1
|
Warnick GR, McNamara JR, Boggess CN, Clendenen F, Williams PT, Landolt CC. Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med 2007; 26:803-46. [PMID: 17110241 DOI: 10.1016/j.cll.2006.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High-density (HDL), low-density (LDL), and very-low-density (VLDL) lipoproteins are heterogeneous cholesterol-containing particles that differ in their metabolism, environmental interactions, and association with disease. Several protocols use polyacrylamide gradient gel electrophoresis (GGE) to separate these major lipoproteins into known subclasses. This article provides a brief history of the discovery of lipoprotein heterogeneity and an overview of relevant lipoprotein metabolism, highlighting the importance of the subclasses in the context of their metabolic origins, fates, and clinical implications. Various techniques using polyacrylamide GGE to assess HDL and LDL heterogeneity are described, and how the genetic and environmental determinations of HDL and LDL affect lipoprotein size heterogeneity and the implications for cardiovascular disease are outlined.
Collapse
Affiliation(s)
- G Russell Warnick
- Berkeley HeartLab Inc., 960 Atlantic Avenue, Suite 100 Alameda, CA 94501, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Cheung MC, Albers JJ. Active plasma phospholipid transfer protein is associated with apoA-I- but not apoE-containing lipoproteins. J Lipid Res 2006; 47:1315-21. [PMID: 16520487 DOI: 10.1194/jlr.m600042-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma phospholipid transfer protein (PLTP) is a multifaceted protein with diverse biological functions. It has been shown to exist in both active and inactive forms. To determine the nature of lipoproteins associated with active PLTP, plasma samples were adsorbed with anti-A-I, anti-A-II, or anti-E immunoadsorbent, and PLTP activity was measured in the resulting plasma devoid of apolipoprotein A-I (apoA-I), apoA-II, or apoE. Anti-A-I and anti-A-II immunoadsorbents removed 98 +/- 1% (n = 8) and 38 +/- 25% (n = 7) of plasma PLTP activity, respectively. In contrast, only 1 +/- 5% of plasma PLTP activity was removed by anti-E immunoadsorbent (n = 7). Dextran sulfate (DS) cellulose did not bind apoA-I, but it removed 83 +/- 5% (n = 4) of the PLTP activity in plasma. In size-exclusion chromatography, PLTP activity removed by anti-A-I or anti-A-II immunoadsorbent was associated primarily with particles of a size corresponding to HDL, whereas a substantial portion of the PLTP activity dissociated from DS cellulose was found in particles larger or smaller than HDL. These data show the following: 1) active plasma PLTP is associated primarily with apoA-I- but not apoE-containing lipoproteins; 2) active PLTP is present in HDL particles with and without apoA-II, and its distribution between these two HDL subpopulations varies widely among individuals; and 3) DS cellulose can remove active PLTP from apoA-I-containing lipoproteins, and this process creates new active PLTP-containing particles in vitro.
Collapse
Affiliation(s)
- Marian C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
3
|
Cheung MC, Sibley SD, Palmer JP, Oram JF, Brunzell JD. Lipoprotein lipase and hepatic lipase: their relationship with HDL subspecies Lp(A-I) and Lp(A-I,A-II). J Lipid Res 2003; 44:1552-8. [PMID: 12777470 PMCID: PMC2768368 DOI: 10.1194/jlr.m300091-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HDL subspecies Lp(A-I) and Lp(A-I,A-II) have different anti-atherogenic potentials. To determine the role of lipoprotein lipase (LPL) and hepatic lipase (HL) in regulating these particles, we measured these enzyme activities in 28 healthy subjects with well-controlled Type 1 diabetes, and studied their relationship with Lp(A-I) and Lp(A-I,A-II). LPL was positively correlated with the apolipoprotein A-I (apoA-I), cholesterol, and phospholipid mass in total Lp(A-I), and with the apoA-I in large Lp(A-I) (r >or= 0.58, P >or= 0.001). HL was negatively correlated with all the above Lp(A-I) parameters plus Lp(A-I) triglyceride (r >or= -0.53, P <or= 0.003). No correlation was detected between LPL and Lp(A-I,A-II). However, HL was inversely correlated with total Lp(A-I,A-II) phospholipid, and with large Lp(A-I,A-II) (r >or= 0.50, P <or= 0.006). Similar studies were performed with phospholipid transfer protein (PLTP). Only total Lp(A-I) triglyceride in women (not men) (r = 0.71, P = 0.009) was significantly correlated with PLTP activity. These observations indicate that LPL and HL play major roles in determining the level and composition of plasma Lp(A-I), particularly large Lp(A-I), but not with Lp(A-I,A-II) level. Furthermore, select correlations of LPL and/or HL with the apoA-I, cholesterol, and triglyceride of Lp(A-I) but not Lp(A-I,A-II) imply that the apoA-I and lipid of Lp(A-I) and Lp(A-I,A-II) are not fully equilibrated.
