1
|
Monzon AM, Arrías PN, Elofsson A, Mier P, Andrade-Navarro MA, Bevilacqua M, Clementel D, Bateman A, Hirsh L, Fornasari MS, Parisi G, Piovesan D, Kajava AV, Tosatto SCE. A STRP-ed definition of Structured Tandem Repeats in Proteins. J Struct Biol 2023; 215:108023. [PMID: 37652396 DOI: 10.1016/j.jsb.2023.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Tandem Repeat Proteins (TRPs) are a class of proteins with repetitive amino acid sequences that have been studied extensively for over two decades. Different features at the level of sequence, structure, function and evolution have been attributed to them by various authors. And yet many of its salient features appear only when looking at specific subclasses of protein tandem repeats. Here, we attempt to rationalize the existing knowledge on Tandem Repeat Proteins (TRPs) by pointing out several dichotomies. The emerging picture is more nuanced than generally assumed and allows us to draw some boundaries of what is not a "proper" TRP. We conclude with an operational definition of a specific subset, which we have denominated STRPs (Structural Tandem Repeat Proteins), which separates a subclass of tandem repeats with distinctive features from several other less well-defined types of repeats. We believe that this definition will help researchers in the field to better characterize the biological meaning of this large yet largely understudied group of proteins.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Dept. of Information Engineering, University of Padova, via Giovanni Gradenigo 6/B, 35131 Padova, Italy
| | - Paula Nazarena Arrías
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Arne Elofsson
- Dept. of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, 171 21 Solna, Sweden
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martina Bevilacqua
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Damiano Clementel
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Layla Hirsh
- Dept. of Engineering, Faculty of Science and Engineering, Pontifical Catholic University of Peru, Av. Universitaria 1801 San Miguel, Lima 32, Lima, Peru
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy.
| |
Collapse
|
2
|
Carter AA, Ramsey KM, Hatem CL, Sherry KP, Majumdar A, Barrick D. Structural features of the Notch ankyrin domain-Deltex WWE 2 domain heterodimer determined by NMR spectroscopy and functional implications. Structure 2023; 31:584-594.e5. [PMID: 36977409 PMCID: PMC10338078 DOI: 10.1016/j.str.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/14/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
The Notch signaling pathway, an important cell fate determination pathway, is modulated by the ubiquitin ligase Deltex. Here, we investigate the structural basis for Deltex-Notch interaction. We used nuclear magnetic resonance (NMR) spectroscopy to assign the backbone of the Drosophila Deltex WWE2 domain and mapped the binding site of the Notch ankyrin (ANK) domain to the N-terminal WWEA motif. Using cultured Drosophila S2R+ cells, we find that point substitutions within the ANK-binding surface of Deltex disrupt Deltex-mediated enhancement of Notch transcriptional activation and disrupt ANK binding in cells and in vitro. Likewise, ANK substitutions that disrupt Notch-Deltex heterodimer formation in vitro block disrupt Deltex-mediated stimulation of Notch transcription activation and diminish interaction with full-length Deltex in cells. Surprisingly, the Deltex-Notch intracellular domain (NICD) interaction is not disrupted by deletion of the Deltex WWE2 domain, suggesting a secondary Notch-Deltex interaction. These results show the importance of the WWEA:ANK interaction in enhancing Notch signaling.
Collapse
Affiliation(s)
- Andrea A Carter
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Kristen M Ramsey
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Christine L Hatem
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Kathryn P Sherry
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Abstract
Repeat proteins are made with tandem copies of similar amino acid stretches that fold into elongated architectures. These proteins constitute excellent model systems to investigate how evolution relates to structure, folding, and function. Here, we propose a scheme to map evolutionary information at the sequence level to a coarse-grained model for repeat-protein folding and use it to investigate the folding of thousands of repeat proteins. We model the energetics by a combination of an inverse Potts-model scheme with an explicit mechanistic model of duplications and deletions of repeats to calculate the evolutionary parameters of the system at the single-residue level. These parameters are used to inform an Ising-like model that allows for the generation of folding curves, apparent domain emergence, and occupation of intermediate states that are highly compatible with experimental data in specific case studies. We analyzed the folding of thousands of natural Ankyrin repeat proteins and found that a multiplicity of folding mechanisms are possible. Fully cooperative all-or-none transitions are obtained for arrays with enough sequence-similar elements and strong interactions between them, while noncooperative element-by-element intermittent folding arose if the elements are dissimilar and the interactions between them are energetically weak. Additionally, we characterized nucleation-propagation and multidomain folding mechanisms. We show that the global stability and cooperativity of the repeating arrays can be predicted from simple sequence scores.
Collapse
|
4
|
León-González JA, Flatet P, Juárez-Ramírez MS, Farías-Rico JA. Folding and Evolution of a Repeat Protein on the Ribosome. Front Mol Biosci 2022; 9:851038. [PMID: 35707224 PMCID: PMC9189291 DOI: 10.3389/fmolb.2022.851038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Life on earth is the result of the work of proteins, the cellular nanomachines that fold into elaborated 3D structures to perform their functions. The ribosome synthesizes all the proteins of the biosphere, and many of them begin to fold during translation in a process known as cotranslational folding. In this work we discuss current advances of this field and provide computational and experimental data that highlight the role of ribosome in the evolution of protein structures. First, we used the sequence of the Ankyrin domain from the Drosophila Notch receptor to launch a deep sequence-based search. With this strategy, we found a conserved 33-residue motif shared by different protein folds. Then, to see how the vectorial addition of the motif would generate a full structure we measured the folding on the ribosome of the Ankyrin repeat protein. Not only the on-ribosome folding data is in full agreement with classical in vitro biophysical measurements but also it provides experimental evidence on how folded proteins could have evolved by duplication and fusion of smaller fragments in the RNA world. Overall, we discuss how the ribosomal exit tunnel could be conceptualized as an active site that is under evolutionary pressure to influence protein folding.
Collapse
Affiliation(s)
- José Alberto León-González
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Perline Flatet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - María Soledad Juárez-Ramírez
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - José Arcadio Farías-Rico
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
- *Correspondence: José Arcadio Farías-Rico,
| |
Collapse
|
5
|
Yeh TH, Liu HF, Chiu CC, Cheng ML, Huang GJ, Huang YC, Liu YC, Huang YZ, Lu CS, Chen YC, Chen HY, Cheng YC. PLA2G6 mutations cause motor dysfunction phenotypes of young-onset dystonia-parkinsonism type 14 and can be relieved by DHA treatment in animal models. Exp Neurol 2021; 346:113863. [PMID: 34520727 DOI: 10.1016/j.expneurol.2021.113863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD), the most common neurodegenerative motor disorder, is currently incurable. Although many studies have provided insights on the substantial influence of genetic factors on the occurrence and development of PD, the molecular mechanism underlying the disease is largely unclear. Previous studies have shown that point mutations in the phospholipase A2 group VI gene (PLA2G6) correlate with young-onset dystonia-parkinsonism type 14 (PARK14). However, limited information is available regarding the pathogenic role of this gene and the mechanism underlying its function. To study the role of PLA2G6 mutations, we first used zebrafish larvae to screen six PLA2G6 mutations and revealed that injection of D331Y, T572I, and R741Q mutation constructs induced phenotypes such as motility defects and reduction in dopaminergic neurons. The motility defects could be alleviated by treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), indicating that these mutations are pathological for PARK14 symptoms. Furthermore, the injection of D331Y and T572I mutation constructs reduced phospholipase activity of PLA2G6 and its lipid metabolites, which confirmed that these two mutations are loss-of-function mutations. Metabolomic analysis revealed that D331Y or T572I mutation led to higher phospholipid and lower docosahexaenoic acid (DHA) levels, indicating that reduced DHA levels are pathological for defective motor functions. Further, a dietary DHA supplement relieved the motility defects in PLA2G6D331Y/D331Y knock-in mice. This result revealed that the D331Y mutation caused defective PLA2G6 phospholipase activity and consequently reduced the DHA level, which is the pathogenic factor responsible for PARK14. The results of this study will facilitate the development of therapeutic strategies for PARK14.
