1
|
Xu Y, Nam KH. Xylitol binding to the M1 site of glucose isomerase induces a conformational change in the substrate binding channel. Biochem Biophys Res Commun 2023; 682:21-26. [PMID: 37793321 DOI: 10.1016/j.bbrc.2023.09.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
2
|
Ma X, Zhang L, Ren Y, Yun H, Cui H, Li Q, Guo Y, Gao S, Zhang F, Wang A, Liang B. Molecular Mechanism of Chloramphenicol and Thiamphenicol Resistance Mediated by a Novel Oxidase, CmO, in Sphingomonadaceae. Appl Environ Microbiol 2023; 89:e0154722. [PMID: 36519886 PMCID: PMC9888274 DOI: 10.1128/aem.01547-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzyme inactivation plays a crucial role in the degradation of antibiotics in the environment. Chloramphenicol (CAP) resistance by enzymatic inactivation comprises nitro reduction, amide bond hydrolysis, and acetylation modification. However, the molecular mechanism of enzymatic oxidation of CAP remains unknown. Here, a novel oxidase gene, cmO, was identified and confirmed biochemically. The encoded CmO oxidase could catalyze the oxidation at the C-1' and C-3' positions of CAP and thiamphenicol (TAP) in Sphingobium sp. strain CAP-1. CmO is highly conserved in members of the family Sphingomonadaceae and shares the highest amino acid similarity of 41.05% with the biochemically identified glucose methanol choline (GMC) oxidoreductases. Molecular docking and site-directed mutagenesis analyses demonstrated that CAP was anchored inside the protein pocket of CmO with the hydrogen bonding of key residues glycine (G) 99, asparagine (N) 518, methionine (M) 474, and tyrosine (Y) 380. CAP sensitivity tests demonstrated that the acetyltransferase and CmO could enable a higher level of resistance to CAP than the amide bond-hydrolyzing esterase and nitroreductase. This study provides a better theoretical basis and a novel diagnostic gene for understanding and assessing the fate and resistance risk of CAP and TAP in the environment. IMPORTANCE Rising levels of antibiotic resistance are undermining ecological and human health as a result of the indiscriminate usage of antibiotics. Various resistance mechanisms have been characterized-for example, genes encoding proteins that degrade antibiotics-and yet, this requires further exploration. In this study, we report a novel gene encoding an oxidase involved in the inactivation of typical amphenicol antibiotics (chloramphenicol and thiamphenicol), and the molecular mechanism is elucidated. The findings provide novel data with which to understand the capabilities of bacteria to tackle antibiotic stress, as well as the complex function of enzymes in the contexts of antibiotic resistance development and antibiotic removal. The reported gene can be further employed as an indicator to monitor amphenicol's fate in the environment, thus benefiting risk assessment in this era of antibiotic resistance.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Yijun Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Fengliang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Alam AA, Goda DA, Soliman NA, Abdel-Meguid DI, El-Sharouny EE, Sabry SA. Production and statistical optimization of cholesterol-oxidase generated by Streptomyces sp. AN strain. J Genet Eng Biotechnol 2022; 20:156. [DOI: 10.1186/s43141-022-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Background
Cholesterol oxidases (CHOs) have attracted enormous attention because of their wide biotechnological potential. The present study explores the production of CHOs by Streptomyces sp. AN. Evaluation of culture conditions affecting enzyme production, medium optimization and released metabolite characteristics were also investigated.
Results
The current work reports the isolation of 37 colonies (bacteria/actinobacteria) with different morphotypes from different soil/water samples. The isolate-coded AN was selected for its high potency for CHO production. Morphological characteristics and the obtained partial sequence of 16srRNA of AN showed 99.38% identity to Streptomyces sp. strain P12–37. Factors affecting CHO production were evaluated using Plackett-Burman (PB) and Box-Behnken (BB) statistical designs to find out the optimum level of the most effective variables, namely, pH, starch, NH4NO3 and FeSO4.7H2O with a predicted activity of 6.56 U/mL. According to this optimization, the following medium composition was considered to be optimum (g/L): cholesterol 1, starch 6, MgSO4.7H2O 0.1, CaCl2 0.01, FeSO4.7H2O 0.1, NH4NO3 23.97, yeast extract (YE) 0.2, K2HPO4 0.01, KH2PO4 0.1, NaCl 0.01, Tween 20 0.01, pH 6.36 and incubation temperature (30 °C) for 9 days. Spectophotometric analysis for released metabolites against cholesterol (standard) via Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) was carried out. FTIR spectrum showed the appearance of new absorption peaks at 1644 and 1725cm−1; this confirmed the presence of the Keto group (C=O) stretch bond. Besides, fermentation caused changes in thermal properties such as melting temperature peak (99.26; 148.77 °C), heat flow (− 8; − 3.6 Mw/mg), capacity (− 924.69; − 209.77 mJ) and heat enthalpy (− 385.29; 69.83 J/g) by comparison to the standard cholesterol as recognized through DSC thermogram. These changes are attributed to the action of the CHO enzyme and the release of keto derivatives of cholesterol with different properties.
