1
|
Liang L, Liu R, Freed EF, Eckert CA, Gill RT. Transcriptional Regulatory Networks Involved in C3-C4 Alcohol Stress Response and Tolerance in Yeast. ACS Synth Biol 2021; 10:19-28. [PMID: 33356165 DOI: 10.1021/acssynbio.0c00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alcohol toxicity significantly impacts the titer and productivity of industrially produced biofuels. To overcome this limitation, we must find and use strategies to improve stress tolerance in production strains. Previously, we developed a multiplex navigation of a global regulatory network (MINR) library that targeted 25 regulatory genes that are predicted to modify global regulation in yeast under different stress conditions. In this study, we expanded this concept to target the active sites of 47 transcriptional regulators using a saturation mutagenesis library. The 47 targeted regulators interact with more than half of all yeast genes. We then screened and selected for C3-C4 alcohol tolerance. We identified specific mutants that have resistance to isopropanol and isobutanol. Notably, the WAR1_K110N variant improved tolerance to both isopropanol and isobutanol. In addition, we investigated the mechanisms for improvement of isopropanol and isobutanol stress tolerance and found that genes related to glycolysis play a role in tolerance to isobutanol, while changes in ATP synthesis and mitochondrial respiration play a role in tolerance to both isobutanol and isopropanol. Overall, this work sheds light on basic mechanisms for isopropanol and isobutanol toxicity and demonstrates a promising strategy to improve tolerance to C3-C4 alcohols by perturbing the transcriptional regulatory network.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
| | - Emily F Freed
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
| | - Carrie A Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
- National Renewable Energy Laboratory (NREL), Golden 80401, Colorado United States
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby DK-2800, Denmark
| |
Collapse
|
2
|
MacDonald C, Payne JA, Aboian M, Smith W, Katzmann DJ, Piper RC. A family of tetraspans organizes cargo for sorting into multivesicular bodies. Dev Cell 2015; 33:328-42. [PMID: 25942624 DOI: 10.1016/j.devcel.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/22/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
The abundance of cell-surface membrane proteins is regulated by internalization and delivery into intralumenal vesicles (ILVs) of multivesicular bodies (MVBs). Many cargoes are ubiquitinated, allowing access to an ESCRT-dependent pathway into MVBs. Yet how nonubiquitinated proteins, such as glycosylphosphatidylinositol-anchored proteins, enter MVBs is unclear, supporting the possibility of mechanistically distinct ILV biogenesis pathways. Here we show that a family of highly ubiquitinated tetraspan Cos proteins provides a Ub signal in trans, allowing sorting of nonubiquitinated MVB cargo into the canonical ESCRT- and Ub-dependent pathway. Cos proteins create discrete endosomal subdomains that concentrate Ub cargo prior to their envelopment into ILVs, and the activity of Cos proteins is required not only for efficient sorting of canonical Ub cargo but also for sorting nonubiquitinated cargo into MVBs. Expression of these proteins increases during nutrient stress through an NAD(+)/Sir2-dependent mechanism that in turn accelerates the downregulation of a broad range of cell-surface proteins.
Collapse
Affiliation(s)
- Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mariam Aboian
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Radiology and Biomedical Imaging, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - William Smith
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Huang W, Shang Y, Chen P, Cen K, Wang C. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J Biol Chem 2015; 290:8218-31. [PMID: 25673695 DOI: 10.1074/jbc.m114.630939] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels.
Collapse
Affiliation(s)
- Wei Huang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfang Shang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peilin Chen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kai Cen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog 2011; 7:e1002177. [PMID: 21852949 PMCID: PMC3154848 DOI: 10.1371/journal.ppat.1002177] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/07/2011] [Indexed: 01/23/2023] Open
Abstract
In eukaryotic cells, the unfolded protein response (UPR) pathway plays a crucial role in cellular homeostasis of the endoplasmic reticulum (ER) during exposure to diverse environmental conditions that cause ER stress. Here we report that the human fungal pathogen Cryptococcus neoformans has evolved a unique UPR pathway composed of an evolutionarily conserved Ire1 protein kinase and a novel bZIP transcription factor encoded by HXL1 (HAC1 and XBP1-Like gene 1). C. neoformans HXL1 encodes a protein lacking sequence homology to any known fungal or mammalian Hac1/Xbp1 protein yet undergoes the UPR-induced unconventional splicing in an Ire1-dependent manner upon exposure to various stresses. The structural organization of HXL1 and its unconventional splicing is widely conserved in C. neoformans strains of divergent serotypes. Notably, both C. neoformans ire1 and hxl1 mutants exhibited extreme growth defects at 37°C and hypersensitivity to ER stress and cell wall destabilization. All of the growth defects of the ire1 mutant were suppressed by the spliced active form of Hxl1, supporting that HXL1 mRNA is a downstream target of Ire1. Interestingly, however, the ire1 and hxl1 mutants showed differences in thermosensitivity, expression patterns for a subset of genes, and capsule synthesis, indicating that Ire1 has both Hxl1-dependent and -independent functions in C. neoformans. Finally, Ire1 