Collapse
Affiliation(s)
- Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Han-Fang Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.; Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Guo-Jen Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Chien Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Chin-Song Lu
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan; Section of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Chieh Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Hao-Yuan Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Kim CS, Brown AM, Grove TZ, Etzkorn FA. Designed leucine-rich repeat proteins bind two muramyl dipeptide ligands. Protein Sci 2021; 30:804-817. [PMID: 33512005 DOI: 10.1002/pro.4031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
Designed protein receptors hold diagnostic and therapeutic promise. We now report the design of five consensus leucine-rich repeat proteins (CLRR4-8) based on the LRR domain of nucleotide-binding oligomerization domain (NOD)-like receptors involved in the innate immune system. The CLRRs bind muramyl dipeptide (MDP), a bacterial cell wall component, with micromolar affinity. The overall Kd app values ranged from 1.0 to 57 μM as measured by fluorescence quenching experiments. Biphasic fluorescence quenching curves were observed in all CLRRs, with higher affinity Kd1 values ranging from 0.04 to 4.5 μM, and lower affinity Kd2 values ranging from 3.1 to 227 μM. These biphasic binding curves, along with the docking studies of MDP binding to CLRR4, suggest that at least two MDPs bind to each protein. Previously, only single MDP binding was reported. This high-capacity binding of MDP promises small, soluble, stable CLRR scaffolds as candidates for the future design of pathogen biosensors.
Collapse
Affiliation(s)
- Christina S Kim
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Anne M Brown
- University Libraries, Virginia Tech, Blacksburg, Virginia, USA
| | - Tijana Z Grove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| | | |
Collapse
|
7
|
Akiba H, Satoh R, Nagata S, Tsumoto K. Effect of allotypic variation of human IgG1 on the thermal stability of disulfide-linked knobs-into-holes mutants of the Fc for stable bispecific antibody design. Antib Ther 2019; 2:65-69. [PMID: 33928224 PMCID: PMC7990158 DOI: 10.1093/abt/tbz008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Background Disulfide-linked knobs-into-holes (dKiH) mutation is a well-validated antibody engineering technique to force heterodimer formation of different Fcs for efficient production of bispecific antibodies. An artificial disulfide bond is created between mutated cysteine residues in CH3 domain of human IgG1 Fc whose positions are 354 of the “knob” and 349 of the “hole” heavy chains. The disulfide bond is located adjacent to the exposed loop with allotypic variations at positions 356 and 358. Effects of the variation on the biophysical property of the Fc protein with dKiH mutations have not been reported. Methods We produced dKiH Fc proteins of high purity by affinity-tag fusion to the hole chain and IdeS treatment, which enabled removal of mispaired side products. Thermal stability was analyzed in a differential scanning calorimetry instrument. Results We firstly analyzed the effect of the difference in allotypes of the Fcs on the thermal stability of the heterodimeric Fc. We observed different melting profiles of the two allotypes (G1m1 and nG1m1) showing slightly higher melting temperature of G1m1 than nG1m1. Additionally, we showed different characteristics among heterodimers with different combinations of the allotypes in knob and hole chains. Conclusion Allotypic variations affected melting profiles of dKiH Fc proteins possibly with larger contribution of variations adjacent to the disulfide linkage.
Collapse
Affiliation(s)
- Hiroki Akiba
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Reiko Satoh
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Medical Proteomics Laboratory, The Institute of Medical Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
8
|
Abstract
Structural domains are believed to be modules within proteins that can fold and function independently. Some proteins show tandem repetitions of apparent modular structure that do not fold independently, but rather co-operate in stabilizing structural forms that comprise several repeat-units. For many natural repeat-proteins, it has been shown that weak energetic links between repeats lead to the breakdown of co-operativity and the appearance of folding sub-domains within an apparently regular repeat array. The quasi-1D architecture of repeat-proteins is crucial in detailing how the local energetic balances can modulate the folding dynamics of these proteins, which can be related to the physiological behaviour of these ubiquitous biological systems.
Collapse
|
9
|
Yuan C, Guo Y, Zhu L, Guo W, Mahajan A, Weghorst CM, Li J. The study of pH-dependent stability shows that the TPLH-mediated hydrogen-bonding network is important for the conformation and stability of human gankyrin. Biochemistry 2013; 52:4848-57. [PMID: 23777370 PMCID: PMC3843994 DOI: 10.1021/bi4005717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ankyrin repeat (AR) proteins possess a distinctive modular and repetitive architecture, and their global folds are maintained by short-range interactions in terms of the primary sequence. In this work, we extended our previous study on the highly conserved TPLH tetrapeptide and investigated the impact of a solvent-exposed histidine residue on the pH-dependent stability of gankyrin, providing further insight into the contribution of the TPLH motif to the tertiary fold of AR proteins. Consisting of seven ARs, gankyrin has five histidine residues in TPLH motifs or its variants, all of which adopt a H(ε2)-tautermeric form and are shielded from solvent. By truncating the C-terminal ankyrin repeat (AR7), we exposed H177 in the (174)TPLH(177) of AR6 (the second C-terminal AR) to an aqueous environment. We showed that this truncated gankyrin mutant, namely, Gank(1-201), was well-folded at a neutral pH with a slightly lower stability with respect to gankyrin wild type (WT). However, unlike gankyrin WT, the stability of Gank(1-201) was markedly decreased together with a loss of conformation at a pH slightly below 6.0. It was rationalized that the protonation of the H177 imidazole ring triggered the disruption of the TPLH-mediated hydrogen-bonding network, which in turn led to the loss of conformation and stability. These results together with the work on Q210H mutant nicely explain that the C-terminal AR7 has a (207)TPLQ(210) variant and are in support of the notion that a string of TPLH/variant, which may arguably act like a zip lock to the elongated AR proteins via intra-/inter-repeat hydrogen-bonding, is important in maintaining the tertiary fold. Additionally, we made rational mutagenesis to introduce extra surface charge on AR7 of gankyrin and demonstrated that G214E and I219D mutations increased the stability of gankyrin while the function remained intact. Taken together, our results indicate that the TPLH-mediated hydrogen-bonding network is important for the conformation and stability of human gankyrin, and the C-terminal AR contributes to the conformational stability of gankyrin (AR proteins in general) through shielding this TPLH network from solvent as well as making the surface area more accessible to solvent.