Collapse
Affiliation(s)
- Marian C Cheung
- Department of Medicine, University of Washington, Seattle, WA 98103, USA.
| | | | | | | | | |
Collapse
|
4
|
Cheung MC, Wolfbauer G, Kennedy H, Brown BG, Albers JJ. Plasma phospholipid transfer protein activity in patients with low HDL and cardiovascular disease treated with simvastatin and niacin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1537:117-24. [PMID: 11566255 DOI: 10.1016/s0925-4439(01)00064-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is an important modulator of high-density lipoprotein (HDL) metabolism, regulating its particle size, composition, and mass. In patients with low HDL and cardiovascular disease (CVD), plasma PLTP activity is positively correlated with the concentration of HDL particles containing apo A-I but not apo A-II (Lp(A-1)). We recently completed a study to determine the effect of simvastatin and niacin (S-N) therapy on disease progression/regression in these patients, and found that this therapy selectively increased Lp(A-I). To determine if PLTP was also increased with this drug therapy, we measured the PLTP activity in the plasma of 30 of these patients obtained at baseline and after 12 months of therapy, and compared the changes to a similar group of 31 patients who received placebo for the drugs. No significant increase in PLTP activity was observed in either group of patients. However, changes in apo A-I and A-II between these two time points were correlated with the corresponding change in PLTP activity. The correlation coefficients were r=0.57 (P=0.001) and r=0.43 (P=0.02) for apo A-I, and r=0.54 (P=0.002) and r=0.41 (P=0.02) for apo A-II in the placebo and S-N group, respectively. At baseline, PLTP activity correlated positively with the percent of plasma apo A-I associated with Lp(A-I) (r=0.38, P=0.04) and the amounts of apo A-I in these particles (r=0.43, P=0.02). These relationships persisted in patients who took placebo for 12 months (r=0.46, P=0.009 and r=0.37, P=0.04, respectively), but was attenuated in those treated with S-N. These data indicate that S-N-induced increase in Lp(A-I) was PLTP-independent. It also confirms our previous observation that an interrelationship exists between PLTP and apo-specific HDL particle subclasses in CVD patients with low HDL, and that this relationship is altered by drug intervention.
Collapse
Affiliation(s)
- M C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, School of Medicine, Seattle 98103, USA.
| | | | | | | | | |
Collapse
|
5
|
Cheung MC, Zhao XQ, Chait A, Albers JJ, Brown BG. Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Arterioscler Thromb Vasc Biol 2001; 21:1320-6. [PMID: 11498460 DOI: 10.1161/hq0801.095151] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One strategy for treating coronary artery disease (CAD) patients with low HDL cholesterol (HDL-C) is to maximally increase the HDL-C to LDL-C ratio by combining lifestyle changes with niacin (N) plus a statin. Because HDL can prevent LDL oxidation, the low-HDL state also may benefit clinically from supplemental antioxidants. Lipoprotein changes over 12 months were studied in 153 CAD subjects with low HDL-C randomized to take simvastatin and niacin (S-N), antioxidants (vitamins E and C, beta-carotene, and selenium), S-N plus antioxidants (S-N+A), or placebo. Mean baseline plasma cholesterol, triglyceride, LDL-C, and HDL-C levels of the 153 subjects were 196, 207, 127, and 32 mg/dL, respectively. Without S-N, lipid changes were minor. The S-N and S-N+A groups had comparably significant reductions (P</=0.001) in plasma cholesterol, triglyceride, and LDL-C. However, increases in HDL-C, especially HDL(2)-C, were consistently higher in the S-N group than in the S-N+A group (25% vs 18% and 42% vs 0%, respectively). With S-N, but not with S-N+A, there was a selective increase in apolipoprotein (apo) A-I (64%) in HDL particles containing apo A-I but not A-II [Lp(A-I)] and their particle size. Thus, in CAD patients with low HDL-C, S-N substantially increased HDL(2)-C, Lp(A-I), and HDL particle size. These favorable responses were blunted by the antioxidants used owing to a striking selective effect on Lp(A-I). This unexpected adverse interaction between antioxidants and lipid therapy may have important implications for the management of CAD.
Collapse
Affiliation(s)
- M C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle 98103, USA.
