
Collapse
Affiliation(s)
- Ardeshir Moayeri
- Department of Anatomy, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Mehdizadeh
- Department of Anatomy, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Karimi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Aidy
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
3
|
Fiore M, Chieffo C, Lopez A, Fayolle D, Ruiz J, Soulère L, Oger P, Altamura E, Popowycz F, Buchet R. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. ASTROBIOLOGY 2022; 22:598-627. [PMID: 35196460 DOI: 10.1089/ast.2021.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.
Collapse
Affiliation(s)
- Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Johal Ruiz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Philippe Oger
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Université de Lyon, Claude Bernard Lyon 1, Villeurbanne, France
| | - Emiliano Altamura
- Chemistry Department, Università degli studi di Bari "Aldo Moro," Bari, Italy
| | - Florence Popowycz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - René Buchet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| |
Collapse
|
4
|
The monoacylglycerol acyltransferase pathway contributes to triacylglycerol synthesis in HepG2 cells. Sci Rep 2022; 12:4943. [PMID: 35322811 PMCID: PMC8943211 DOI: 10.1038/s41598-022-08946-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The monoacylglycerol acyltransferase (MGAT) pathway has a well-established role in the small intestine where it facilitates the absorption of dietary fat. In enterocytes, MGAT participates in the resynthesis of triacylglycerol using substrates (monoacylglycerol and fatty acids) generated in the gut lumen from the breakdown of triacylglycerol consumed in the diet. MGAT activity is also present in the liver, but its role in triacylglycerol metabolism in this tissue remains unclear. The predominant MGAT isoforms present in human liver appear to be MGAT2 and MGAT3. The objective of this study was to use selective small molecule inhibitors of MGAT2 and MGAT3 to determine the contributions of these enzymes to triacylglycerol production in liver cells. We found that pharmacological inhibition of either enzyme had no effect on TG mass in HepG2 cells but did alter lipid droplet size and number. Inhibition of MGAT2 did result in decreased DG and TG synthesis and TG secretion. Interestingly, MGAT2 preferentially utilized 2-monoacylglycerol derived from free glycerol and not from exogenously added 2-monoacylglycerol. In contrast, inhibition of MGAT3 had very little effect on TG metabolism in HepG2 cells. Additionally, we demonstrated that the MGAT activity of DGAT1 only makes a minor contribution to TG synthesis in intact HepG2 cells. Our data demonstrated that the MGAT pathway has a role in hepatic lipid metabolism with MGAT2, more so than MGAT3, contributing to TG synthesis and secretion.
Collapse
|
5
|
BARROS IGL, GARBOSSA CAP, ALBUQUERQUE TMNCD, COUTO CE, SILVA JUNIOR SR, PINTO ABF, FARIA PB, NAVES LDP. Carcass characteristics and pork quality of pigs fed diets containing crude glycerin and ractopamine. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Pinto ABF, Naves LDP, Lima IG, Garbossa CAP, Silva Júnior SR, Barbosa AMS, Maluf CL, Rosa PV, Zangeronimo MG, Cantarelli VDS, Sousa RV. Metabolism of glycerol in pigs fed diets containing mixed crude glycerin and β-adrenergic agonist. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The optimised use of mixed crude glycerin (MCG) and ractopamine hydrochloride (RH) in diets for finishing pigs requires a better understanding of glycerol metabolism. Therefore, the present study evaluated the performance, blood parameters, metabolite concentrations in the Longissimus lumborum muscle and the activity of enzymes in the liver, subcutaneous adipose tissue and kidney of pigs fed diets containing MCG and/or RH. According to the initial weight, 64 barrows were distributed in a 4 × 2 factorial design, corresponding to four concentrations of MCG (0, 100, 150, and 200 g/kg) in diets containing 0 or 10 mg/kg of RH. There was no MCG × RH interaction for any of the evaluated parameters (P > 0.05). Moreover, there was no isolated effect of dietary MCG or RH on the weight gain and the blood concentrations of glucose, insulin, triacylglycerols, total cholesterol, total protein, albumin, creatinine, cortisol and lactate (P > 0.05). There was a higher rate of phosphorylation of glycerol in the liver, stimulation of lipogenesis in adipose tissue and a likely increase in the utilisation of glycerol by muscle fibres in response to an increased concentration of circulating glycerol from the diet (P < 0.05). In contrast, when the diet contained up to 200 g/kg MCG and 10 mg/kg RH, there were indications of a lower utilisation of glycerol for the synthesis of triacylglycerols in muscle, liver and adipose tissue, in addition to increased oxidation of amino acids in the liver followed by improved feed conversion of pigs (P < 0.05).