Collapse
Affiliation(s)
- Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Lu Zhu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Wei Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Anjali Mahajan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Valbuena A, Vera AM, Oroz J, Menéndez M, Carrión-Vázquez M. Mechanical properties of β-catenin revealed by single-molecule experiments. Biophys J 2012; 103:1744-52. [PMID: 23083718 DOI: 10.1016/j.bpj.2012.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/20/2012] [Accepted: 07/17/2012] [Indexed: 11/19/2022] Open
Abstract
β-catenin is a central component of the adaptor complex that links cadherins to the actin cytoskeleton in adherens junctions and thus, it is a good candidate to sense and transmit mechanical forces to trigger specific changes inside the cell. To fully understand its molecular physiology, we must first investigate its mechanical role in mechanotransduction within the cadherin system. We have studied the mechanical response of β-catenin to stretching using single-molecule force spectroscopy and molecular dynamics. Unlike most proteins analyzed to date, which have a fixed mechanical unfolding pathway, the β-catenin armadillo repeat region (ARM) displays low mechanostability and multiple alternative unfolding pathways that seem to be modulated by its unstructured termini. These results are supported by steered molecular dynamics simulations, which also predict its mechanical stabilization and unfolding pathway restrictions when the contiguous α-helix of the C-terminal unstructured region is included. Furthermore, simulations of the ARM/E-cadherin cytosolic tail complex emulating the most probable stress geometry occurring in vivo show a mechanical stabilization of the interaction whose magnitude correlates with the length of the stretch of the cadherin cytosolic tail that is in contact with the ARM region.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Instituto Cajal/CSIC, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and IMDEA Nanociencia, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Itzhaki LS, Lowe AR. From artificial antibodies to nanosprings: the biophysical properties of repeat proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:153-66. [PMID: 22949117 DOI: 10.1007/978-1-4614-3229-6_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we review recent studies of repeat proteins, a class of proteins consisting of tandem arrays of small structural motifs that stack approximately linearly to produce elongated structures. We discuss the observation that, despite lacking the long-range tertiary interactions that are thought to be the hallmark of globular protein stability, repeat proteins can be as stable and as co-orperatively folded as their globular counterparts. The symmetry inherent in the structures of repeat arrays, however, means there can be many partly folded species (whether it be intermediates or transition states) that have similar stabilities. Consequently they do have distinct folding properties compared with globular proteins and these are manifest in their behaviour both at equilibrium and under kinetic conditions. Thus, when studying repeat proteins one appears to be probing a moving target: a relatively small perturbation, by mutation for example, can result in a shift to a different intermediate or transition state. The growing literature on these proteins illustrates how their modular architecture can be adapted to a remarkable array of biological and physical roles, both in vivo and in vitro. Further, their simple architecture makes them uniquely amenable to redesign-of their stability, folding and function-promising exciting possibilities for future research.
Collapse
Affiliation(s)
- Laura S Itzhaki
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
12
|
Cortajarena AL, Regan L. Calorimetric study of a series of designed repeat proteins: modular structure and modular folding. Protein Sci 2011; 20:336-40. [PMID: 21280125 DOI: 10.1002/pro.564] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeat proteins comprise tandem arrays of a small structural motif. Their structure is defined and stabilized by interactions between residues that are close in the primary sequence. Several studies have investigated whether their structural modularity translates into modular thermodynamic properties. Tetratricopeptide repeat proteins (TPRs) are a class in which the repeated unit is a 34 amino acid helix-turn-helix motif. In this work, we use differential scanning calorimetry (DSC) to study the equilibrium stability of a series of TPR proteins with different numbers of an identical consensus repeat, from 2 to 20, CTPRa2 to CTPRa20. The DSC data provides direct evidence that the folding/unfolding transition of CTPR proteins does not fit a two-state folding model. Our results confirm and expand earlier studies on TPR proteins, which showed that apparent two-state unfolding curves are better fit by linear statistical mechanics models: 1D Ising models in which each repeat is treated as an independent folding unit.
Collapse
Affiliation(s)
- Aitziber L Cortajarena
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
13
|
DeVries I, Ferreiro DU, Sánchez IE, Komives EA. Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain. J Mol Biol 2011; 408:163-76. [PMID: 21329696 PMCID: PMC3081522 DOI: 10.1016/j.jmb.2011.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/09/2011] [Indexed: 11/15/2022]
Abstract
The ankyrin repeat (AR) domain of IκBα consists of a cooperative folding unit of roughly four ARs (AR1-AR4) and of two weakly folded repeats (AR5 and AR6). The kinetic folding mechanism of the cooperative subdomain, IκBα(67-206), was analyzed using rapid mixing techniques. Despite its apparent architectural simplicity, IκBα(67-206) displays complex folding kinetics, with two sequential on-pathway high-energy intermediates. The effect of mutations to or away from the consensus sequences of ARs on folding behavior was analyzed, particularly the GXTPLHLA motif, which have not been examined in detail previously. Mutations toward the consensus generally resulted in an increase in folding stability, whereas mutations away from the consensus resulted in decreased overall stability. We determined the free energy change upon mutation for three sequential transition state ensembles along the folding route for 16 mutants. We show that folding initiates with the formation of the interface of the outer helices of AR3 and AR4, and then proceeds to consolidate structure in these repeats. Subsequently, AR1 and AR2 fold in a concerted way in a single kinetic step. We show that this mechanism is robust to the presence of AR5 and AR6 as they do not strongly affect the folding kinetics. Overall, the protein appears to fold on a rather smooth energy landscape, where the folding mechanism conforms a one-dimensional approximation. However, we note that the AR does not necessarily act as a single folding element.
Collapse
Affiliation(s)
- Ingrid DeVries
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0378, ph: (858) 534-3058, FAX: (858) 534-6174
| | - Diego U. Ferreiro
- Protein Physiology Laboratory, Departamento de Quimica Biologica, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ignacio E. Sánchez
- Protein Physiology Laboratory, Departamento de Quimica Biologica, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0378, ph: (858) 534-3058, FAX: (858) 534-6174
| |
Collapse
|
14
|
Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA. Size and sequence and the volume change of protein folding. J Am Chem Soc 2011; 133:6020-7. [PMID: 21446709 PMCID: PMC3151578 DOI: 10.1021/ja200228w] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The application of hydrostatic pressure generally leads to protein unfolding, implying, in accordance with Le Chatelier's principle, that the unfolded state has a smaller molar volume than the folded state. However, the origin of the volume change upon unfolding, ΔV(u), has yet to be determined. We have examined systematically the effects of protein size and sequence on the value of ΔV(u) using as a model system a series of deletion variants of the ankyrin repeat domain of the Notch receptor. The results provide strong evidence in support of the notion that the major contributing factor to pressure effects on proteins is their imperfect internal packing in the folded state. These packing defects appear to be specifically localized in the 3D structure, in contrast to the uniformly distributed effects of temperature and denaturants that depend upon hydration of exposed surface area upon unfolding. Given its local nature, the extent to which pressure globally affects protein structure can inform on the degree of cooperativity and long-range coupling intrinsic to the folded state. We also show that the energetics of the protein's conformations can significantly modulate their volumetric properties, providing further insight into protein stability.