Conclusion
Streptomyces sp. AN was endowed with the capability to produce CHO. Enzyme maximization was followed using a statistical experimental approach, leading to a 2.6-fold increase in the overall activity compared to the basal condition. CHO catalyzed the oxidation of cholesterol; this was verified by the appearance of a new keto group (C=O) peak at 1644 and 1725 cm−1 observed by FTIR spectroscopic analysis. Also, DSC thermogram demonstrates the alteration of cholesterol triggered by CHO.
Collapse
|
4
|
Towards crucial post-modification in biosynthesis of terpenoids and steroids: C3 oxidase and acetyltransferase. Enzyme Microb Technol 2022; 162:110148. [DOI: 10.1016/j.enzmictec.2022.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
|
5
|
Fokina VV, Karpov MV, Kollerov VV, Bragin EY, Epiktetov DO, Sviridov AV, Kazantsev AV, Shutov AA, Donova MV. Recombinant Extracellular Cholesterol Oxidase from Nocardioides simplex. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:903-915. [PMID: 36180991 DOI: 10.1134/s0006297922090048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol oxidase is a highly demanded enzyme used in medicine, pharmacy, agriculture, chemistry, and biotechnology. It catalyzes oxidation of 3β-hydroxy-5-ene- to 3-keto-4-ene- steroids with the formation of hydrogen peroxide. Here, we expressed 6xHis-tagged mature form of the extracellular cholesterol oxidase (ChO) from the actinobacterium Nocardioides simplex VKM Ac-2033D (55.6 kDa) in Escherichia coli cells. The recombinant enzyme (ChONs) was purified using affinity chromatography. ChONs proved to be functional towards cholesterol, cholestanol, phytosterol, pregnenolone, and dehydroepiandrosterone. Its activity depended on the structure and length of the aliphatic side chain at C17 atom of the steroid nucleus and was lower with pregnenolone and dehydroepiandrosterone. The enzyme was active in a pH range of 5.25÷6.5 with the pH optimum at 6.0. Kinetic assays and storage stability tests demonstrated that the characteristics of ChONs were generally comparable with or superior to those of commercial ChO from Streptomyces hygroscopicus (ChOSh). The results contribute to the knowledge on microbial ChOs and evidence that ChO from N. simplex VKM Ac-2033D is a promising agent for further applications.
Collapse
Affiliation(s)
- Victoria V Fokina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Mikhail V Karpov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Vyacheslav V Kollerov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Eugeny Yu Bragin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Dmitry O Epiktetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alexey V Sviridov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alexey V Kazantsev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey A Shutov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Marina V Donova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
6
|
Membrane lipid organization and nicotinic acetylcholine receptor function: A two-way physiological relationship. Arch Biochem Biophys 2022; 730:109413. [DOI: 10.1016/j.abb.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
7
|
Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. Int J Mol Sci 2020; 21:ijms21113797. [PMID: 32471202 PMCID: PMC7312611 DOI: 10.3390/ijms21113797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/30/2022] Open
Abstract
In this review, recent progress in the engineering of the oxidative half-reaction of flavin-dependent oxidases and dehydrogenases is discussed, considering their current and future applications in bioelectrochemical studies, such as for the development of biosensors and biofuel cells. There have been two approaches in the studies of oxidative half-reaction: engineering of the oxidative half-reaction with oxygen, and engineering of the preference for artificial electron acceptors. The challenges for engineering oxidative half-reactions with oxygen are further categorized into the following approaches: (1) mutation to the putative residues that compose the cavity where oxygen may be located, (2) investigation of the vicinities where the reaction with oxygen may take place, and (3) investigation of possible oxygen access routes to the isoalloxazine ring. Among these approaches, introducing a mutation at the oxygen access route to the isoalloxazine ring represents the most versatile and effective strategy. Studies to engineer the preference of artificial electron acceptors are categorized into three different approaches: (1) engineering of the charge at the residues around the substrate entrance, (2) engineering of a cavity in the vicinity of flavin, and (3) decreasing the glycosylation degree of enzymes. Among these approaches, altering the charge in the vicinity where the electron acceptor may be accessed will be most relevant.
Collapse
|
8
|
Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 2020; 117:9302-9310. [PMID: 32245809 DOI: 10.1073/pnas.1921073117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.
Collapse
|
9
|
Kerber T, Vrielink A. The role of hydrogen atoms in redox catalysis by the flavoenzyme cholesterol oxidase. Methods Enzymol 2020; 634:361-377. [PMID: 32093840 DOI: 10.1016/bs.mie.2019.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Flavoenzymes comprise a large class of proteins that carry out a diverse range of important redox chemistry. Although X-ray crystal structures of many flavoenzymes have been determined, there are still unresolved questions regarding the actual oxidation state of the flavin cofactors in these structures due to photoreduction by the ionizing radiation of the X-ray beam during the diffraction experiment. Additionally, the ability to visualize hydrogen atoms in X-ray structures is difficult due to the weak scattering capability of these atoms. Since hydrogen atoms affect the electrostatic nature of enzyme active sites and play important roles in the chemistry of key amino acid residues, visualizing the precise positions of these atoms provides a more detailed understanding of their role in enzyme catalysis. Single crystal neutron diffraction is an alternative method to structure determination, circumventing problems associated with photoreduction of the sample thus providing a clearer view of the structural features of a flavoenzyme in different redox states. Additionally, the larger neutron scattering factors for hydrogen and deuterium atoms enables one to visualize these atoms much more easily than from X-ray scattering measurements. In this chapter we give an overview of neutron and X-ray crystallography studies on the flavoenzyme, cholesterol oxidase and how the observations of unusual hydrogen atom positions provide insight into the redox chemistry of the flavin cofactor.