Collapse
|
7
|
Adeli M, Rasoulian B, Saadatmehr F, Zabihi F. Hyperbranched poly(citric acid) and its application as anticancer drug delivery system. J Appl Polym Sci 2013. [DOI: 10.1002/app.39028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Hall AM, Kou K, Chen Z, Pietka TA, Kumar M, Korenblat KM, Lee K, Ahn K, Fabbrini E, Klein S, Goodwin B, Finck BN. Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. J Lipid Res 2012; 53:990-999. [PMID: 22394502 DOI: 10.1194/jlr.p025536] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intrahepatic lipid accumulation is extremely common in obese subjects and is associated with the development of insulin resistance and diabetes. Hepatic diacylglycerol and triacylglycerol synthesis predominantly occurs through acylation of glycerol-3-phosphate. However, an alternative pathway for synthesizing diacylglycerol from monoacylglycerol acyltransferases (MGAT) could also contribute to hepatic glyceride pools. MGAT activity and the expression of the three genes encoding MGAT enzymes (MOGAT1, MOGAT2, and MOGAT3) were determined in liver biopsies from obese human subjects before and after gastric bypass surgery. MOGAT expression was also assessed in liver of subjects with nonalcoholic fatty liver disease (NAFLD) or control livers. All MOGAT genes were expressed in liver, and hepatic MGAT activity was readily detectable in liver lysates. The hepatic expression of MOGAT3 was highly correlated with MGAT activity, whereas MOGAT1 and MOGAT2 expression was not, and knockdown of MOGAT3 expression attenuated MGAT activity in a liver-derived cell line. Marked weight loss following gastric bypass surgery was associated with a significant reduction in MOGAT2 and MOGAT3 expression, which were also overexpressed in NAFLD subjects. These data suggest that the MGAT pathway is active and dynamically regulated in human liver and could be an important target for pharmacologic intervention for the treatment of obesity-related insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Angela M Hall
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kou Kou
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Groton, CT
| | - Zhouji Chen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Terri A Pietka
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Mrudula Kumar
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kevin M Korenblat
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kyuha Lee
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Groton, CT
| | - Kay Ahn
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Groton, CT
| | - Elisa Fabbrini
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Bryan Goodwin
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Groton, CT
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO;.
| |
Collapse
|
9
|
Barrett DG, Yousaf MN. Poly(triol α-ketoglutarate) as Biodegradable, Chemoselective, and Mechanically Tunable Elastomers. Macromolecules 2008. [DOI: 10.1021/ma8009728] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Devin G. Barrett
- Department of Chemistry and the Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Muhammad N. Yousaf
- Department of Chemistry and the Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Rosenberger TA, Farooqui AA, Horrocks LA. Bovine brain diacylglycerol lipase: substrate specificity and activation by cyclic AMP-dependent protein kinase. Lipids 2007; 42:187-95. [PMID: 17393225 DOI: 10.1007/s11745-007-3019-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/03/2007] [Indexed: 02/02/2023]
Abstract
Diacylglycerol lipase (EC 3.1.1.3) was purified from bovine brain microsomes using multiple column chromatographic techniques. The purified enzyme migrates as a single band on SDS-PAGE and has an apparent molecular weight of 27 kDa. Substrate specificity experiments using mixed molecular species of 1,2-diacyl-sn-glycerols indicate that low concentrations of Ca(2+) and Mg(2+) have no direct effect on enzymic activity and 1,2-diacyl-sn-glycerols are the preferred substrate over 1,3-diacyl-sn-glycerols. The enzyme hydrolyzes stearate in preference to palmitate from the sn-1 position of 1,2-diacyl-sn-glycerols. 1-O-Alkyl-2-acyl-sn-glycerols are not a substrate for the purified enzyme. The native enzyme had a V (max) value of 616 nmol/min mg protein. Phosphorylation by cAMP-dependent protein kinase resulted in a threefold increase in catalytic throughput (V (max) = 1,900 nmol/min mg protein). The substrate specificity and catalytic properties of the bovine brain diacylglycerol lipase suggest that diacylglycerol lipase may regulate protein kinase C activity and 2-arachidonoyl-sn-glycerol levels by rapidly altering the intracellular concentration of diacylglycerols.