Collapse
Affiliation(s)
- Jean-Baptiste Rouget
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
| | - Tural Aksel
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD USA
| | - Julien Roche
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
- Department of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA
| | - Jean-Louis Saldana
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
| | - Angel E. Garcia
- Department of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA
| | - Doug Barrick
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD USA
| | - Catherine A. Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
| |
Collapse
|
15
|
Kloss E, Barrick D. C-terminal deletion of leucine-rich repeats from YopM reveals a heterogeneous distribution of stability in a cooperatively folded protein. Protein Sci 2009; 18:1948-60. [PMID: 19593816 DOI: 10.1002/pro.205] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Terminal deletions of units from alpha-helical repeat proteins have provided insight into the physical origins of their cooperativity. To test if the same principles governing cooperativity apply to beta-sheet-containing repeat proteins, we have created a series of C-terminal deletion constructs from a large leucine-rich repeat (LRR) protein, YopM. We have examined the structure and stability of the resulting deletion constructs by a combination of solution spectroscopy, equilibrium denaturation studies, and limited proteolysis. Surprisingly, a high degree of nonuniformity was found in the stability distribution of YopM. Unlike previously studied repeat proteins, we identified several key LRR that on deletion disrupt nearby structure, at distances as far away as up to three repeats, in YopM. This partial unfolding model is supported by limited proteolysis studies and by point substitution in repeats predicted to be disordered as a result of deletion of adjacent repeats. We show that key internal- and terminal-caps must be present to maintain the structural integrity in adjacent regions (roughly four LRRs long) of decreased stability. The finding that full-length YopM maintains a high level of cooperativity in equilibrium unfolding underscores the importance of interfacial interactions in stabilizing locally unstable regions of structure.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
16
|
Wu L, Li WF, Liu F, Zhang J, Wang J, Wang W. Understanding protein folding cooperativity based on topological consideration. J Chem Phys 2009; 131:065105. [PMID: 19691415 DOI: 10.1063/1.3200952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The folding cooperativity is an important issue of protein folding dynamics. Since the native topology plays a significant role in determining the folding behavior of proteins, we believe that it also has close relationship with the folding cooperativity. In the present work, we perform simulations on proteins Naf-BBL, QNND-BBL, CI2, and SH3 with the Gō model and compare their different folding behaviors. By analyzing the weak cooperative folding of protein Naf-BBL in detail, we found that the folding of Naf-BBL shows relatively weak thermodynamic coupling between residues, and such weak coupling is found mainly between the nonlocal native contacts. This finding complements our understandings on the source of barrierless folding of Naf-BBL and promotes us to analyze the topological origins of the poor thermodynamic coupling of Naf-BBL. Then, we further extend our analysis to other two-state and multistate proteins. Based on the considerations of the thermodynamic coupling and kinetic coupling, we conclude that the fraction of scattered native contacts, the difference in loop entropy of contacts, and the long range relative contact order are the major topological factors that influence the folding cooperativity. The combination of these three tertiary structural features shows significant correlations with the folding types of proteins. Moreover, we also discuss the topological factors related to downhill folding. Finally, the generic role of tertiary structure in determining the folding cooperativity is summarized.
Collapse
Affiliation(s)
- L Wu
- Department of Physics and National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
17
|
Street TO, Barrick D. Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape. Protein Sci 2009; 18:58-68. [PMID: 19177351 DOI: 10.1002/pro.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Notch ankyrin domain is a repeat protein whose folding has been characterized through equilibrium and kinetic measurements. In previous work, equilibrium folding free energies of truncated constructs were used to generate an experimentally determined folding energy landscape (Mello and Barrick, Proc Natl Acad Sci USA 2004;101:14102-14107). Here, this folding energy landscape is used to parameterize a kinetic model in which local transition probabilities between partly folded states are based on energy values from the landscape. The landscape-based model correctly predicts highly diverse experimentally determined folding kinetics of the Notch ankyrin domain and sequence variants. These predictions include monophasic folding and biphasic unfolding, curvature in the unfolding limb of the chevron plot, population of a transient unfolding intermediate, relative folding rates of 19 variants spanning three orders of magnitude, and a change in the folding pathway that results from C-terminal stabilization. These findings indicate that the folding pathway(s) of the Notch ankyrin domain are thermodynamically selected: the primary determinants of kinetic behavior can be simply deduced from the local stability of individual repeats.
Collapse
Affiliation(s)
- Timothy O Street
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, California 94158-2517, USA
| | | |
Collapse
|
18
|
Guo Y, Mahajan A, Yuan C, Joo SH, Weghorst CM, Tsai MD, Li J. Comparisons of the conformational stability of cyclin-dependent kinase (CDK) 4-interacting ankyrin repeat (AR) proteins. Biochemistry 2009; 48:4050-62. [PMID: 19320462 DOI: 10.1021/bi802247p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ankyrin repeat (AR) proteins are one of the most abundant repeat protein classes in nature, and they are involved in numerous physiological processes through mediating protein/protein interactions. The repetitive and modular architecture of these AR proteins may lead to biochemical and biophysical properties distinct from those of globular proteins. It has been demonstrated that like most globular proteins, AR proteins exhibit a two-state, cooperative transition in chemical- and heat-induced unfolding. However, the biophysical characteristics underlying such cooperative unfolding remain to be further investigated. In the present study, we evaluated the conformational stability of a group of cyclin-dependent kinase (CDK) 4-interacting AR proteins, P16, P18, IkappaBalpha, gankyrin, and their truncated mutants under different conditions, including the presence of denaturants, temperature, and pH. Our results showed that the first four N-terminal ARs are required to form a potent and stable CDK4 modulator. Moreover, in spite of their similarities in skeleton structure, CDK4 binding, and cooperative unfolding, P16, P18, IkappaBalpha, and gankyrin exhibited considerably different biophysical properties with regard to the conformational stability, and these differences mainly resulted from the discrepancies in the primary sequence of the relatively conserved AR motifs. Our results also demonstrated that these sequence discrepancies are able to influence the function of AR proteins to a certain extent. Overall, our results provide important insights into understanding the biophysical properties of AR proteins.
Collapse
Affiliation(s)
- Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
The effects of conformational heterogeneity on the binding of the Notch intracellular domain to effector proteins: a case of biologically tuned disorder. Biochem Soc Trans 2008; 36:157-66. [PMID: 18363556 DOI: 10.1042/bst0360157] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-fate decisions in metazoans are frequently guided by the Notch signalling pathway. Notch signalling is orchestrated by a type-1 transmembrane protein, which, upon interacting with extracellular ligands, is proteolytically cleaved to liberate a large intracellular domain [NICD (Notch intracellular domain)]. NICD enters the nucleus where it binds the transcription factor CSL (CBF1/suppressor of Hairless/Lag-1) and activates transcription of Notch-responsive genes. In the present paper, the interaction between the Drosophila NICD and CSL will be examined. This interaction involves two separate binding regions on NICD: the N-terminal tip of NICD {the RAM [RBP-Jkappa (recombination signal-binding protein 1 for Jkappa)-associated molecule] region} and an ankyrin domain approximately 100 residues away. CD studies show that the RAM region of NICD lacks alpha-helical and beta-sheet secondary structure, and also lacks rigid tertiary structure. Fluorescence studies show that the tryptophan residues in RAM are highly solvated and are quenched by solvent. To assess the impact of this apparent disorder on the bivalent binding of NICD to CSL, we modelled the region between the RAM and ANK (ankyrin repeat)-binding regions using polymer statistics. A WLC (wormlike chain) model shows that the most probable sequence separation between the two binding regions is approximately 50 A (1 A=0.1 nm), matching the separation between these two sites in the complex. The WLC model predicts a substantial enhancement of ANK occupancy via effective concentration, and suggests that the linker length between the two binding regions is optimal for bivalent interaction.
Collapse
|
20
|
The capillarity picture and the kinetics of one-dimensional protein folding. Proc Natl Acad Sci U S A 2008; 105:9853-4. [PMID: 18632565 DOI: 10.1073/pnas.0805287105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Zweifel ME, Leahy DJ, Barrick D. Structure and Notch receptor binding of the tandem WWE domain of Deltex. Structure 2008; 13:1599-611. [PMID: 16271883 DOI: 10.1016/j.str.2005.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 07/21/2005] [Accepted: 07/23/2005] [Indexed: 12/21/2022]
Abstract
Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal to the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination.
Collapse
Affiliation(s)
- Mark E Zweifel
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
22
|
Ferreiro DU, Walczak AM, Komives EA, Wolynes PG. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures. PLoS Comput Biol 2008; 4:e1000070. [PMID: 18483553 PMCID: PMC2366061 DOI: 10.1371/journal.pcbi.1000070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/26/2008] [Indexed: 11/19/2022] Open
Abstract
Repeat-proteins are made up of near repetitions of 20- to 40-amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi-one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete "domain" (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (DeltaG(water)) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the "coarse-grained" description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are "poised" at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions.