| | | | | | | | | |
Collapse
|
6
|
Deeg MA, Bierman EL, Cheung MC. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31669-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Cheung MC, Walden CE, Knopp RH. Comparison of the effects of triphasic oral contraceptives with desogestrel or levonorgestrel on apolipoprotein A-I-containing high-density lipoprotein particles. Metabolism 1999; 48:658-64. [PMID: 10337871 DOI: 10.1016/s0026-0495(99)90068-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent observations suggest that the risk of coronary artery disease (CAD) is associated with both the level and composition of the two major populations of apolipoprotein (apo)-defined high-density lipoprotein (HDL) particles: those containing both apo A-I and apo A-II [Lp(AI,AII)] and those containing apo A-I without apo A-II [Lp(AI)]. While sex hormones are known to affect HDL, their influence on these apo-defined HDL particles is not known. We have determined the effects of two triphasic oral contraceptive (OC) formulations on these HDL particles in healthy normolipidemic women aged 21 to 35 years. The formulations contain comparable quantities of ethinyl estradiol (EE) and either desogestrel (DG), a minimally androgenic progestin, or levonorgestrel (LN), a more androgenic progestin. Lipid and lipoprotein levels were measured during the third week of the normal menstrual cycle and the sixth month of OC use. The DG/EE formulation significantly increased total cholesterol (C) 15%, triglyceride (TG) 99%, phospholipid (PL) 17%, apo A-I 28%, apo A-II 34%, apo B 21%, very-low-density lipoprotein cholesterol (VLDL-C) 238%, HDL-C 20%, and HDL3-C 28% (P < .02 to .005, n = 11), but not low-density lipoprotein cholesterol (LDL-C). The LN/EE formulation also increased total C 15%, TG 33%, apo A-I 15%, HDL3-C 21% (P < .05, n = 10), apo B 30% (P < .005), and, additionally, LDL-C 19% (P < .05). Both formulations increased Lp(AI,AII) (DG/EE, 34%, P < .005; LN/EE, 24%, P < .01). These changes reflected comparable increases of small (7.0 to 8.2 nm) and medium (8.2 to 9.2 nm) particles in the LN/EE group and a predominant increase of medium-sized particles in the DG/EE group. Also, in the LN/EE group but not the DG/EE group, there were fewer large (9.2 to 11.2 nm) particles. Lp(AI) increased only in the DG/EE group (25%, P = .075) and was due to the presence of more large particles. The level of Lp(AI) did not change in the LN/EE group, but the lipid/A-I ratio of these particles was lower (P = .012) and there were more small particles. Thus, triphasic OC formulations with progestins of different androgenicity had different effects on VLDL, LDL, and the level and composition of HDL particles with and without apo A-II, possibly reflecting estrogen/progestin/androgen balance. Estrogen dominance increases both Lp(AI,AII) and Lp(AI) and favors large Lp(AI) particles, while progestin/androgen dominance increases only Lp(AI,AII) and favors small particles. Because of the importance of HDL in the arterial wall physiology, OC formulations with different estrogen and progestin content may affect arterial wall health to a different extent.
Collapse
Affiliation(s)
- M C Cheung
- Northwest Lipid Research Clinic, Department of Medicine, School of Medicine, University of Washington, Seattle 98103, USA
| | | | | |
Collapse
|
8
|
Cheung MC, Wolfbauer G, Brown BG, Albers JJ. Relationship between plasma phospholipid transfer protein activity and HDL subclasses among patients with low HDL and cardiovascular disease. Atherosclerosis 1999; 142:201-5. [PMID: 9920522 DOI: 10.1016/s0021-9150(98)00190-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Low levels of high density lipoproteins (HDL) are associated with an increased risk for premature cardiovascular disease. The plasma phospholipid transfer protein (PLTP) is believed to play a critical role in lipoprotein metabolism and reverse cholesterol transport by remodeling HDL and facilitating the transport of lipid to the liver. Plasma contains two major HDL subclasses, those containing both apolipoproteins (apo) A-I and A-II, Lp(A-I, A-II), and those containing apo A-I but not A-II, Lp(A-I). To examine the potential relationships between PLTP and lipoproteins, plasma PLTP activity, lipoprotein lipids, HDL subclasses and plasma apolipoproteins were measured in 52 patients with documented cardiovascular disease and low HDL levels. Among the patients, plasma PLTP activity was highly correlated with the percentage of plasma apo A-I in Lp(A-I) (r=0.514, p < 0.001) and with the apo A-I, phospholipid and cholesterol concentration of Lp(A-I) (r=0.499, 0.478, 0.457, respectively, p < 0.001). Plasma PLTP activity was also significantly correlated with plasma apo A-I (r=0.413, p=0.002), HDL cholesterol (r=0.308, p=0.026), and HDL, and HDL3 cholesterol (r=0.284 and 0.276, respectively, p < 0.05), but no significant correlation was observed with Lp(A-I, A-I), plasma cholesterol, triglycerides, or apo B, very low density lipoprotein cholesterol or low density lipoprotein cholesterol. These associations support the hypothesis that PLTP modulates plasma levels of Lp(A-I) particles without significantly affecting the levels of Lp(A-I, A-II) particles.