Collapse
Affiliation(s)
- Tatiana Kerber
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
10
|
Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 2019; 128:218-240. [DOI: 10.1016/j.bioelechem.2019.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023]
|
11
|
Gadbery JE, Sampson NS. Use of an Isotope-Coded Mass Tag (ICMT) Method To Determine the Orientation of Cholesterol Oxidase on Model Membranes. Biochemistry 2018; 57:5370-5378. [PMID: 30125103 PMCID: PMC6171977 DOI: 10.1021/acs.biochem.8b00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the interfacial membrane protein cholesterol oxidase is structurally and kinetically well-characterized, its orientation in and mode of interaction with cholesterol-containing membranes have not been established. Cholesterol oxidase can alter the structure of the cell membrane in pathogenic bacteria and is thus a potential antimicrobial drug target. We recently developed a mass spectrometry-based isotope-coded mass tag (ICMT) labeling method to monitor the real-time solvent-accessible surface of peripheral membrane proteins, such as cholesterol oxidase. The ICMT strategy utilizes maleimide-based isotope tags that covalently react with cysteine residues. In this study, by comparing the ICMT labeling rates of cysteine variants of cholesterol oxidase, we determined which residues of the protein were engaged with the protein-lipid interface. We found that upon addition of cholesterol-containing lipid vesicles, four cysteine residues in a cluster near the substrate entrance channel are labeled more slowly with ICMT probes than in the absence of vesicles, indicating that these four residues were in contact with the membrane surface. From these data, we generated a model of how cholesterol oxidase is oriented when bound to the membrane. In conclusion, this straightforward method, which requires only microgram quantities of protein, offers several advantages over existing methods for the investigation of interfacial membrane proteins and can be applied to a number of different systems.
Collapse
Affiliation(s)
- John E Gadbery
- Biochemistry and Structural Biology Graduate Program , Stony Brook University , Stony Brook , New York 11794-5215 , United States
| | - Nicole S Sampson
- Biochemistry and Structural Biology Graduate Program , Stony Brook University , Stony Brook , New York 11794-5215 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
12
|
Brugger D, Sützl L, Zahma K, Haltrich D, Peterbauer CK, Stoica L. Electrochemical characterization of the pyranose 2-oxidase variant N593C shows a complete loss of the oxidase function with full preservation of substrate (dehydrogenase) activity. Phys Chem Chem Phys 2018; 18:32072-32077. [PMID: 27808302 PMCID: PMC5142420 DOI: 10.1039/c6cp06009a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the first electrochemical characterization of the pyranose oxidase (POx) variant N593C (herein called POx-C), which is considered a promising candidate for future glucose-sensing applications. The resulting cyclic voltammograms obtained in the presence of various concentrations of glucose and mediator (1,4-benzoquinone, BQ), as well as the control experiments by addition of catalase, support the conclusion of a complete suppression of the oxidase function and oxygen reactivity at POx-C. Additionally, these electrochemical experiments demonstrate, contrary to previous biochemical studies, that POx-C has a fully retained enzymatic activity towards glucose. POx-C was immobilized on a special screen-printed electrode (SPE) based on carbon ink and grafted with gold-nanoparticles (GNP). Suppression of the oxygen reactivity at N593C-POx variant is a prerequisite for utilizing POx in electrochemical applications for glucose sensing. To our knowledge, this is the first report presented in the literature showing an absolute conversion of an oxidase into a fully active equivalent dehydrogenase via a single residue exchange.
Collapse
Affiliation(s)
- Dagmar Brugger
- Food Biotechnology Laboratory, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria. and BioToP - The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190 Vienna, Austria
| | - Leander Sützl
- Food Biotechnology Laboratory, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria. and BioToP - The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190 Vienna, Austria
| | - Kawah Zahma
- Food Biotechnology Laboratory, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria. and BioToP - The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190 Vienna, Austria
| | - Clemens K Peterbauer
- Food Biotechnology Laboratory, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria. and BioToP - The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190 Vienna, Austria
| | - Leonard Stoica
- Food Biotechnology Laboratory, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
13
|
Yu LJ, Golden E, Chen N, Zhao Y, Vrielink A, Karton A. Computational insights for the hydride transfer and distinctive roles of key residues in cholesterol oxidase. Sci Rep 2017; 7:17265. [PMID: 29222497 PMCID: PMC5722936 DOI: 10.1038/s41598-017-17503-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
Cholesterol oxidase (ChOx), a member of the glucose-methanol-choline (GMC) family, catalyzes the oxidation of the substrate via a hydride transfer mechanism and concomitant reduction of the FAD cofactor. Unlike other GMC enzymes, the conserved His447 is not the catalytic base that deprotonates the substrate in ChOx. Our QM/MM MD simulations indicate that the Glu361 residue acts as a catalytic base facilitating the hydride transfer from the substrate to the cofactor. We find that two rationally chosen point mutations (His447Gln and His447Asn) cause notable decreases in the catalytic activity. The binding free energy calculations show that the Glu361 and His447 residues are important in substrate binding. We also performed high-level double-hybrid density functional theory simulations using small model systems, which support the QM/MM MD results. Our work provides a basis for unraveling the substrate oxidation mechanism in GMC enzymes in which the conserved histidine does not act as a base.