Collapse
Affiliation(s)
- Diego U. Ferreiro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Aleksandra M. Walczak
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Peter G. Wolynes
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Tripp KW, Barrick D. Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape. J Am Chem Soc 2008; 130:5681-8. [PMID: 18396879 PMCID: PMC2474552 DOI: 10.1021/ja0763201] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular nature of repeat proteins has made them a successful target for protein design. Ankyrin repeat, TPR, and leucine rich repeat domains that have been designed solely on consensus information have been shown to have higher thermostability than their biological counterparts. We have previously shown that we can reshape the energy landscape of a repeat protein by adding multiple C-terminal consensus ankyrin repeats to the five N-terminal repeats of the Notch ankyrin domain. Here we explore how the folding mechanism responds to reshaping of the energy landscape. We have used analogous substitutions of a conserved alanine with glycine in each repeat to determine the distribution of structure in the transition state ensembles of constructs containing one (Nank1-5C1) and two consensus (Nank1-5C2) ankyrin repeats. Whereas folding of the wild-type Notch ankyrin domain is slowed by substitutions in its central repeats, (1) folding of Nank1-5C1 and Nank1-5C2 is slowed by substitutions in the C-terminal repeats. Thus, the addition of C-terminal stabilizing repeats shifts the transition state ensemble toward the C-terminal repeats, rerouting the folding pathway of the ankyrin repeat domain. These findings indicate that, for the Notch ankyrin domain, folding pathways are selected based on local energetics.
Collapse
Affiliation(s)
| | - Doug Barrick
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| |
Collapse
|
24
|
Barrick D, Ferreiro DU, Komives EA. Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 2008; 18:27-34. [PMID: 18243686 PMCID: PMC2680087 DOI: 10.1016/j.sbi.2007.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Nearly 6% of eukaryotic protein sequences contain ankyrin repeat (AR) domains, which consist of several repeats and often function in binding. AR proteins show highly cooperative folding despite a lack of long-range contacts. Both theory and experiment converge to explain that formation of the interface between elements is more favorable than formation of any individual repeat unit. IkappaBalpha and Notch both undergo partial folding upon binding perhaps influencing the binding free energy. The simple architecture, combined with identification of consensus residues that are important for stability, has enabled systematic perturbation of the energy landscape by single point mutations that affect stability or by addition of consensus repeats. The folding energy landscapes appear highly plastic, with small perturbations re-routing folding pathways.
Collapse
Affiliation(s)
- Doug Barrick
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400N, Charles St. Baltimore, MD 21218, USA
| | | | | |
Collapse
|
25
|
Palaiomylitou M, Tartas A, Vlachakis D, Tzamarias D, Vlassi M. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex. Proteins 2008; 70:72-82. [PMID: 17634984 DOI: 10.1002/prot.21489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ssn6, a tetratricopeptide repeat (TPR) containing protein, associates with the Tup1 repressor to form a global transcriptional co-repressor complex, which is conserved across species. The three N-terminal TPR repeats of Ssn6, out of a total of 10, are involved in this particular interaction. Our previously reported 3D-modeling and mutagenesis data suggested that the structural integrity of TPR1 and its correct positioning relatively to TPR2 are crucial for Tup1 binding. In this study, we first investigate the structural stability of the Tup1 binding domain of Ssn6, in pure form, through a combination of CD spectroscopy and limited proteolysis mapping. The obtained data were next combined with molecular dynamics simulations and disorder/order predictions. This combined study revealed that, although competent to fold, in the absence of Tup1, TPR1 is partially unfolded with its helix B being highly dynamic exposing an apolar surface to the solvent. Subsequent CD spectroscopy on this domain complexed with a Tup1 fragment comprising its Ssn6 binding region provided strong evidence for a conformational change consisting of acquisition of alpha-helical structure with simultaneous stabilization of a coiled-coil configuration upon complex formation. We propose that this conformational change occurs largely in the TPR1 of Ssn6 and is in accord with the concept of folding coupled to binding, proposed for other TPR domains. A possible implication of the structural flexibility of Ssn6 TPR1 in Tup1 recognition is discussed and a novel mode of interaction is proposed for this particular TPR-mediated complex.
Collapse
Affiliation(s)
- Maria Palaiomylitou
- Institute of Biology, National Centre for Scientific Research Demokritos, 15310 Ag. Paraskevi Attikis, Greece
| | | | | | | | | |
Collapse
|
26
|
Li J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 2008; 45:15168-78. [PMID: 17176038 DOI: 10.1021/bi062188q] [Citation(s) in RCA: 465] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ankyrin repeat, one of the most widely existing protein motifs in nature, consists of 30-34 amino acid residues and exclusively functions to mediate protein-protein interactions, some of which are directly involved in the development of human cancer and other diseases. Each ankyrin repeat exhibits a helix-turn-helix conformation, and strings of such tandem repeats are packed in a nearly linear array to form helix-turn-helix bundles with relatively flexible loops. The global structure of an ankyrin repeat protein is mainly stabilized by intra- and inter-repeat hydrophobic and hydrogen bonding interactions. The repetitive and elongated nature of ankyrin repeat proteins provides the molecular bases of the unique characteristics of ankyrin repeat proteins in protein stability, folding and unfolding, and binding specificity. Recent studies have demonstrated that ankyrin repeat proteins do not recognize specific sequences, and interacting residues are discontinuously dispersed into the whole molecules of both the ankyrin repeat protein and its partner. In addition, the availability of thousands of ankyrin repeat sequences has made it feasible to use rational design to modify the specificity and stability of physiologically important ankyrin repeat proteins and even to generate ankyrin repeat proteins with novel functions through combinatorial chemistry approaches.
Collapse
Affiliation(s)
- Junan Li
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
27
|
Kloss E, Courtemanche N, Barrick D. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Arch Biochem Biophys 2008; 469:83-99. [PMID: 17963718 PMCID: PMC2474553 DOI: 10.1016/j.abb.2007.08.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| | - Naomi Courtemanche
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| | - Doug Barrick
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| |
Collapse
|
28
|
Werbeck ND, Itzhaki LS. Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein. Proc Natl Acad Sci U S A 2007; 104:7863-8. [PMID: 17483458 PMCID: PMC1876538 DOI: 10.1073/pnas.0610315104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Indexed: 11/18/2022] Open
Abstract
Repeat proteins are composed of tandem arrays of 30- to 40-residue structural motifs and are characterized by short-range interactions between residues close in sequence. Here we have investigated the equilibrium unfolding of D34, a 426-residue fragment of ankyrinR that comprises 12 ankyrin repeats. We show that D34 unfolds via an intermediate in which the C-terminal half of the protein is structured and the N-terminal half is unstructured. Surprisingly, however, we find that we change the unfolding process when we attempt to probe it. Single-site, moderately destabilizing mutations at the C terminus result in different intermediates dominating. The closer to the C terminus the mutation, the fewer repeats are structured in the intermediate; thus, structure in the intermediate frays from the site of the mutation. This behavior contrasts with the robust unfolding of globular proteins in which mutations can destabilize an intermediate but do not cause a different intermediate to be populated. We suggest that, for large repeat arrays, the energy landscape is very rough, with many different low-energy species containing varying numbers of folded modules so the species that dominates can be altered easily by single, conservative mutations. The multiplicity of partly folded states populated in the equilibrium unfolding of D34 is also mirrored by the kinetic folding mechanism of ankyrin-repeat proteins in which we have observed that parallel pathways are accessible from different initiation sites in the structure.