Collapse
Affiliation(s)
- Thad A Rosenberger
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
11
|
Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. THE PLANT CELL 2007; 19:351-68. [PMID: 17259262 PMCID: PMC1820950 DOI: 10.1105/tpc.106.048033] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 11/30/2006] [Accepted: 01/03/2007] [Indexed: 05/13/2023]
Abstract
Suberin and cutin are fatty acid- and glycerol-based plant polymers that act as pathogen barriers and function in the control of water and solute transport. However, despite important physiological roles, their biosynthetic pathways, including the acyl transfer reactions, remain hypothetical. We report the characterization of two suberin mutants (gpat5-1 and gpat5-2) of Arabidopsis thaliana GPAT5, encoding a protein with acyl-CoA:glycerol-3-phosphate acyltransferase activity. RT-PCR and beta-glucuronidase-promoter fusion analyses demonstrated GPAT5 expression in seed coat, root, hypocotyl, and anther. The gpat5 plants showed a 50% decrease in aliphatic suberin in young roots and produced seed coats with a severalfold reduction in very long chain dicarboxylic acid and omega-hydroxy fatty acids typical of suberin but no change in the composition or content of membrane or storage glycerolipids or surface waxes. Consistent with their altered suberin, seed coats of gpat5 mutants had a steep increase in permeability to tetrazolium salts compared with wild-type seed coats. Furthermore, the germination rate of gpat5 seeds under high salt was reduced, and gpat5 seedlings had lower tolerance to salt stress. These results provide evidence for a critical role of GPAT5 in polyester biogenesis in seed coats and roots and for the importance of lipid polymer structures in the normal function of these organs.
Collapse
Affiliation(s)
- Fred Beisson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
12
|
Meijer HJG, Govers F. Genomewide analysis of phospholipid signaling genes in Phytophthora spp.: novelties and a missing link. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1337-47. [PMID: 17153918 DOI: 10.1094/mpmi-19-1337] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phospholipids are cellular membrane components in eukaryotic cells that execute many important roles in signaling. Genes encoding enzymes required for phospholipid signaling and metabolism have been characterized in several organisms, but only a few have been described for oomycetes. In this study, the genome sequences of Phytophthora sojae and P. ramorum were explored to construct a comprehensive genomewide inventory of genes involved in the most universal phospholipid signaling pathways. Several genes and gene families were annotated, including those encoding phosphatidylinositol synthase (PIS), phosphatidylinositol (phosphate) kinase (PI[P]K), diacylglycerol kinase (DAG), and phospholipase D (PLD). The most obvious missing link is a gene encoding phospholipase C (PLC). In all eukaryotic genomes sequenced to date, PLC genes are annotated based on certain conserved features; however, these genes seem to be absent in Phytophthora spp. Analysis of the structural and regulatory domains and domain organization of the predicted isoforms of PIS, PIK, PIPK, DAG, and PLD revealed many novel features compared with characterized representatives in other eukaryotes. Examples are transmembrane proteins with a C-terminal catalytic PLD domain, secreted PLD-like proteins, and PIPKs that have an N-terminal G-protein-coupled receptor-transmembrane signature. Compared with other sequenced eukaryotes, the genus Phytophthora clearly has several exceptional features in its phospholipid-modifying enzymes.