Collapse
Affiliation(s)
- Li-Juan Yu
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Emily Golden
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nanhao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
14
|
Qin HM, Zhu Z, Ma Z, Xu P, Guo Q, Li S, Wang JW, Mao S, Liu F, Lu F. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. Sci Rep 2017; 7:16375. [PMID: 29180806 PMCID: PMC5703901 DOI: 10.1038/s41598-017-16768-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/16/2017] [Indexed: 11/15/2022] Open
Abstract
Cholesterol oxidase catalyzes the oxidation and isomerization of the cholestane substrates leading to the addition of a hydroxyl group at the C3 position. Rational engineering of the cholesterol oxidase from Pimelobacter simplex (PsChO) was performed. Mutagenesis of V64 and F70 improved the catalytic activities toward cholestane substrates. Molecular dynamics simulations, together with structure-activity relationship analysis, revealed that both V64C and F70V increased the binding free energy between PsChO mutants and cholesterol. F70V and V64C mutations might cause the movement of loops L56-P77, K45-P49 and L350-E354 at active site. They enlarged the substrate-binding cavity and relieved the steric interference with substrates facilitating recognition of C17 hydrophobic substrates with long side chain substrates.
Collapse
Affiliation(s)
- Hui-Min Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Songtao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Jian-Wen Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P.R. China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P.R. China.
| |
Collapse
|
15
|
Tremey E, Stines-Chaumeil C, Gounel S, Mano N. Designing an O2
-Insensitive Glucose Oxidase for Improved Electrochemical Applications. ChemElectroChem 2017. [DOI: 10.1002/celc.201700646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emilie Tremey
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| | - Claire Stines-Chaumeil
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| | - Sébastien Gounel
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| | - Nicolas Mano
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| |
Collapse
|
16
|
Gao G, Liu X, Xu M, Wang Y, Zhang F, Xu L, Lv J, Long Q, Kang Q, Ou HY, Wang Y, Rohr J, Deng Z, Jiang M, Lin S, Tao M. Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chem Biol 2017; 24:881-891.e4. [PMID: 28712746 DOI: 10.1016/j.chembiol.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022]
Abstract
Bacterial aromatic polyketides are a group of natural products synthesized by polyketide synthases (PKSs) that show diverse structures and biological activities. They are structurally subclassified into linear, angular, and discoid aromatic polyketides, the formation of which is commonly determined by the shaping and folding of the poly-β-keto intermediates under the concerted actions of the minimal PKSs, cyclases and ketoreductases. Murayaquinone, found in several streptomycetes, possesses an unusual tricyclic angular aromatic polyketide core containing a 9,10-phenanthraquinone. In this study, genes essential for murayaquinone biosynthesis were identified, and a linear anthraoxirene intermediate was discovered. A unique biosynthetic model for the angular aromatic polyketide formation was discovered and confirmed through in vivo and in vitro studies. Three oxidoreductases, MrqO3, MrqO6, and MrqO7, were identified to catalyze the conversion of the linear aromatic polyketide intermediate into the final angularly arranged framework, which exemplifies a novel strategy for the biosynthesis of angular aromatic polyketides.
Collapse
Affiliation(s)
- Guixi Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Lijun Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Jin Lv
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ying Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou 510632, P. R. China
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| |
Collapse
|
17
|
Mi L, Yu J, He F, Jiang L, Wu Y, Yang L, Han X, Li Y, Liu A, Wei W, Zhang Y, Tian Y, Liu S, Jiang L. Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas–Solid–Liquid Interfaces and Controlled Wettability. J Am Chem Soc 2017; 139:10441-10446. [DOI: 10.1021/jacs.7b05249] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Mi
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jiachao Yu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei He
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ling Jiang
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lijun Yang
- Key
Laboratory of Bioinspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofeng Han
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Li
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Anran Liu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ye Tian
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Songqin Liu
- Key
Laboratory of Environmental Medicine Engineering, Ministry of Education,
Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and
Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Jiang
- Key
Laboratory of Bioinspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Harb LH, Arooj M, Vrielink A, Mancera RL. Computational site-directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase. Proteins 2017; 85:1645-1655. [PMID: 28508424 DOI: 10.1002/prot.25319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 11/10/2022]
Abstract
Cholesterol oxidase (ChOx) is a flavoenzyme that oxidizes and isomerizes cholesterol (CHL) to form cholest-4-en-3-one. Molecular docking and molecular dynamics simulations were conducted to predict the binding interactions of CHL in the active site. Several key interactions (E361-CHL, N485-FAD, and H447-CHL) were identified and which are likely to determine the correct positioning of CHL relative to flavin-adenine dinucleotide (FAD). Binding of CHL also induced changes in key residues of the active site leading to the closure of the oxygen channel. A group of residues, Y107, F444, and Y446, known as the hydrophobic triad, are believed to affect the binding of CHL in the active site. Computational site-directed mutagenesis of these residues revealed that their mutation affects the conformations of key residues in the active site, leading to non-optimal binding of CHL and to changes in the structure of the oxygen channel, all of which are likely to reduce the catalytic efficiency of ChOx. Proteins 2017; 85:1645-1655. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laith Hisham Harb
- School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA, 6845, Australia
| | - Mahreen Arooj
- School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA, 6845, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, 6009, Australia
| | - Ricardo L Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
19
|
Perinbam K, Balaram H, Guru Row TN, Gopal B. Probing the influence of non-covalent contact networks identified by charge density analysis on the oxidoreductase BacC. Protein Eng Des Sel 2017; 30:265-272. [DOI: 10.1093/protein/gzx006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/20/2017] [Indexed: 01/15/2023] Open
|
20
|
An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Sci Rep 2017; 7:40517. [PMID: 28098177 PMCID: PMC5241826 DOI: 10.1038/srep40517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.