Collapse
Affiliation(s)
- Nicolas D. Werbeck
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Laura S. Itzhaki
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
29
|
Street TO, Bradley CM, Barrick D. Predicting coupling limits from an experimentally determined energy landscape. Proc Natl Acad Sci U S A 2007; 104:4907-12. [PMID: 17360387 PMCID: PMC1829238 DOI: 10.1073/pnas.0608756104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeat proteins are composed of tandem structural modules in which close contacts do not extend beyond adjacent repeats. Despite the local nature of these close contacts, repeat proteins often unfold as a single, highly coupled unit. Previous studies on the Notch ankyrin domain suggest that this lack of equilibrium unfolding intermediates results both from stabilizing interfaces between each repeat and from a roughly uniform distribution of stability across the folding energy landscape. To investigate this idea, we have generated 15 variants of the Notch ankyrin domain with single and multiple destabilizing substitutions that make the energy landscape uneven. By applying a free energy additivity analysis to these variants, we quantified the destabilization threshold over which repeats 6 and 7 decouple from repeats 1-5. The free energy coupling limit suggested by this additivity analysis ( approximately 4 kcal/mol) is also reflected in m-value analysis and in differences among equilibrium unfolding transitions as monitored by CD versus fluorescence for all 15 variants. All of these observations are quantitatively predicted by analyzing the response of the experimentally determined energy landscape to increasing unevenness. These results highlight the importance of a uniform distribution of local stability in achieving cooperative unfolding.
Collapse
Affiliation(s)
- Timothy O. Street
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Christina M. Bradley
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Doug Barrick
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Ferreiro DU, Cervantes CF, Truhlar SME, Cho SS, Wolynes PG, Komives EA. Stabilizing IkappaBalpha by "consensus" design. J Mol Biol 2006; 365:1201-16. [PMID: 17174335 PMCID: PMC1866275 DOI: 10.1016/j.jmb.2006.11.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/27/2006] [Accepted: 11/10/2006] [Indexed: 01/21/2023]
Abstract
IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | | | | | | | | | | |
Collapse
|
31
|
Cheng CY, Jarymowycz VA, Cortajarena AL, Regan L, Stone MJ. Repeat motions and backbone flexibility in designed proteins with different numbers of identical consensus tetratricopeptide repeats. Biochemistry 2006; 45:12175-83. [PMID: 17002317 DOI: 10.1021/bi060819a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tetratricopeptide repeat (TPR) is a 34-residue helix-turn-helix motif that occurs as three or more tandem repeats in a wide variety of proteins. We have determined the repeat motions and backbone fluctuations of proteins containing two or three consensus TPR repeats (CTPR2 and CPTR3, respectively) using 15N NMR relaxation measurements. Rotational diffusion tensors calculated from these data for each repeat within each TPR protein indicate that there is a high degree of motional correlation between different repeats in the same protein. This is consistent with the prevailing view that repeat proteins, such as CTPR2 and CTPR3, behave as single cooperatively folded domains. The internal motions of backbone NH groups were determined using the Lipari-Szabo model-free formalism. For most residues, there was a clear separation between the influence of internal motion and the influence of global rotational tumbling on the observed magnetic relaxation. The local internal motions are highly restricted in most of the helical elements, with slightly greater flexibility in the linker elements. Comparisons between CTPR2 and CTPR3 indicate that an addition of a TPR repeat to the C-terminus (before the solvation helix) of CTPR2 slightly reduces the flexibility of the preceding helix.
Collapse
Affiliation(s)
- Cecilia Y Cheng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-0001, USA
| | | | | | | | | |
Collapse
|
32
|
Bradley CM, Barrick D. The notch ankyrin domain folds via a discrete, centralized pathway. Structure 2006; 14:1303-12. [PMID: 16905104 DOI: 10.1016/j.str.2006.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/26/2022]
Abstract
The Notch ankyrin repeat domain contains seven ankyrin sequence repeats, six of which adopt very similar structures. To determine if folding proceeds along parallel pathways and the order in which repeats become structured during folding, we examined the effect of analogous destabilizing Ala-->Gly substitutions in each repeat on folding kinetics. We find that folding proceeds to an on-pathway kinetic intermediate through a transition state ensemble containing structure in repeats three through five. Repeats two, six, and seven remain largely unstructured in this intermediate, becoming structured in a second kinetic step that leads to the native state. These data suggest that the Notch ankyrin domain folds according to a discrete kinetic pathway despite structural redundancy in the native state and highlight the importance of sequence-specific interactions in controlling pathway selection. This centralized pathway roughly corresponds to a low energy channel through the experimentally determined energy landscape.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
33
|
Tripp KW, Barrick D. Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats. J Mol Biol 2006; 365:1187-200. [PMID: 17067634 PMCID: PMC1851695 DOI: 10.1016/j.jmb.2006.09.092] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/24/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Repeat proteins are constructed from a linear array of modular units, giving rise to an overall topology lacking long-range interactions. This suggests that stabilizing repeat modules based on consensus information might be added to a repeat protein domain, allowing it to be extended without altering its overall topology. Here we add consensus modules the ankyrin repeat domain from the Drosophila Notch receptor to investigate the structural tolerance to these modules, the relative thermodynamic stability of these hybrid proteins, and how alterations in the energy landscape influence folding kinetics. Insertions of consensus modules between repeats five and six of the Notch ankyrin domain have little effect on the far and near-UV CD spectra, indicating that neither secondary nor tertiary structure is dramatically altered. Furthermore, stable structure is maintained at increased denaturant concentrations in the polypeptides containing the consensus repeats, indicating that the consensus modules are capable of stabilizing much of the domain. However, insertion of the consensus repeats appears to disrupt cooperativity, producing a two-stage (three-state) unfolding transition in which the C-terminal repeats unfold at moderate urea concentrations. Removing the C-terminal repeats (Notch ankyrin repeats six and seven) restores equilibrium two-state folding and demonstrates that the high stability of the consensus repeats is propagated into the N-terminal, naturally occurring Notch ankyrin repeats. This stability increase greatly increases the folding rate, and suggests that the transition state ensemble may be repositioned in the chimeric consensus-stabilized proteins in response to local stability.
Collapse
|
34
|
Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006. [PMID: 16618368 DOI: 10.1186/1471‐2105‐7‐208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the functional importance of intrinsically disordered proteins or protein regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of active research as witnessed in the 6th experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997), our group has developed several predictors optimized for long disordered regions (>30 residues) with prediction accuracy exceeding 85%. However, these predictors are less successful on short disordered regions (< or =30 residues). A probable cause is a length-dependent amino acid compositions and sequence properties of disordered regions. RESULTS We proposed two new predictor models, VSL2-M1 and VSL2-M2, to address this length-dependency problem in prediction of intrinsic protein disorder. These two predictors are similar to the original VSL1 predictor used in the CASP6 experiment. In both models, two specialized predictors were first built and optimized for short (< or = 30 residues) and long disordered regions (>30 residues), respectively. A meta predictor was then trained to integrate the specialized predictors into the final predictor model. As the 10-fold cross-validation results showed, the VSL2 predictors achieved well-balanced prediction accuracies of 81% on both short and long disordered regions. Comparisons over the VSL2 training dataset via 10-fold cross-validation and a blind-test set of unrelated recent PDB chains indicated that VSL2 predictors were significantly more accurate than several existing predictors of intrinsic protein disorder. CONCLUSION The VSL2 predictors are applicable to disordered regions of any length and can accurately identify the short disordered regions that are often misclassified by our previous disorder predictors. The success of the VSL2 predictors further confirmed the previously observed differences in amino acid compositions and sequence properties between short and long disordered regions, and justified our approaches for modelling short and long disordered regions separately. The VSL2 predictors are freely accessible for non-commercial use at http://www.ist.temple.edu/disprot/predictorVSL2.php.