Collapse
Affiliation(s)
- Harold J G Meijer
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands.
| | | |
Collapse
|
13
|
Yasugi E, Horiuchi A, Uemura I, Okuma E, Nakatsu M, Saeki K, Kamisaka Y, Kagechika H, Yasuda K, Yuo A. Peroxisome proliferator-activated receptor gamma ligands stimulate myeloid differentiation and lipogenensis in human leukemia NB4 cells. Dev Growth Differ 2006; 48:177-88. [PMID: 16573735 DOI: 10.1111/j.1440-169x.2006.00855.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a central role in adipocyte and macrophage differentiation. Pioglitazone (Actos, AD4833), an antidiabetic drug, and 15-deoxy-Delta(12,14)-prostaglandin J2 (PGJ2) have recently been identified as synthetic and natural ligands for PPARgamma, respectively. In this study, we examined the effects of PPARgamma ligands on differentiation and lipogenesis in promyelocytic leukemia NB4 cells, in which PPARgamma protein was expressed and ligand-stimulated PPARgamma-specific transcription of adipocyte fatty-acid binding protein was confirmed. Treatment with PPARgamma ligand (AD4833 or PGJ2) alone markedly suppressed proliferation but did not induce differentiation. The combined treatment of the cells with PPARgamma ligand and all-trans retinoic acid (ATRA) synergistically induced myelocytic differentiation, as determined by nitroblue tetrazolium reducing ability and cell morphology. During these processes of differentiation, we observed marked accumulation of lipid droplets in the cytoplasm. The cellular triacylglycerol levels increased 2.7-fold after treatment with the inducers. Simultaneously, BODIPY-fatty acid was incorporated into the cytosol and concentrated in lipid droplets. The biosynthesis of triacylglycerol-containing BODIPY-fatty acids was increased twofold in differentiated cells. These findings clearly demonstrate that treatment with PPARgamma ligands not only induced differentiation but also stimulated lipogenesis in NB4 cells, indicating a close association between differentiation and lipogenesis in PPARgamma-stimulated human myeloid cells.
Collapse
Affiliation(s)
- Etsuko Yasugi
- Department of Hematology, Research Institute, International Medical Center of Japan, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Clinical application of C18and C20chain length polyunsaturated fatty acids and their biotechnological production in plants. J AM OIL CHEM SOC 2006. [DOI: 10.1007/s11746-006-1191-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Fan J, Whiteway M, Shen SH. Disruption of a gene encoding glycerol 3-phosphatase from Candida albicans impairs intracellular glycerol accumulation-mediated salt-tolerance. FEMS Microbiol Lett 2005; 245:107-16. [PMID: 15796987 DOI: 10.1016/j.femsle.2005.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 11/19/2022] Open
Abstract
Intracellular glycerol accumulation is critical for Candida albicans to maintain osmolarity, and therefore defects in glycerol homeostasis can have severe effects on the morphogenetic plasticity and pathogenicity of this fungus. The final step of glycerol synthesis involves the dephosphorylation of glycerol 3-phosphate by glycerol 3-phosphatase (GPP1). We have identified a single copy of the GPP orthologous gene (GPP1) in the C. albicans haploid genome, as well as the paralogous gene 2-deoxyglucose-6-phosphate phosphatase (DOG1); both belong to a family of low molecular weight phosphatases. A knockout of the GPP1 gene in C. albicans caused increased susceptibility to high salt concentrations, indicating a deficiency in osmoregulation. Reintroduction of the GPP1 gene complemented the impairment of salt-tolerance in the gpp1/gpp1 mutant. Northern blot analysis showed that the GPP1 gene was strongly responsive to osmotic stress, and its transcriptional expression was positively correlated with intracellular glycerol accumulation. These results demonstrate that the GPP1 gene plays an important role in the osmoregulation in C. albicans.