Collapse
Affiliation(s)
- M C Cheung
- Department of Medicine, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
9
|
Mowri HO, Patsch JR, Gotto AM, Patsch W. Apolipoprotein A-II influences the substrate properties of human HDL2 and HDL3 for hepatic lipase. Arterioscler Thromb Vasc Biol 1996; 16:755-62. [PMID: 8640403 DOI: 10.1161/01.atv.16.6.755] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatic lipase has a demonstrated dual role in plasma lipid transport in that it participates in the removal of remnants of triglyceride-rich lipoproteins from the circulation and in the metabolism of plasma HDL. The study presented here investigated the substrate properties for hepatic lipase of HDL differing in density and apolipoprotein (apo) composition. Rates of fatty acid liberation were twofold higher in HDL2 compared with the respective HDL3 subspecies. Within each density class, enzyme-catalyzed fatty acid release was nearly twofold higher from HDL containing apoA-II compared with HDL devoid of apoA-II. When native HDL3 devoid of apoA-II was reconstituted with dimeric apoA-II in vitro, rates of fatty acid liberation in reconstituted particles were similar to those in native HDL3 containing apoA-II. HDL containing apoA-II competed more effectively with small VLDL for binding of hepatic lipase than HDL devoid of apoA-II. HDL3, particularly apoA-II-containing HDL3, reduced lipolysis of triglyceride and total fatty acid liberation in small VLDL. We conclude that the substrate properties of HDLs for hepatic lipase are influenced by both their size and apoA-II content. Moreover, size as well as apoA-II content may indirectly affect remnant clearance.
Collapse
Affiliation(s)
- H O Mowri
- Department of Medicine, Baylor College of Medicine, Houston, Tex, USA
| | | | | | | |
Collapse
|
10
|
Tadey T, Purdy WC. Chromatographic techniques for the isolation and purification of lipoproteins. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 671:237-53. [PMID: 8520694 DOI: 10.1016/0378-4347(95)00051-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Various modes of chromatography are available for lipoprotein separation. Gel permeation and affinity chromatography are used for preparative purposes and to separate lipoproteins according to size and apolipoprotein content, respectively. Development of rigid supports for gel permeation has led to large improvements in speed and resolution. Reversed-phase high-performance liquid chromatography (HPLC) of apolipoproteins offers the best performance in terms of speed and resolution of structural variants. Due to its high speed and superior resolving power, the recently developed technique of capillary electrophoresis should emerge as an important method for lipoprotein analysis.
Collapse
Affiliation(s)
- T Tadey
- Department of Chemistry, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
11
|
Albers JJ, Wolfbauer G, Cheung MC, Day JR, Ching AF, Lok S, Tu AY. Functional expression of human and mouse plasma phospholipid transfer protein: effect of recombinant and plasma PLTP on HDL subspecies. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1258:27-34. [PMID: 7654777 DOI: 10.1016/0005-2760(95)00091-p] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular cloning of mouse plasma phospholipid transfer protein (PLTP) and the eukaryotic cell expression of complementary DNA for mouse and human PLTP are described. Mouse PLTP was found to share 83% amino acid sequence identity with human PLTP. PLTP was produced in baby hamster kidney cells. Conditioned medium from BHK cells expressing PLTP possessed both phospholipid transfer activity and high density lipoprotein (HDL) conversion activity. PLTP mRNA was detected in all 16 human tissues examined by Northern blot analysis with ovary, thymus, and placenta having the highest levels. PLTP mRNA was also examined in eight mouse tissues with the highest PLTP mRNA levels found in the lung, brain, and heart. The effect of purified human plasma-derived PLTP and human recombinant PLTP (rPLTP) on the two human plasma HDL subspecies Lp(A-I) and Lp(A-I/A-II) was evaluated. Plasma PLTP or rPLTP converted the two distinct size subspecies of Lp(A-I) into a larger species, an intermediate species, and a smaller species. Lp(A-I/A-II) particles containing multiple size subspecies were significantly altered by incubation with either plasma or rPLTP with the largest but less prominent subspecies becoming the predominant one, and the smallest subspecies increasing in concentration. Thus, PLTP promoted the conversion of both Lp(A-I) and Lp(A-I/A-II) to populations of larger and smaller particles. Also, both human PLTP and mouse rPLTP were able to convert human or mouse HDL into larger and smaller particles. These observations suggest that PLTP may play a key role in extracellular phospholipid transport and modulation of HDL particles.
Collapse
Affiliation(s)
- J J Albers
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle 98103, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Meng QH, Sparks DL, Marcel YL. Effect of LpA-I composition and structure on cholesterol transfer between lipoproteins. J Biol Chem 1995; 270:4280-7. [PMID: 7876187 DOI: 10.1074/jbc.270.9.4280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effect of high density lipoprotein composition on the rates of unesterified cholesterol exchange between low density lipoproteins (LDL) and well-defined homogeneous discoidal lipoproteins (LpA-I) reconstituted with phosphatidylcholine, cholesterol, and apolipoprotein A-I (apoA-I) has been investigated. LpA-I containing cholesterol and 2, 3, and 4 apoA-I molecules per particle differed in their ability to accept or donate cholesterol. A significant cholesterol exchange occurs between LDL and Lp2A-I (7.8 and 9.6 nm), while there is little or no cholesterol exchange detectable between LDL and Lp3A-I (10.8 and 13.4 nm) and Lp4A-I (17.0 nm) complexes. The cholesterol transfer from LDL to the cholesterol-free Lp2A-I (9.6 nm), Lp3A-I (13.4 nm), and Lp4A-I (17.0 nm) particles also shows significant cholesterol transfer to Lp2A-I, while there is no detectable transfer to Lp3- and 4A-I particles. The rates of cholesterol transfer to cholesterol-free and cholesterol-containing Lp2A-I appear to differ significantly. Cholesterol transfer from LDL to cholesterol-free Lp2A-I is zero order with respect to acceptor concentrations when the Lp2A-I/LDL ratio is above 10. Transfer rates from LDL to cholesterol-free Lp2A-I are faster for the smaller Lp2A-I (8.5 nm) than to the larger Lp2A-I (9.7 nm) and exhibit half-times (t1/2) at 25 degrees C of 4.0 and 5.3 h, respectively. In contrast, cholesterol transfer from LDL to cholesterol-containing Lp2A-I remains dependent upon acceptor concentrations to an acceptor/donor particle ratio of 80. In addition, transfer from LDL to cholesterol-containing Lp2A-I is faster to the 9.6 nm than to 7.8 nm particles, with t1/2 of 1.4 and 2.3 h, respectively. The rates of cholesterol transfer from Lp2A-I to LDL are higher than in the opposite direction, in particular for the small Lp2A-I (7.8 nm), which has a t1/2 of approximately 50 min. The results show that changes in the composition and structure of apoA-I-containing particles have a significant effect on inter-lipoprotein exchange of cholesterol. This suggests that the kinetics of cholesterol transfer to and from reconstituted discoidal LpA-I particles cannot be fully explained by passive aqueous diffusion.