Collapse
Affiliation(s)
- Kang Peng
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | |
Collapse
|
35
|
Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006; 7:208. [PMID: 16618368 PMCID: PMC1479845 DOI: 10.1186/1471-2105-7-208] [Citation(s) in RCA: 710] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 04/17/2006] [Indexed: 11/18/2022] Open
Abstract
Background Due to the functional importance of intrinsically disordered proteins or protein regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of active research as witnessed in the 6th experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997), our group has developed several predictors optimized for long disordered regions (>30 residues) with prediction accuracy exceeding 85%. However, these predictors are less successful on short disordered regions (≤30 residues). A probable cause is a length-dependent amino acid compositions and sequence properties of disordered regions. Results We proposed two new predictor models, VSL2-M1 and VSL2-M2, to address this length-dependency problem in prediction of intrinsic protein disorder. These two predictors are similar to the original VSL1 predictor used in the CASP6 experiment. In both models, two specialized predictors were first built and optimized for short (≤30 residues) and long disordered regions (>30 residues), respectively. A meta predictor was then trained to integrate the specialized predictors into the final predictor model. As the 10-fold cross-validation results showed, the VSL2 predictors achieved well-balanced prediction accuracies of 81% on both short and long disordered regions. Comparisons over the VSL2 training dataset via 10-fold cross-validation and a blind-test set of unrelated recent PDB chains indicated that VSL2 predictors were significantly more accurate than several existing predictors of intrinsic protein disorder. Conclusion The VSL2 predictors are applicable to disordered regions of any length and can accurately identify the short disordered regions that are often misclassified by our previous disorder predictors. The success of the VSL2 predictors further confirmed the previously observed differences in amino acid compositions and sequence properties between short and long disordered regions, and justified our approaches for modelling short and long disordered regions separately. The VSL2 predictors are freely accessible for non-commercial use at
Collapse
Affiliation(s)
- Kang Peng
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Predrag Radivojac
- School of Informatics, Indiana University, Bloomington, IN 47408, USA
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
36
|
Ehebauer M, Chirgadze D, Hayward P, Martinez Arias A, Blundell T. High-resolution crystal structure of the human Notch 1 ankyrin domain. Biochem J 2006; 392:13-20. [PMID: 16011479 PMCID: PMC1317659 DOI: 10.1042/bj20050515] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Notch receptor is part of a highly conserved signalling system of central importance to animal development. Its ANK (ankyrin) domain is required for Notch-mediated signal transduction. The crystal structure of the human Notch 1 ANK domain was solved by molecular replacement at 1.9 A (1 A=0.1 nm) resolution, and it shows that the features identified in the Drosophila homologue are conserved. The domain has six of the seven ANK repeats predicted from sequence. The putative first repeat, which has only part of the consensus and a long insertion, is disordered in both molecules in the asymmetric unit, possibly due to the absence of the RAM (RBPJkappa-associated molecule) region N-terminal to it. The exposed hydrophobic core is involved in intermolecular interactions in the crystal. Evolutionary trace analysis identified several residues that map to the hairpins of the structure and may be of functional importance. Based on the Notch 1 ANK structure and analysis of homologous Notch ANK sequences, we predict two possible binding sites on the domain: one on the concave surface of repeat 2 and the other below the hairpins of repeats 6-7.
Collapse
Affiliation(s)
- Matthias T. Ehebauer
- *Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Dimitri Y. Chirgadze
- *Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Penny Hayward
- †Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, U.K
| | - Alfonso Martinez Arias
- †Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, U.K
| | - Tom L. Blundell
- *Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
37
|
Street TO, Bradley CM, Barrick D. An improved experimental system for determining small folding entropy changes resulting from proline to alanine substitutions. Protein Sci 2006; 14:2429-35. [PMID: 16131666 PMCID: PMC2253478 DOI: 10.1110/ps.051505705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Changes in protein stability can be achieved by making substitutions that increase or decrease the available conformations of the unfolded protein without altering the conformational freedom of the folded protein. Matthews and coworkers (1987) proposed that proline to alanine (P --> A) substitution would achieve this type of entropic destabilization. By comparing the Ramachandran area associated with alanine and proline residues, Matthews et al. estimated the unfolding entropy change resulting from P --> A substitution to be 4.8 cal mol(-1) K(-1). Although such an entropy difference would produce a substantial free energy change, accurately resolving such free energy changes into entropic and enthalpic components has been difficult. Here, we attempt to quantify the unfolding entropy change produced by P --> A substitution by amplifying the effect through multiple substitutions, and by decreasing the uncertainty in determining the unfolding entropy. Variants of a repeat protein, the Drosophila Notch ankyrin domain, were constructed with a varying number of P --> A substitutions at structurally conserved positions. Unfolding entropy values of the variants were determined from free energy measurements taken over a common temperature range using chemical denaturation. Our findings confirm the prediction that increasing the number of proline residues present in similar local environments increases the unfolding entropy. The average value of this increase in unfolding entropy is 7.7 +/- 4.2 cal mol(-1) K(-1), which is within error of the value estimated by Matthews et al. (1987).
Collapse
Affiliation(s)
- Timothy O Street
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 204 Jenkins Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
38
|
Mello CC, Bradley CM, Tripp KW, Barrick D. Experimental characterization of the folding kinetics of the notch ankyrin domain. J Mol Biol 2005; 352:266-81. [PMID: 16095609 DOI: 10.1016/j.jmb.2005.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 06/01/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.
Collapse
Affiliation(s)
- Cecilia C Mello
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
39
|
Ferreiro DU, Cho SS, Komives EA, Wolynes PG. The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family. J Mol Biol 2005; 354:679-92. [PMID: 16257414 DOI: 10.1016/j.jmb.2005.09.078] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 09/13/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
40
|
Bradley CM, Barrick D. Effect of Multiple Prolyl Isomerization Reactions on the Stability and Folding Kinetics of the Notch Ankyrin Domain: Experiment and Theory. J Mol Biol 2005; 352:253-65. [PMID: 16054647 DOI: 10.1016/j.jmb.2005.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 06/01/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
41
|
Devi VS, Binz HK, Stumpp MT, Plückthun A, Bosshard HR, Jelesarov I. Folding of a designed simple ankyrin repeat protein. Protein Sci 2005; 13:2864-70. [PMID: 15498935 PMCID: PMC2286595 DOI: 10.1110/ps.04935704] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ankyrin repeats (AR) are 33-residue motifs containing a beta-turn, followed by two alpha-helices connected by a loop. AR occur in tandem arrangements and stack side-by-side to form elongated domains involved in very different cellular tasks. Recently, consensus libraries of AR repeats were constructed. Protein E1_5 represents a member of the shortest library, and consists of only a single consensus repeat flanked by designed N- and C-terminal capping repeats. Here we present a biophysical characterization of this AR domain. The protein is compactly folded, as judged from the heat capacity of the native state and from the specific unfolding enthalpy and entropy. From spectroscopic data, thermal and urea-induced unfolding can be modeled by a two-state transition. However, scanning calorimetry experiments reveal a deviation from the two-state behavior at elevated temperatures. Folding and unfolding at 5 degrees C both follow monoexponential kinetics with k(folding) = 28 sec(-1) and k(unfolding) = 0.9 sec(-1). Kinetic and equilibrium unfolding parameters at 5 degrees C agree very well. We conclude that E1_5 folds in a simple two-state manner at low temperatures while equilibrium intermediates become populated at higher temperatures. A chevron-plot analysis indicates that the protein traverses a very compact transition state along the folding/unfolding pathway. This work demonstrates that a designed minimal ankyrin repeat protein has the thermodynamic and kinetic properties of a compactly folded protein, and explains the favorable properties of the consensus framework.