Collapse
|
21
|
Kamala K, Sivaperumal P. Biomedical Applications of Enzymes From Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 80:107-123. [PMID: 28215321 DOI: 10.1016/bs.afnr.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described.
Collapse
Affiliation(s)
- K Kamala
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India.
| | - P Sivaperumal
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India
| |
Collapse
|
22
|
Vonck J, Parcej DN, Mills DJ. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLoS One 2016; 11:e0159476. [PMID: 27458710 PMCID: PMC4961394 DOI: 10.1371/journal.pone.0159476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023] Open
Abstract
The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- * E-mail:
| | - David N. Parcej
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
23
|
N-H···N Hydrogen Bonds Involving Histidine Imidazole Nitrogen Atoms: A New Structural Role for Histidine Residues in Proteins. Biochemistry 2016; 55:3774-83. [PMID: 27305350 DOI: 10.1021/acs.biochem.6b00253] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amino acid histidine can play a significant role in the structure and function of proteins. Its various functions include enzyme catalysis, metal binding activity, and involvement in cation-π, π-π, salt-bridge, and other types of noncovalent interactions. Although histidine's imidazole nitrogens (Nδ and Nε) are known to participate in hydrogen bond (HB) interactions as an acceptor or a donor, a systematic study of N-H···N HBs with the Nδ/Nε atom as the acceptor has not been conducted. In this study, we have examined two data sets of ultra-high-resolution (data set I) and very high-resolution (data set II) protein structures and identified 28 and 4017 examples of HBs of the N-H···Nδ/Nε type from both data sets involving histidine imidazole nitrogen as the acceptor. In nearly 70% of them, the main-chain N-H bond is the HB donor, and a majority of the examples are from the N-H group separated by two residues (Ni+2-Hi+2) from histidine. Quantum chemical calculations using model compounds were performed with imidazole and N-methylacetamide, and they assumed conformations from 19 examples from data set I with N-H···Nδ/Nε HBs. Basis set superposition error-corrected interaction energies varied from -5.0 to -6.78 kcal/mol. We also found that the imidazole nitrogen of 9% of histidine residues forming N-H···Nδ/Nε interactions in data set II participate in bifurcated HBs. Natural bond orbital analyses of model compounds indicate that the strength of each HB is mutually influenced by the other. Histidine residues involved in Ni+2-Hi+2···Nδi/Nεi HBs are frequently observed in a specific N-terminal capping position giving rise to a novel helix-capping motif. Along with their predominant occurrence in loop segments, we propose a new structural role for histidines in protein structures.
Collapse
|
24
|
Protein engineering of microbial cholesterol oxidases: a molecular approach toward development of new enzymes with new properties. Appl Microbiol Biotechnol 2016; 100:4323-36. [DOI: 10.1007/s00253-016-7497-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
25
|
Yoshida H, Sakai G, Mori K, Kojima K, Kamitori S, Sode K. Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci Rep 2015; 5:13498. [PMID: 26311535 PMCID: PMC4642536 DOI: 10.1038/srep13498] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
Abstract
We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa University, Kagawa 761-0793, Japan
| | - Genki Sakai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazushige Mori
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan
| | - Katsuhiro Kojima
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa University, Kagawa 761-0793, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.,Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan
| |
Collapse
|
26
|
Golden E, Attwood PV, Duff AP, Meilleur F, Vrielink A. Production and characterization of recombinant perdeuterated cholesterol oxidase. Anal Biochem 2015; 485:102-8. [PMID: 26073659 DOI: 10.1016/j.ab.2015.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Cholesterol oxidase (CO) is a FAD (flavin adenine dinucleotide) containing enzyme that catalyzes the oxidization and isomerization of cholesterol. Studies directed toward elucidating the catalytic mechanism of CO will provide an important general understanding of Flavin-assisted redox catalysis. Hydrogen atoms play an important role in enzyme catalysis; however, they are not readily visualized in protein X-ray diffraction structures. Neutron crystallography is an ideal method for directly visualizing hydrogen positions at moderate resolutions because hydrogen and deuterium have comparable neutron scattering lengths to other heavy atoms present in proteins. The negative coherent and large incoherent scattering lengths of hydrogen atoms in neutron diffraction experiments can be circumvented by replacing hydrogen atoms with its isotope, deuterium. The perdeuterated form of CO was successfully expressed from minimal medium, purified, and crystallized. X-ray crystallographic structures of the enzyme in the perdeuterated and hydrogenated states confirm that there are no apparent structural differences between the two enzyme forms. Kinetic assays demonstrate that perdeuterated and hydrogenated enzymes are functionally identical. Together, structural and functional studies indicate that the perdeuterated protein is suitable for structural studies by neutron crystallography directed at understanding the role of hydrogen atoms in enzyme catalysis.