Collapse
Affiliation(s)
- Jinjiang Fan
- Mammalian Cell Genetics, Health Sector, Biotechnology Research Institute, National Research Council of Canada, Montreal, Que., Canada H4P 2R2
| | | | | |
Collapse
|
16
|
Coppack SW, Chinkes DL, Miles JM, Patterson BW, Klein S. A multicompartmental model of in vivo adipose tissue glycerol kinetics and capillary permeability in lean and obese humans. Diabetes 2005; 54:1934-41. [PMID: 15983192 DOI: 10.2337/diabetes.54.7.1934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipolysis of adipose tissue triglycerides releases glycerol. Twenty-four volunteers, of whom 6 were obese and 13 were women, received a primed-constant infusion of 2H5-glycerol for 120 min during postabsorptive steady-state conditions. Arterial, abdominal venous, and interstitial (microdialysis) samples were taken, and a four-compartment model was applied to assess subcutaneous abdominal adipose tissue glycerol kinetics. Adipose tissue blood flow was measured using 133Xe washout. Venous glycerol concentrations (median 230 micromol/l [interquartile range 210-268]) were consistently greater than those of arterial blood (69.1 micromol/l [56.5-85.5]), while glycerol isotopic enrichments (tracer-to-tracee ratio) were greater in arterial blood (8.34% [7.44-10.1]) than venous blood (2.34% [1.71-2.69], P < 0.01). Microdialysate glycerol enrichment was 1.44% (1.11-1.79), indicating incomplete permeability of glycerol between capillary blood and interstitium. Calculated interstitial glycerol concentrations were between 270 micromol/l (256-350) and 332 micromol/l (281-371) (examining different boundary conditions). The calculated capillary diffusion capacity (ps) was between 2.21 ml . 100 g tissue(-1) . min(-1) (1.31-3.13) and 3.09 ml . 100 g tissue(-1) . min(-1) (1.52-4.90) and correlated inversely with adiposity (Rs< or = -0.45, P < 0.05). Our results support previous estimates of interstitial glycerol concentration within adipose tissue and reveal capillary diffusion capacity is reduced in obesity.
Collapse
Affiliation(s)
- Simon W Coppack
- Diabetes & Metabolic Medicine, St. Bartholomew's and The London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
17
|
Golovko MY, Hovda JT, Cai ZJ, Craigen WJ, Murphy EJ. Tissue-dependent alterations in lipid mass in mice lacking glycerol kinase. Lipids 2005; 40:287-93. [PMID: 15957255 DOI: 10.1007/s11745-005-1384-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycerol kinase (ATP:glycerol-3-phosphotransferase, EC 2.7.1.30, glycerokinase) (Gyk) has a central role in plasma glycerol extraction and utilization by tissues for lipid biosynthesis. Gyk deficiency causes various phenotypic changes ranging from asymptomatic hyperglycerolemia to a severe metabolic disorder with growth and psychomotor retardation. To better understand the potential role of Gyk in tissue lipid metabolism, we determined phospholipid (PL), cholesterol (Chol), and triacylglycerol (TG) mass in a number of tissues from mice lacking Gyk. We report a tissue-dependent response to Gyk gene deletion. Tissues with elevated total PL mass (brain, kidney, muscle) were characterized by the increased mass of ethanolamine glycerophospholipids (EtnGpl), choline glycerophospholipids, and phosphatidylserine (PtdSer). In heart, lipid changes were characterized by a reduction in total PL, including decreased EtnGpl, phosphatidylinositol, and PtdSer mass and decreased TG and FFA mass. In parallel with tissue PL alterations, tissue Chol was also changed, maintaining a normal Chol/PL ratio. Under conditions of Gyk deficiency, we speculate that glycerol-3-phosphate and lipid production is maintained via alternative biosynthesis, including glycolysis, glyceroneogenesis, or by direct acylation of glycerol in brain, muscle, kidney, and liver, but not in heart.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | |
Collapse
|
18
|
Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL. Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem 2005; 280:14755-64. [PMID: 15671038 DOI: 10.1074/jbc.m500025200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The esterification of alcohols such as sterols, diacylglycerols, and monoacylglycerols with fatty acids represents the formation of both storage and cytoprotective molecules. Conversely, the overproduction of these molecules is associated with several disease pathologies, including atherosclerosis and obesity. The human acyl-CoA:diacylglycerol acyltransferase (DGAT) 2 gene superfamily comprises seven members, four of which have been previously implicated in the synthesis of di- or triacylglycerol. The remaining 3 members comprise an X-linked locus and have not been characterized. We describe here the expression of DGAT2 and the three X-linked genes in Saccharomyces cerevisiae strains virtually devoid of neutral lipids. All four gene products mediate the synthesis of triacylglycerol; however, two of the X-linked genes act as acyl-CoA wax alcohol acyltransferases (AWAT 1 and 2) that predominantly esterify long chain (wax) alcohols with acyl-CoA-derived fatty acids to produce wax esters. AWAT1 and AWAT2 have very distinct substrate preferences in terms of alcohol chain length and fatty acyl saturation. The enzymes are expressed in many human tissues but predominate in skin. In situ hybridizations demonstrate a differentiation-specific expression pattern within the human sebaceous gland for the two AWAT genes, consistent with a significant role in the composition of sebum.
Collapse
Affiliation(s)
- Aaron R Turkish
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mutch DM, Grigorov M, Berger A, Fay LB, Roberts MA, Watkins SM, Williamson G, German JB. An integrative metabolism approach identifies stearoyl‐CoA desaturase as a target for an arachidonate‐enriched diet. FASEB J 2005; 19:599-601. [PMID: 15670975 DOI: 10.1096/fj.04-2674fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological studies have correlated diets containing higher intakes of PUFA with lower rates of chronic metabolic diseases. The molecular mechanisms regulated by the consumption of PUFA were examined by using an integrative metabolism approach assaying the liver transcriptome and lipid-metabolome of mice fed a control diet, an arachidonate (AA)-enriched fungal oil, an eicosapentaenoic (EPA)/docosahexaenoic (DHA)-enriched fish oil, or a combination of the two oils. Hepatic gene transcription and fatty acid (FA) metabolism were significantly altered by diets enriched with AA, as revealed by global error assessment and singular value decomposition (SVD) analysis, respectively. SVD analysis of the lipid data, reinforced with transcriptomics, suggests that the chronic feeding of AA modulates molecular endpoints similar to those previously reported in the obesity-resistant SCD1-/- mouse, namely, genes involved in lipid oxidation/synthesis and the significant changes in FA metabolism stemming from a repressed SCD1 activity. Specifically, the total levels and FA composition of several phospholipid (PL) species were significantly changed, with phosphatidylcholine (PC) demonstrating the greatest alterations. Reduced PC levels were linked to decreased expression of enzymes in PC biosynthesis (choline kinase, -2.2-fold; glycerol-3-phosphate acyltransferase, -2.0-fold). Alterations in PL-FA composition were related to decreased expression of FA biosynthetic genes [fatty acid synthetase, -3.7-fold; stearoyl-CoA desaturase-1 (SCD1), -1.8-fold]. Lower hepatic SCD1 gene expression levels were reflected in various aspects of FA metabolism through increased concentrations of palmitic (fungal oil, +45%; combination, +106%) and stearic acids (fungal oil, +60%; combination, +63%) in PC. Importantly, an integrated approach showed that these effects were not attenuated by the addition of an EPA/DHA-enriched fish oil, thereby identifying a previously unrecognized and distinct role for AA in the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- David M Mutch
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Marcil V, Peretti N, Delvin E, Levy E. Les processus digestifs et absorptifs des lipides alimentaires. ACTA ACUST UNITED AC 2004; 28:1257-66. [PMID: 15671937 DOI: 10.1016/s0399-8320(04)95219-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Valérie Marcil
- Centre de Recherche Hôpital Sainte-Justine, Département de Nutrition, Université de Montréal, Canada
| | | | | | | |
Collapse
|
21
|
Lewin TM, Coleman RA. Regulation of myocardial triacylglycerol synthesis and metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1634:63-75. [PMID: 14643794 DOI: 10.1016/j.bbalip.2003.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies showing a correlation of excess myocardial triacylglycerol stores with apoptosis, fibrosis, and contractile dysfunction indicate that dysregulation of triacylglycerol metabolism may contribute to cardiac disease. This review covers the regulation of heart triacylglycerol accumulation at the critical control points of fatty acid uptake, enzymes of triacylglycerol synthesis, lipolysis, and lipoprotein secretion. These pathways are discussed in the context of the central role myocardial triacylglycerol plays in cardiac energy metabolism and heart disease.