Collapse
Affiliation(s)
- Q H Meng
- Lipoproteins and Atherosclerosis Group, University of Ottawa Heart Institute, Ontario, Canada
| | | | | |
Collapse
|
13
|
Patsch W, Gotto AM. High-density lipoprotein cholesterol, plasma triglyceride, and coronary heart disease: pathophysiology and management. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:375-426. [PMID: 7748800 DOI: 10.1016/s1054-3589(08)61018-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Patsch
- Department of Laboratory Medicine, Landeskrankenanstalten, Salzburg, Austria
| | | |
Collapse
|
14
|
Ikewaki K, Rader DJ, Zech LA, Brewer HB. In vivo metabolism of apolipoproteins A-I and E in patients with abetalipoproteinemia: implications for the roles of apolipoproteins B and E in HDL metabolism. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39776-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Vallance DT, Byrne DJ, Winder AF. Precipitation procedures used to isolate high density lipoprotein with particular reference to effects on apo A-I-only particles and lipoprotein(a). Clin Chim Acta 1994; 229:77-85. [PMID: 7988057 DOI: 10.1016/0009-8981(94)90230-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Analysis of high density lipoprotein (HDL) isolated from serum without major hypertriglyceridaemia and by five different precipitation methods showed that there were no significant differences in total cholesterol and triglyceride concentrations in the HDL supernatants prepared by the different methods but that free cholesterol, phospholipid, apolipoprotein (apo) A-I and HDL particles containing apo A-I but not apo A-II (LpAI) concentrations were significantly lower for heparin-manganese chloride method 2 (final manganese chloride concentration 92 mmol/l) compared with the other methods. Modest differences in HDL cholesterol, apo A-I and LpAI were observed between heparin-manganese chloride method 1 (final magnesium concentration 46 mmol/l) and the dextran sulphate, phosphotungstate and polyethylene glycol 6000 methods. Lipoprotein(a) (Lp(a)) and apo B were undetectable in the HDL supernatants, indicating that apo B-containing lipoproteins including Lp(a) were essentially completely removed by all the precipitation procedures.
Collapse
Affiliation(s)
- D T Vallance
- Department of Chemical Pathology and Human Metabolism, Royal Free Hospital School of Medicine, University of London, UK
| | | | | |
Collapse
|
16
|
Postprandial lipemia differentially influences high density lipoprotein subpopulations LpAI and LpAI,AII. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)41156-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Cheung MC. Distribution of lecithin-cholesterol acyltransferase in normolipidemic and dyslipidemic plasma. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1993; 23:30-3. [PMID: 8477088 DOI: 10.1007/bf02592277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasma lecithin-cholesterol acyltransferase levels and cholesterol esterification rates have been reported to be different between normolipidemic and dyslipidemic subjects. Since apolipoprotein A-I is the presumed primary physiological activator of lecithin-cholesterol acyltransferase, the distribution of the enzyme among A-I-containing lipoprotein particles and A-I-free plasma in normolipidemic and dyslipidemic subjects was examined. A-I-containing lipoprotein particles with and without apolipoprotein A-II were isolated from plasma by immunoaffinity chromatography, and the lecithin-cholesterol acyltransferase mass in these particles and in the A-I-free plasma was quantified by radioimmunoassay. The plasma lecithin-cholesterol acyltransferase concentration was comparable between normolipidemic men (5.9 +/- 1.1 micrograms/ml, n = 15) and women (5.8 +/- 1.1 micrograms/ml, n = 19), with 71 +/- 8% located in particles without apolipoprotein A-II, 17.6 +/- 6% in particles containing A-II, and 12 +/- 6% in the A-I-free plasma. In patients with elevated cholesterol (n = 12), triglyceride (n = 10), and with renal failure (n = 15) plasma levels of the enzyme were significantly higher (6.7 +/- 1.2, 6.9 +/- 1.3, and 6.6 +/- 1.3 micrograms/ml, respectively) (P < 0.05). In all three patient groups, a higher proportion of the enzyme (27 +/- 12%, 33 +/- 12%, and 19 +/- 9%) was not apo A-I associated. This phenomenon was also observed in plasma samples after incubation at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Cheung