and Hxl1 were shown to be critical for virulence of C. neoformans, suggesting UPR signaling as a novel antifungal therapeutic target. The unfolded protein response (UPR) is a widely conserved signaling pathway in eukaryotic cells and protects cells from the ER stress causing accumulation of toxic unfolded or misfolded proteins. Nevertheless, the UPR pathway has been poorly exploited as a therapeutic target for treatment of eukaryotic fungal pathogens, mainly due to its evolutionarily conserved features. The present study reports unique evolution of the UPR pathway in the basidiomycetous human fungal pathogen, Cryptococcus neoformans, which causes life-threatening meningoencephalitis in both immunocompromised and immunocompetent individuals. Here, for the first time we identified and characterized the C. neoformans UPR pathway, which is composed of an evolutionarily conserved and a distinct signaling component, an ER stress sensor Ire1 and its downstream bZIP transcription factor Hxl1, respectively. Intriguingly, Cryptococcus Hxl1 is very divergent from yeast Hac1 and human Xbp1, but subject to Ire1-mediated unconventional splicing. The Ire1-Hxl1-dependent UPR pathway functions not only in the major response to ER stress, but also plays critical roles in controlling cell wall integrity, growth at host physiological temperature, antifungal drug susceptibility, and virulence of C. neoformans. Therefore we propose Hxl1 is an ideal target for antifungal drug development, based on its marked divergence from the host Xbp1 transcription factor.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Life Science, Research Center for Biomolecules and Biosystems, College of Natural Science, Chung-Ang University, Seoul, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Kwang-Woo Jung
- Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul, Korea
| | - Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yong-Sun Bahn
- Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul, Korea
- * E-mail: (YSB); (HAK)
| | - Hyun Ah Kang
- Department of Life Science, Research Center for Biomolecules and Biosystems, College of Natural Science, Chung-Ang University, Seoul, Korea
- * E-mail: (YSB); (HAK)
| |
Collapse
|
5
|
Finding undetected protein associations in cell signaling by belief propagation. Proc Natl Acad Sci U S A 2010; 108:882-7. [PMID: 21187432 DOI: 10.1073/pnas.1004751108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.
Collapse
|
6
|
Mak HC, Pillus L, Ideker T. Dynamic reprogramming of transcription factors to and from the subtelomere. Genome Res 2009; 19:1014-25. [PMID: 19372386 PMCID: PMC2694488 DOI: 10.1101/gr.084178.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 02/09/2009] [Indexed: 12/21/2022]
Abstract
Transcription factors are most commonly thought of as proteins that regulate expression of specific genes, independently of the order of those genes along the chromosome. By screening genome-wide chromatin immunoprecipitation (ChIP) profiles in yeast, we find that more than 10% of DNA-binding transcription factors concentrate at the subtelomeric regions near to chromosome ends. None of the proteins identified were previously implicated in regulation at telomeres, yet genomic and proteomic studies reveal that a subset of factors show many interactions with established telomere binding complexes. For many factors, the subtelomeric binding pattern is dynamic and undergoes flux toward or away from the telomere as physiological conditions shift. We find that subtelomeric binding is dependent on environmental conditions and correlates with the induction of gene expression in response to stress. Taken together, these results underscore the importance of genome structure in understanding the regulatory dynamics of transcriptional networks.
Collapse
Affiliation(s)
- H. Craig Mak
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Lorraine Pillus
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Trey Ideker
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Fairhead C, Dujon B. Structure of Kluyveromyces lactis subtelomeres: duplications and gene content. FEMS Yeast Res 2006; 6:428-41. [PMID: 16630283 DOI: 10.1111/j.1567-1364.2006.00033.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have constructed a map of the duplicated regions of Kluyveromyces lactis subtelomeres. Seven out of 12 subtelomeres contain an almost identical 9 kb long segment starting from the end. This segment is bordered by a long terminal repeat element. Two of the subtelomeres share sequence similarity that extends over a total of 20 kb. The other subtelomeres also contain duplicated regions of 1-6 kb. Nonduplicated regions contain unique genes and genes from paralog families. All duplicated segments are in the same orientation with respect to the telomere, probably as a result of genetic exchange. We map the only two copies of retrotransposons in the genome, in subtelomeres. Low-complexity gene sequences that encode threonine- and serine-rich peptides are associated with the subtelomeres of K. lactis, as in Saccharomyces cerevisiae. The ubiquity of these sequences in hemiascomycete genomes, and the propensity they have to encode proteins with extracellular localization, make these genes ideal candidates for fast evolving 'contingency' genes involved in the adaptation of a species to its environment.
Collapse
Affiliation(s)
- Cécile Fairhead
- Unité de Génétique Moléculaire des Levures, Département Structure et Dynamique des Génomes, Institut Pasteur, Paris, France.
| | | |
Collapse
|
8
|
Kim H, Melén K, Österberg M, von Heijne G. A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci U S A 2006; 103:11142-7. [PMID: 16847258 PMCID: PMC1544055 DOI: 10.1073/pnas.0604075103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to approximately 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes.