Collapse
Affiliation(s)
- Tal M Lewin
- Department of Nutrition, School of Public Health, University of North Carolina, CB #7400, Pittsboro Street, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
22
|
van der Stelt M, Hansen HH, Veldhuis WB, Bär PR, Nicolay K, Veldink GA, Vliegenthart JFG, Hansen HS. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases. Neurotox Res 2003; 5:183-200. [PMID: 12835123 DOI: 10.1007/bf03033139] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocannabinoids are thought to function as retrograde messengers, which modulate neurotransmitter release by activating presynaptic cannabinoid receptors. Anandamide and 2-arachidonoylglycerol (2-AG) are the two best studied endogenous lipids which can act as endocannabinoids. Together with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been demonstrated that the endocannabinoid system can protect neurons against glutamate excitotoxicity and acute neuronal damage in both in vitro and in vivo models. In this paper we review the data concerning the involvement of the endocannabinoid system in neurodegenerative diseases in which neuronal cell death may be elicited by excitotoxicity. We focus on the biosynthesis of endocannabinoids and on their modes of action in animal models of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Mario van der Stelt
- Department of Bio-organic Chemistry, Bijvoet Center for Biomolecular Science, Padualaan 8, NL-3584 CH Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Watanabe S, Doshi M, Hamazaki T. n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins Leukot Essent Fatty Acids 2003; 69:51-9. [PMID: 12878451 DOI: 10.1016/s0952-3278(03)00056-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-arachidonoylglycerol (2-AG) is a putative endogenous ligand for cannabinoid receptors and was suggested to play an important role in both physiological and pathological events in the central nervous system (CNS) as well as in peripheral organs. The sequential hydrolysis of arachidonic acid (20:4n-6, AA)-containing phospholipids has been proposed as a major biosynthetic route of 2-AG. On the other hand, the manipulation of the dietary n-3 polyunsaturated fatty acid (PUFA) status changes the AA level in tissue phospholipids. We, therefore, conducted two separate experiments to confirm whether the dietary n-3 PUFA status influences the 2-AG level in the mouse brain. In the first experiment, we fed mice with n-3 PUFA-deficient diet, which resulted in a marked decrease in the docosahexaenoic acid (22:6n-3, DHA) levels without a change in the AA level in brain phospholipids as compared with the mice fed with an n-3 PUFA-sufficient diet. The brain 2-AG level in the n-3 PUFA-deficient group was significantly higher than in the n-3 PUFA sufficient group. In the second experiment, we found that short-term supplementation of DHA-rich fish oil reduced brain 2-AG level as compared with the supplementation with low n-3 PUFA. The decrease in the AA level and the increase in the DHA level in the major phospholipids occurred in the brains of the mice fed the fish oil diet compared with those fed the low n-3 PUFA diet. Our results indicate that the n-3 PUFA deficiency elevates and n-3 PUFA enrichment reduces the brain 2-AG level in mice, suggesting that physiological and pathological events mediated by 2-AG through cannabinoid receptor in the CNS could be modified by the manipulation of the dietary n-3 PUFA status.
Collapse
Affiliation(s)
- S Watanabe
- Department of Clinical Application, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|