- Department of Medicine, School of Medicine, University of Washington, Seattle 98103
| |
Collapse
|
18
|
Huang Y, von Eckardstein A, Assmann G. Cell-derived unesterified cholesterol cycles between different HDLs and LDL for its effective esterification in plasma. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1993; 13:445-58. [PMID: 8443149 DOI: 10.1161/01.atv.13.3.445] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pulse-chase incubations of human plasma with [3H]cholesterol-laden skin fibroblasts or low density lipoproteins (LDL) and nondenaturing two-dimensional electrophoresis were used to study the transfer and esterification of cell-derived unesterified cholesterol (UC) in human plasma lipoproteins. Specific radioactivities ([3H]UC per microgram of UC) were calculated, and net cholesterol mass transfer was quantified using a fluoro-enzymatic assay to validate productive transfers of UC between high density lipoprotein (HDL) and LDL. Cellular UC was initially taken up by pre-beta 1-HDL and subsequently transferred in the sequence pre-beta 2-HDL-->pre-beta 3-HDL-->alpha-HDL-->LDL. During the first 5 minutes of this process, only 5% of cellular cholesterol was esterified in pre-beta 3-HDL and alpha-HDL; the remainder reached LDL as UC. Cellular UC accumulating in LDL was then redistributed to various HDL particles via two pathways: 1) the partially LDL receptor-mediated uptake and re-secretion of UC by cells and 2) the direct transfer of UC to HDL, mostly to alpha-HDL and a small amount to pre-beta-HDL. UC was not transferred from LDL to HDL after inhibition of lecithin:cholesterol acyltransferase (LCAT). The esterification of cellular [3H]cholesterol in plasma was competitively inhibited by the addition of excess unlabeled LDL but not of excess HDL. However, both excess LDL and excess HDL prevented the esterification of cell-derived cholesterol in apolipoprotein B-free plasma. This demonstrated that LDL is the major source of UC to the LCAT reaction and that the transfer of UC from LDL to HDL is LCAT dependent. In conclusion, the effective esterification of cell-derived cholesterol in plasma involves a rapid transfer of UC via HDL particles to LDL, from which it is distributed to pre-beta-HDL and alpha-HDL. Furthermore, we hypothesize that the transfer per se of cellular UC to LDL forms a cholesterol concentration gradient between cell membranes and HDL and thus a second, reverse cholesterol transport mechanism in addition to the esterification of cholesterol by LCAT.
Collapse
Affiliation(s)
- Y Huang
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität, Münster, FRG
| | | | | |
Collapse
|
19
|
Leroy A, Toohill K, Fruchart J, Jonas A. Structural properties of high density lipoprotein subclasses homogeneous in protein composition and size. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53467-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Joven J, Vilella E, Ahmad S, Cheung MC, Brunzell JD. Lipoprotein heterogeneity in end-stage renal disease. Kidney Int 1993; 43:410-8. [PMID: 8441237 DOI: 10.1038/ki.1993.60] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fifteen patients on chronic maintenance hemodialysis without any additional known cause for dyslipidemia were arbitrarily divided into two groups based on fasting plasma triglyceride levels. The hypertriglyceridemic patients (plasma triglyceride levels above 170 mg/dl, N = 7) also had decreased high density lipoprotein (HDL) cholesterol levels and decreased post-heparin plasma lipoprotein lipase activity compared to the normotriglyceridemic patients (N = 8). All lipoprotein fractions collected by density gradient ultracentrifugation were triglyceride-enriched in the hypertriglyceridemic patients. Both groups of patients had elevated intermediate density lipoprotein levels, heterogeneity in the distribution of low density lipoproteins (LDL) and apoprotein-specific HDL subpopulations, and abnormalities in the size and composition of both LDL and HDL. The described alterations tended to be more marked in hypertriglyceridemic patients and are not detected by the usual laboratory evaluation of lipoproteins. These lipoprotein abnormalities have been shown to be atherogenic in patients without renal disease and are likely to contribute to the high prevalence of premature atherosclerosis in end-stage renal disease.