Collapse
Affiliation(s)
- Emily Golden
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Paul V Attwood
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Anthony P Duff
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
27
|
Zarychta B, Lyubimov A, Ahmed M, Munshi P, Guillot B, Vrielink A, Jelsch C. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis. ACTA ACUST UNITED AC 2015; 71:954-68. [PMID: 25849405 DOI: 10.1107/s1399004715002382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022]
Abstract
Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.
Collapse
Affiliation(s)
- Bartosz Zarychta
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| | - Artem Lyubimov
- Howard Hughes Medical Institute, Stanford, CA 94305-5432, USA
| | - Maqsood Ahmed
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| | - Parthapratim Munshi
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| | - Benoît Guillot
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christian Jelsch
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| |
Collapse
|
28
|
Ferreira P, Hernández-Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT, Medina M. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J 2015; 282:3091-106. [PMID: 25639975 DOI: 10.1111/febs.13221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/10/2015] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Aryl-alcohol oxidase (AAO, EC 1.1.3.7) generates H2 O2 for lignin degradation at the expense of benzylic and other π system-containing primary alcohols, which are oxidized to the corresponding aldehydes. Ligand diffusion studies on Pleurotus eryngii AAO showed a T-shaped stacking interaction between the Tyr92 side chain and the alcohol substrate at the catalytically competent position for concerted hydride and proton transfers. Bi-substrate kinetics analysis revealed that reactions with 3-chloro- or 3-fluorobenzyl alcohols (halogen substituents) proceed via a ping-pong mechanism. However, mono- and dimethoxylated substituents (in 4-methoxybenzyl and 3,4-dimethoxybenzyl alcohols) altered the mechanism and a ternary complex was formed. Electron-withdrawing substituents resulted in lower quantum mechanics stacking energies between aldehyde and the tyrosine side chain, contributing to product release, in agreement with the ping-pong mechanism observed in 3-chloro- and 3-fluorobenzyl alcohol kinetics analysis. In contrast, the higher stacking energies when electron donor substituents are present result in reaction of O2 with the flavin through a ternary complex, in agreement with the kinetics of methoxylated alcohols. The contribution of Tyr92 to the AAO reaction mechanism was investigated by calculation of stacking interaction energies and site-directed mutagenesis. Replacement of Tyr92 by phenylalanine does not alter the AAO kinetic constants (on 4-methoxybenzyl alcohol), most probably because the stacking interaction is still possible. However, introduction of a tryptophan residue at this position strongly reduced the affinity for the substrate (i.e. the pre-steady state Kd and steady-state Km increase by 150-fold and 75-fold, respectively), and therefore the steady-state catalytic efficiency, suggesting that proper stacking is impossible with this bulky residue. The above results confirm the role of Tyr92 in substrate binding, thus governing the kinetic mechanism in AAO.
Collapse
Affiliation(s)
- Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| | - Aitor Hernández-Ortega
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fátima Lucas
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Herguedas
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| | - Kenneth W Borrelli
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Victor Guallar
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| |
Collapse
|
29
|
Golden E, Karton A, Vrielink A. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. ACTA ACUST UNITED AC 2014; 70:3155-66. [PMID: 25478834 DOI: 10.1107/s139900471402286x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023]
Abstract
Cholesterol oxidase (CO) is a flavoenzyme that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The reductive half reaction occurs via a hydride transfer from the substrate to the FAD cofactor. The structures of CO reduced with dithionite under aerobic conditions and in the presence of the substrate 2-propanol under both aerobic and anaerobic conditions are presented. The 1.32 Å resolution structure of the dithionite-reduced enzyme reveals a sulfite molecule covalently bound to the FAD cofactor. The isoalloxazine ring system displays a bent structure relative to that of the oxidized enzyme, and alternate conformations of a triad of aromatic residues near to the cofactor are evident. A 1.12 Å resolution anaerobically trapped reduced enzyme structure in the presence of 2-propanol does not show a similar bending of the flavin ring system, but does show alternate conformations of the aromatic triad. Additionally, a significant difference electron-density peak is observed within a covalent-bond distance of N5 of the flavin moiety, suggesting that a hydride-transfer event has occurred as a result of substrate oxidation trapping the flavin in the electron-rich reduced state. The hydride transfer generates a tetrahedral geometry about the flavin N5 atom. High-level density-functional theory calculations were performed to correlate the crystallographic findings with the energetics of this unusual arrangement of the flavin moiety. These calculations suggest that strong hydrogen-bond interactions between Gly120 and the flavin N5 centre may play an important role in these structural features.