Collapse
Affiliation(s)
- Hyun Kim
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
| | - Karin Melén
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
- Stockholm Bioinformatics Center, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Marie Österberg
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
| | - Gunnar von Heijne
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
- Stockholm Bioinformatics Center, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Abstract
In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
10
|
Aguilera J, Petit T, de Winde JH, Pronk JT. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Res 2005; 5:579-93. [PMID: 15780657 DOI: 10.1016/j.femsyr.2004.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022] Open
Abstract
Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO(2)-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO(2) and 21% O(2). This observation indicated that respiratory metabolism is more sensitive to CO(2) than fermentative metabolism. Consistent with the more pronounced physiological effects of CO(2) in respiratory cultures, the number of CO(2)-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO(2) concentrations. This is consistent with an uncoupling effect of CO(2) and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO(2) included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase).
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
11
|
Fabre E, Muller H, Therizols P, Lafontaine I, Dujon B, Fairhead C. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol Biol Evol 2004; 22:856-73. [PMID: 15616141 DOI: 10.1093/molbev/msi070] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The recent release of sequences of several unexplored yeast species that cover an evolutionary range comparable to the entire phylum of chordates offers us a unique opportunity to investigate how genes involved in adaptation have been shaped by evolution. We have examined how three different sets of genes, all related to adaptative processes at the genomic level, have evolved in hemiascomycetes: (1) the mating-type genes that govern sexuality, (2) the silencing genes that are connected to regulation of mating-type cassettes and to telomere position effect, and (3) the gene families found repeated in subtelomeric regions. We report new combinations of mating-type genes and cassettes in hemiascomycetous species; we show that silencing proteins diverge rapidly. We have also found that in all species studied, subtelomeric gene families exist and are specific to each species.
Collapse
Affiliation(s)
- Emmanuelle Fabre
- Unité de Génétique Moléculaire des Levures, URA2171 CNRS, UFR Université Pierre et Marie Curie, Département Structure et Dynamique des Génomes, Institut Pasteur, 75724 Cedex Paris, France.
| | | | | | | | | | | |
Collapse
|
12
|
Magwene PM, Kim J. Estimating genomic coexpression networks using first-order conditional independence. Genome Biol 2004; 5:R100. [PMID: 15575966 PMCID: PMC545795 DOI: 10.1186/gb-2004-5-12-r100] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 06/07/2004] [Accepted: 11/02/2004] [Indexed: 11/10/2022] Open
Abstract
We describe a computationally efficient statistical framework for estimating networks of coexpressed genes. This framework exploits first-order conditional independence relationships among gene-expression measurements to estimate patterns of association. We use this approach to estimate a coexpression network from microarray gene-expression measurements from Saccharomyces cerevisiae. We demonstrate the biological utility of this approach by showing that a large number of metabolic pathways are coherently represented in the estimated network. We describe a complementary unsupervised graph search algorithm for discovering locally distinct subgraphs of a large weighted graph. We apply this algorithm to our coexpression network model and show that subgraphs found using this approach correspond to particular biological processes or contain representatives of distinct gene families.
Collapse
Affiliation(s)
- Paul M Magwene
- Department of Biology, University of Pennsylvania, 415 S University Avenue, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Duke University, Durham, NC 27708, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, 415 S University Avenue, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Mitsui K, Ochi F, Nakamura N, Doi Y, Inoue H, Kanazawa H. A novel membrane protein capable of binding the Na+/H+ antiporter (Nha1p) enhances the salinity-resistant cell growth of Saccharomyces cerevisiae. J Biol Chem 2004; 279:12438-47. [PMID: 14718542 DOI: 10.1074/jbc.m310806200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na+/H+ antiporter Nha1p of Saccharomyces cerevisiae plays an important role in maintaining intracellular pH and Na+ homeostasis. Nha1p has a two-domain structure composed of integral membrane and hydrophilic tail regions. Overexpression of a peptide of approximately 40 residues (C1+C2 domains) that is localized in the juxtamembrane area of its cytoplasmic tail caused cell growth retardation in highly saline conditions, possibly by decreasing Na+/H+ antiporter activity. A multicopy suppressor gene of this growth retardation was identified from a yeast genome library. The clone encodes a novel membrane protein denoted as COS3 in the genome data base. Overexpression or deletion of COS3 increases or decreases salinity-resistant cell growth, respectively. However, in nha1Delta cells, overexpression of COS3 alone did not suppress the growth retardation. Cos3p and a hydrophilic portion of Cos3p interact with the C1+C2 peptide in vitro, and Cos3p is co-precipitated with Nha1p from yeast cell extracts. Cos3p-GFP mainly resides at the vacuole, but overexpression of Nha1p caused a portion of the Cos3p-GFP proteins to shift to the cytoplasmic membrane. These observations suggest that Cos3p is a novel membrane protein that can enhance salinity-resistant cell growth by interacting with the C1+C2 domain of Nha1p and thereby possibly activating the antiporter activity of this protein.
Collapse
Affiliation(s)
- Keiji Mitsui
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-16, Toynaka City, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|