Collapse
Affiliation(s)
- V Sathya Devi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Main ERG, Stott K, Jackson SE, Regan L. Local and long-range stability in tandemly arrayed tetratricopeptide repeats. Proc Natl Acad Sci U S A 2005; 102:5721-6. [PMID: 15824314 PMCID: PMC556279 DOI: 10.1073/pnas.0404530102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 11/18/2022] Open
Abstract
The tetratricopeptide repeat (TPR) is a 34-aa alpha-helical motif that occurs in tandem arrays in a variety of different proteins. In natural proteins, the number of TPR motifs ranges from 3 to 16 or more. These arrays function as molecular scaffolds and frequently mediate protein-protein interactions. We have shown that correctly folded TPR domain proteins, exhibiting the typical helix-turn-helix fold, can be designed by arraying tandem repeats of an idealized TPR consensus motif. To date, three designed proteins, CTPR1, CTPR2, and CTPR3 (consensus TPR number of repeats) have been characterized. Their high-resolution crystal structures show that the designed proteins indeed adopt the typical TPR fold, which is specified by the correct positioning of key residues. Here, we present a study of the thermodynamic properties and folding kinetics of this set of designed proteins. Chemical denaturation, monitored by CD and fluorescence, was used to assess the folding and global stability of each protein. NMR-detected amide proton exchange was used to investigate the stability of each construct at a residue-specific level. The results of these studies reveal a stable core, which defines the intrinsic stability of an individual TPR motif. The results also show the relationship between the number of tandem repeats and the overall stability and folding of the protein.
Collapse
Affiliation(s)
- Ewan R G Main
- Department of Molecular Biophysics, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
43
|
Lubman OY, Kopan R, Waksman G, Korolev S. The crystal structure of a partial mouse Notch-1 ankyrin domain: repeats 4 through 7 preserve an ankyrin fold. Protein Sci 2005; 14:1274-81. [PMID: 15802643 PMCID: PMC2253258 DOI: 10.1110/ps.041184105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 A crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragment adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.
Collapse
Affiliation(s)
- Olga Y Lubman
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
44
|
Wilson CGM, Kajander T, Regan L. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. FEBS J 2005; 272:166-79. [PMID: 15634341 DOI: 10.1111/j.1432-1033.2004.04397.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.
Collapse
Affiliation(s)
- Christopher G M Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
45
|
Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 2005; 13:1435-48. [PMID: 15152081 PMCID: PMC2279977 DOI: 10.1110/ps.03554604] [Citation(s) in RCA: 657] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.
Collapse
Affiliation(s)
- Leila K Mosavi
- MC3305, Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
46
|
Magliery TJ, Regan L. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. J Mol Biol 2004; 343:731-45. [PMID: 15465058 DOI: 10.1016/j.jmb.2004.08.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/20/2004] [Accepted: 08/10/2004] [Indexed: 11/20/2022]
Abstract
Consensus design methods have been used successfully to engineer proteins with a particular fold, and moreover to engineer thermostable exemplars of particular folds. Here, we consider how a statistical free energy approach can expand upon current methods of phylogenetic design. As an example, we have analyzed the tetratricopeptide repeat (TPR) motif, using multiple sequence alignment to identify the significance of each position in the TPR. The results provide information above and beyond that revealed by consensus design alone, especially at poorly conserved positions. A particularly striking finding is that certain residues, which TPR-peptide co-crystal structures show are in direct contact with the ligand, display a marked hypervariability. This suggests a novel means of identifying ligand-binding sites, and also implies that TPRs generally function as ligand-binding domains. Using perturbation analysis (or statistical coupling analysis), we examined site-site interactions within the TPR motif. Correlated occurrences of amino acid residues at poorly conserved positions explain how TPRs achieve their near-neutral surface charge distributions, and why a TPR designed from straight consensus has an unusually high net charge. Networks of interacting sites revealed that TPRs fall into two unrecognized families with distinct sets of interactions related to the identity of position 7 (Leu or Lys/Arg). Statistical free energy analysis provides a more complete description of "What makes a TPR a TPR?" than consensus alone, and it suggests general approaches to extend and improve the phylogenetic design of proteins.
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
47
|
Tripp KW, Barrick D. The tolerance of a modular protein to duplication and deletion of internal repeats. J Mol Biol 2004; 344:169-78. [PMID: 15504409 DOI: 10.1016/j.jmb.2004.09.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/16/2004] [Accepted: 09/17/2004] [Indexed: 11/22/2022]
Abstract
Ankyrin repeat polypeptides contain repeated structural elements that pack to produce modular architectures lacking in close contacts between distant segments of the polypeptide chain. Despite this lack of sequence-distant contacts, ankyrin repeat polypeptides have been shown to fold in a cooperative manner. To determine the distance over which cooperative interactions can be propagated in a repeat protein, and to investigate the tolerance to internal duplication and deletion of modules, we have constructed a series of ankyrin repeat variants of the Notch ankyrin domain in which repeat number is varied by duplication and deletion of internal repeats. A construct with two copies of the fifth ankyrin repeat shows a modest increase in stability compared to the parent construct and retains apparent two-state unfolding behavior. Although constructs containing three and four copies of the fifth repeat retain this increased resistance to urea, they exhibit broad, multi-state unfolding transitions compared to the parent construct. For the Notch ankyrin domain, these larger constructs may represent a limit beyond which full cooperativity cannot be maintained. Deletions of internal repeats from the Notch ankyrin domain significantly destabilize the domain. This severe destabilization, which is larger than that resulting from end-repeat deletion, may arise from unfavorable interactions within the new non-native interfaces produced by internal repeat deletion. These results demonstrate both an asymmetry between the duplication and deletion of internal repeats, and a difference between deletion of internal and end-repeats, suggesting preferred mechanisms for evolution of repeat proteins.
Collapse
Affiliation(s)
- Katherine W Tripp
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21211, USA
| | | |
Collapse
|
48
|
Abstract
Consensus design is a valuable protein-engineering method that is based on statistical information derived from sequence alignments of homologous proteins. Recently, consensus design was adapted to repeat proteins. We discuss the potential of this novel repeat-based approach for the design of consensus repeat proteins and repeat protein libraries and summarize recent results from such experiments.
Collapse
Affiliation(s)
- Patrik Forrer
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Mello CC, Barrick D. An experimentally determined protein folding energy landscape. Proc Natl Acad Sci U S A 2004; 101:14102-7. [PMID: 15377792 PMCID: PMC521126 DOI: 10.1073/pnas.0403386101] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Energy landscapes have been used to conceptually describe and model protein folding but have been difficult to measure experimentally, in large part because of the myriad of partly folded protein conformations that cannot be isolated and thermodynamically characterized. Here we experimentally determine a detailed energy landscape for protein folding. We generated a series of overlapping constructs containing subsets of the seven ankyrin repeats of the Drosophila Notch receptor, a protein domain whose linear arrangement of modular structural units can be fragmented without disrupting structure. To a good approximation, stabilities of each construct can be described as a sum of energy terms associated with each repeat. The magnitude of each energy term indicates that each repeat is intrinsically unstable but is strongly stabilized by interactions with its nearest neighbors. These linear energy terms define an equilibrium free energy landscape, which shows an early free energy barrier and suggests preferred low-energy routes for folding.
Collapse
Affiliation(s)
- Cecilia C Mello
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
50
|
Zweifel ME, Leahy DJ, Hughson FM, Barrick D. Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Sci 2004; 12:2622-32. [PMID: 14573873 PMCID: PMC2366946 DOI: 10.1110/ps.03279003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.
Collapse
Affiliation(s)
- Mark E Zweifel
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|