Collapse
Affiliation(s)
- Emily Golden
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
30
|
Linke K, Ho FM. Water in Photosystem II: Structural, functional and mechanistic considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:14-32. [DOI: 10.1016/j.bbabio.2013.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/30/2022]
|
31
|
Murakawa T, Hayashi H, Sunami T, Kurihara K, Tamada T, Kuroki R, Suzuki M, Tanizawa K, Okajima T. High-resolution crystal structure of copper amine oxidase fromArthrobacter globiformis: assignment of bound diatomic molecules as O2. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2483-94. [DOI: 10.1107/s0907444913023196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/18/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of a copper amine oxidase fromArthrobacter globiformiswas determined at 1.08 Å resolution with the use of low-molecular-weight polyethylene glycol (LMW PEG; average molecular weight ∼200) as a cryoprotectant. The final crystallographicRfactor andRfreewere 13.0 and 15.0%, respectively. Several molecules of LMW PEG were found to occupy cavities in the protein interior, including the active site, which resulted in a marked reduction in the overallBfactor and consequently led to a subatomic resolution structure for a relatively large protein with a monomer molecular weight of ∼70 000. About 40% of the presumed H atoms were observed as clear electron densities in theFo−Fcdifference map. Multiple minor conformers were also identified for many residues. Anisotropic displacement fluctuations were evaluated in the active site, which contains a post-translationally derived quinone cofactor and a Cu atom. Furthermore, diatomic molecules, most likely to be molecular oxygen, are bound to the protein, one of which is located in a region that had previously been proposed as an entry route for the dioxygen substrate from the central cavity of the dimer interface to the active site.
Collapse
|
32
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
33
|
Frankel LK, Sallans L, Bellamy H, Goettert JS, Limbach PA, Bricker TM. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem. J Biol Chem 2013; 288:23565-72. [PMID: 23814046 DOI: 10.1074/jbc.m113.487033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.
Collapse
Affiliation(s)
- Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J 2013; 280:3009-27. [DOI: 10.1111/febs.12280] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Thanyaporn Wongnate
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| |
Collapse
|
35
|
Kojima K, Kobayashi T, Tsugawa W, Ferri S, Sode K. Mutational analysis of the oxygen-binding site of cholesterol oxidase and its impact on dye-mediated dehydrogenase activity. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Horaguchi Y, Saito S, Kojima K, Tsugawa W, Ferri S, Sode K. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity. Int J Mol Sci 2012. [PMID: 23203056 PMCID: PMC3509572 DOI: 10.3390/ijms131114149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.
Collapse
Affiliation(s)
- Yohei Horaguchi
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan; E-Mails: (Y.H.); (S.S.); (W.T.); (S.F.)
| | - Shoko Saito
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan; E-Mails: (Y.H.); (S.S.); (W.T.); (S.F.)
| | - Katsuhiro Kojima
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; E-Mail:
| | - Wakako Tsugawa
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan; E-Mails: (Y.H.); (S.S.); (W.T.); (S.F.)
| | - Stefano Ferri
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan; E-Mails: (Y.H.); (S.S.); (W.T.); (S.F.)
| | - Koji Sode
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan; E-Mails: (Y.H.); (S.S.); (W.T.); (S.F.)
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-42-388-7027
| |
Collapse
|
37
|
Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Role of Active Site Histidines in the Two Half-Reactions of the Aryl-Alcohol Oxidase Catalytic Cycle. Biochemistry 2012; 51:6595-608. [DOI: 10.1021/bi300505z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Fátima Lucas
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Patricia Ferreira
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Victor Guallar
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040
Madrid, Spain
| |
Collapse
|
38
|
Pietra F. Molecular-Dynamics Simulation of Dioxygen Egress from 12/15-LipoxygenaseArachidonic Acid Complex. Chem Biodivers 2012; 9:1019-32. [DOI: 10.1002/cbdv.201100305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 2012; 5:679-99. [PMID: 22309478 PMCID: PMC3815891 DOI: 10.1111/j.1751-7915.2012.00331.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.
Collapse
Affiliation(s)
- J L García
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
40
|
Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 2012; 93:1395-410. [DOI: 10.1007/s00253-011-3836-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022]
|
41
|
Viswanathan S, Li P, Choi W, Filipek S, Balasubramaniam TA, Renugopalakrishnan V. Protein-carbon nanotube sensors: single platform integrated micro clinical lab for monitoring blood analytes. Methods Enzymol 2012; 509:165-94. [PMID: 22568906 DOI: 10.1016/b978-0-12-391858-1.00010-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Design of a unique, single-platform, integrated, multichannel sensor based on carbon nanotube (CNT)-protein adducts specific to each one of the major analytes of blood, glucose, cholesterol, triglyceride, and Hb1AC is presented. The concept underlying the sensor, amperometric detection, is applicable to various disease-monitoring strategies. There is an urgent need to enhance the sensitivity of glucometers to <5% level instead of greater than the present 15% standard in these detectors. CNTs enhance the signals derived from the interaction of the enzymes with the different analytes in blood. Fabricated sensors using the new methodology is a point-of-care device that is targeted for home, clinical, and emergency use and can be redesigned for continuous monitoring for critical care patients.