Collapse
Affiliation(s)
- J Joven
- Centre de Recerca Biomedica, Hospital de Sant Joan de Reus, Spain
| | | | | | | | | |
Collapse
|
21
|
Zannis VI, Kardassis D, Zanni EE. Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. ADVANCES IN HUMAN GENETICS 1993; 21:145-319. [PMID: 8391199 DOI: 10.1007/978-1-4615-3010-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- V I Zannis
- Department of Medicine, Housman Medical Research Center, Boston University Medical Center, Massachusetts 02118
| | | | | |
Collapse
|
22
|
Interconversion between apolipoprotein A-I-containing lipoproteins of pre-beta and alpha electrophoretic mobilities. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41338-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Cheung MC, Wolf AC, Knopp RH, Foster DM. Protein transfer between A-I-containing lipoprotein subpopulations: evidence of non-transferable A-I in particles with A-II. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1165:68-77. [PMID: 1420350 DOI: 10.1016/0005-2760(92)90077-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transfer of apolipoproteins (apo) between the two subpopulations of apo A-I-containing lipoproteins in human plasma: those with A-II [Lp(AI w AII)] and those without [Lp(AI w/o AII)], were studied by observing the transfer of 125I-apo from a radiolabeled subpopulation to an unlabeled subpopulation in vitro. When Lp(AI w AII) was directly radioiodinated, 50.3 +/- 7.4 and 19.5 +/- 7.7% (n = 6) of the total radioactivity was associated with A-I and A-II, respectively. In radioiodinated Lp(AI w/o AII), 71.5 +/- 6.8% (n = 6) of the total radioactivity was A-I-associated. Time-course studies showed that, while some radiolabeled proteins transferred from one population of HDL particles to another within minutes, at least several hours were necessary for transfer to approach equilibrium. Incubation of the subpopulations at equal A-I mass resulted in the transfer of 51.8 +/- 5.0% (n = 4) of total radioactivity from [125I]Lp(AI w/o AII) to Lp(AI w AII) at 37 degrees C in 24 h. The specific activity (S.A.) of A-I in the two subpopulations after incubation was nearly identical. Under similar incubation conditions, only 13.4 +/- 4.6% (n = 4) of total radioactivity was transferred from [125I]Lp(AI w AII) to Lp(AI w/o AII). The S.A. of A-I after incubation was 2-fold higher in particles with A-II than in particles without A-II. These phenomena were also observed with iodinated high-density lipoproteins (HDL) isolated by ultracentrifugation and subsequently subfractionated by immunoaffinity chromatography. However, when Lp(AI w AII) radiolabeled by in vitro exchange with free [125I]A-I was incubated with unlabeled Lp(AI w/o AII), the S.A. of A-I in particles with and without A-II differed by only 18% after incubation. These data are consistent with the following: (1) in both populations of HDL particles, some radiolabeled proteins transferred rapidly (minutes or less), while others transferred slowly (hours); (2) when Lp(AI w AII) and Lp(AI w/o AII) were directly iodinated, all labeled A-I in particles without A-II were transferable, but some labeled AI in particles with A-II were not; (3) when Lp(AI w AII) were labeled by in vitro exchange with [125I]A-I, considerably more labeled A-I were transferable. These observations suggest the presence of non-transferable A-I in Lp(AI w AII).
Collapse
Affiliation(s)
- M C Cheung
- Northwest Lipid Research Laboratories, Seattle, WA
| | | | | | | |
Collapse
|
24
|
Cheung MC, Wolf AC, Illingworth DR. Interaction between high-density lipoprotein subpopulations in apo B-free and abetalipoproteinemic plasma. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1128:244-9. [PMID: 1420297 DOI: 10.1016/0005-2760(92)90314-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two populations of high-density lipoprotein (HDL) particles exist in human plasma. Both contain apolipoprotein (apo) A-I, but only one contains apo A-II: Lp(AI w AII) and Lp(AI w/o AII). To study the extent of interaction between these particles, apo B-free plasma prepared by the selective removal of apo B-containing lipoproteins (LpB) from the plasma of three normolipidemic (NL) subjects and whole plasma from two patients with abetalipoproteinemia (ABL) were incubated at 37 degrees C for 24 h. Apo B-free plasma samples were used to avoid lipid-exchange between HDL and LpB. Lp(AI w AII) and Lp(AI w/o AII) were isolated from each apo B-free plasma sample before and after incubation and their protein and lipid contents quantified. Before incubation, ABL plasma had reduced levels of Lp(AI w AII) and Lp(AI w/o AII), (40% and 70% of normals, respectively). Compared to the HDL of apo B-free NL plasma, ABL HDL had higher relative contents of free cholesterol, phospholipid and total lipid, and contained more particles with apparent hydrated Stokes diameter in the 9.2-17.0 nm region. These differences were particularly pronounced in particles without apo A-II. Despite their differences, the total cholesterol contents of Lp(AI w AII) increased, while that of Lp(AI w/o AII) decreased in all five plasma samples and the amount of apo A-I in Lp(AI w AII) increased by 6-8 mg/dl in four during the incubation. These compositional changes were accompanied by a relative reduction of particles in the 7.0-8.2 nm Stokes diameter size region and an increase of particles in the 9.2-11.2 nm region. These data are consistent with intravascular modulation between HDL particles with and without apo A-II. The observed increase in apo A-II-associated cholesterol and apo A-I, could involve either the transfer of cholesterol and apo A-I from particles without apo A-II to those with A-II, or the transfer of apo A-II from Lp(AI w AII) to Lp(AI w/o AII). The exact mechanism and direction of the transfer remain to be determined.