Collapse
Affiliation(s)
- Sowmya Viswanathan
- Newton-Wellesley Hospital/Partners Healthcare System, Newton, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Wongnate T, Sucharitakul J, Chaiyen P. Identification of a Catalytic Base for Sugar Oxidation in the Pyranose 2-Oxidase Reaction. Chembiochem 2011; 12:2577-86. [DOI: 10.1002/cbic.201100564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Indexed: 11/10/2022]
|
44
|
Kallio JP, Rouvinen J, Kruus K, Hakulinen N. Probing the dioxygen route in Melanocarpus albomyces laccase with pressurized xenon gas. Biochemistry 2011; 50:4396-8. [PMID: 21524088 DOI: 10.1021/bi200486b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laccases catalyze the oxidation of phenolic substrates and the concominant reduction of dioxygen to water. We used xenon as an oxygen probe in search of routes for the entry of dioxygen into the catalytic center. Two xenon-pressurized crystal structures of recombinant Melanocarpus albomyces laccase were determined, showing three hydrophobic Xe-binding sites located in domain C. The analysis of hydrophobic cavities in other laccase structures further suggested the preference of domain C for binding of hydrophobic species such as dioxygen, thus suggesting that the hydrophobic core of domain C could function as a channel through which dioxygen can enter the trinuclear copper center.
Collapse
Affiliation(s)
- Juha P Kallio
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | | | | | | |
Collapse
|
45
|
Lautier T, Ezanno P, Baffert C, Fourmond V, Cournac L, Fontecilla-Camps JC, Soucaille P, Bertrand P, Meynial-Salles I, Léger C. The quest for a functional substrate access tunnel in FeFe hydrogenase. Faraday Discuss 2011; 148:385-407; discussion 421-41. [DOI: 10.1039/c004099c] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Nagel ZD, Klinman JP. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 2010; 110:PR41-67. [PMID: 21141912 PMCID: PMC4067601 DOI: 10.1021/cr1001035] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zachary D. Nagel
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| | - Judith P. Klinman
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| |
Collapse
|
47
|
Maeda Y, Doubayashi D, Ootake T, Oki M, Mikami B, Uchida H. Crystallization and preliminary X-ray analysis of formate oxidase, an enzyme of the glucose-methanol-choline oxidoreductase family. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1064-6. [PMID: 20823527 DOI: 10.1107/s1744309110028605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/17/2010] [Indexed: 05/26/2023]
Abstract
Formate oxidase (FOD), which catalyzes the oxidation of formate to yield carbon dioxide and hydrogen peroxide, belongs to the glucose-methanol-choline oxidoreductase (GMCO) family. FOD from Aspergillus oryzae RIB40, which has a modified FAD as a cofactor, was crystallized at 293 K by the hanging-drop vapour-diffusion method. The crystal was orthorhombic and belonged to space group C222(1). Diffraction data were collected from a single crystal to 2.4 A resolution.
Collapse
Affiliation(s)
- Yoshifumi Maeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1 Bunkyo 3-chome, Fukui-shi 910-8507, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The binding states of the substrates and the environment have significant influence on protein motion. We present the analysis of such motion derived from anisotropic atomic displacement parameters (ADPs) in a set of atomic resolution protein structures. Local structural motion caused by ligand binding as well as functional loops showing cooperative patterns of motion could be inferred. The results are in line with proposed protonation states, hydrogen bonding patterns and the location of distinctly flexible regions: we could locate the mobile active site loop in a virus integrase, distinguish the subdomains in RNAse A and hydroxynitrile lyase, and reconstruct the molecular architecture in a xylanase. We demonstrate that the ADP-based motion analysis provides information at high level of detail and that the structural changes needed for substrate attachment or release may be derived from single X-ray structures.
Collapse
Affiliation(s)
- Andrea Schmidt
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | |
Collapse
|
49
|
Abstract
Cholesterol oxidase is a bacterial-specific flavoenzyme that catalyzes the oxidation and isomerisation of steroids containing a 3beta hydroxyl group and a double bond at the Delta5-6 of the steroid ring system. The enzyme is a member of a large family of flavin-specific oxidoreductases and is found in two different forms: one where the flavin adenine dinucleotide (FAD) cofactor is covalently linked to the protein and one where the cofactor is non-covalently bound to the protein. These two enzyme forms have been extensively studied in order to gain insight into the mechanism of flavin-mediated oxidation and the relationship between protein structure and enzyme redox potential. More recently the enzyme has been found to play an important role in bacterial pathogenesis and hence further studies are focused on its potential use for future development of novel antibacterial therapeutic agents. In this review the biochemical, structural, kinetic and mechanistic features of the enzyme are discussed.
Collapse
|
50
|
Kaushik A, Solanki P, Kaneto K, Kim C, Ahmad S, Malhotra B. Nanostructured Iron Oxide Platform for Impedimetric Cholesterol Detection. ELECTROANAL 2010. [DOI: 10.1002/elan.200900468] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|