Collapse
Affiliation(s)
- M C Cheung
- Department of Medicine, University of Washington, Seattle 98103
| | | | | |
Collapse
|
25
|
Mowri HO, Patsch W, Smith LC, Gotto AM, Patsch JR. Different reactivities of high density lipoprotein2 subfractions with hepatic lipase. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)40541-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Fievet C, Fruchart JC. HDL heterogeneity and coronary heart disease. DIABETES/METABOLISM REVIEWS 1991; 7:155-62. [PMID: 1817000 DOI: 10.1002/dmr.5610070304] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C Fievet
- Inserm U325, Institut Pasteur, Lille, France
| | | |
Collapse
|
27
|
Jonas A, Bottum K, Kézdy KE. Transformations of reconstituted high-density lipoprotein subclasses as a function of temperature or LDL concentration. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1085:71-6. [PMID: 1909898 DOI: 10.1016/0005-2760(91)90233-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objectives of this study were to determine the structural changes in defined, reconstituted high density lipoproteins (rHDL) resulting from spontaneous phospholipid depletion in the presence or absence of low-density lipoproteins (LDL), to establish the precursor-product relationships among the rHDL particles and to assess the differences in behavior of rHDL particles containing apo A-I or apo A-II. The rHDL particles were prepared by the sodium cholate dialysis method, and were incubated in buffer at 50 degrees C, or in buffer containing different concentrations of LDL at 37 degrees C, for up to 24 h. The changes in the rHDL particle distributions with time were followed by non-denaturing gradient gel electrophoresis, and the rHDL were isolated at various time points for chemical analysis. We found that rHDL particles containing apo A-I or apo A-II lose phospholipid and gain cholesterol when incubated with LDL. Increasing LDL concentrations remove increasingly larger amounts of phospholipid. With phospholipid loss the apo A-I containing particles undergo major structural rearrangements that give rise to 78 A and 106 A particles from 86 A and 94 A precursors. The 78 A products appear to be the most stable, lipid-poor species. Reconstituted HDL particles prepared with apo A-II (94 and 101 A in diameter) are more resistant to structural rearrangements than the apo A-I counterparts under similar reaction conditions.
Collapse
Affiliation(s)
- A Jonas
- Department of Biochemistry, College of Medicine at Urbana-Champaign, University of Illinois 61801
| | | | | |
Collapse
|
28
|
Jonas A. Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1084:205-20. [PMID: 1888769 DOI: 10.1016/0005-2760(91)90062-m] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A Jonas
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign 61801
| |
Collapse
|
29
|
Barkia A, Puchois P, Ghalim N, Torpier G, Barbaras R, Ailhaud G, Fruchart JC. Differential role of apolipoprotein AI-containing particles in cholesterol efflux from adipose cells. Atherosclerosis 1991; 87:135-46. [PMID: 1906713 DOI: 10.1016/0021-9150(91)90016-v] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cholesterol efflux was studied in cultured Ob1771 adipose cells after preloading with LDL cholesterol. Exposure to particles containing apo AII (LpAI) and particles containing apo AI and apo AII (LpAI:AII) isolated from native human plasma, and from HDL2 or HDL3, showed that only LpAI were able to promote cholesterol efflux, despite the fact that both kinds of particles were able to bind to receptor sites within the same range of concentrations (apparent Kd values between 10 and 25 micrograms/ml). During this long-term exposure, LpAI:AII demonstrated a concentration-dependent inhibition (10-60 micrograms/ml) of LpAI-mediated cholesterol efflux from adipose cells under conditions where LpAI:AII did not deliver cholesterol to the cells and where no net change in the distribution of apo AI between LpAI and LpAI:AII was observed. The antagonizing and modulating role of LpAI:AII in preventing cholesterol efflux mediated by LpAI appears not to be related to the lipid composition and cholesterol content of the particles but, rather, appears dependent upon the presence of apo AI in LpAI particles and apo AII in LpAI:AII particles. The actual concentrations of these particles in the interstitial fluid bathing peripheral cells might be critical for the in vivo occurrence of cholesterol efflux.
Collapse
Affiliation(s)
- A Barkia
- Institut Pasteur, SERLIA & INSERM U-325, Lille, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Cheung MC, Brown BG, Wolf AC, Albers JJ. Altered particle size distribution of apolipoprotein A-I-containing lipoproteins in subjects with coronary artery disease. J Lipid Res 1991. [DOI: 10.1016/s0022-2275(20)42061-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Nowicka G, Brüning T, Böttcher A, Kahl G, Schmitz G. Macrophage interaction of HDL subclasses separated by free flow isotachophoresis. J Lipid Res 1990. [DOI: 10.1016/s0022-2275(20)42259-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Cheung MC, Lum KD, Brouillette CG, Bisgaier CL. Characterization of apoA-I-containing lipoprotein subpopulations secreted by HepG2 cells. J Lipid Res 1989. [DOI: 10.1016/s0022-2275(20)38257-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|