1
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
2
|
Kum SL, Ho JCS, Parikh AN, Liedberg B. Amphiphilic Membrane Environments Regulate Enzymatic Behaviors of Salmonella Outer Membrane Protease. ACS BIO & MED CHEM AU 2022; 2:73-83. [PMID: 37102179 PMCID: PMC10114716 DOI: 10.1021/acsbiomedchemau.1c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The role of an amphiphilic environment in the functional regulation of integral membrane proteins is well appreciated but how specific amphiphilic surrounding influences the conformational plasticity and function of a protein is less obvious. We focus on the Salmonella phosphoglycerate transport system (pgt)-encoded outer membrane protease E (PgtE), which plays an important role in tissue infiltration and survival of Salmonella enterica. Despite our understanding of its physiological functions, elucidation of its enzymatic behavior in response to the immediate amphiphilic surrounding is lacking. We monitor the proteolytic activity of PgtE reconstituted in Zwittergent 3-12 detergent micelles or a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer and examine factors that influence its activity. We find, to our surprise, that PgtE, which is thought to elicit a rapid response toward various substrates, showed hysteretic enzymatic behavior, characterized by a prominent lag phase prior to achieving the exponential steady state in its detergent-stabilized form as well as in the outer membrane embedded native state in live bacteria. The lag phase was abolished under three conditions: preformation of an inactive detergent-stabilized PgtE-substrate complex without lipopolysaccharide (LPS), LPS-bound detergent-stabilized PgtE that had reached steady state velocity, or PgtE reconstituted into a POPC bilayer environment. Interestingly, detergent- and bilayer-stabilized PgtE showed comparable steady-state activity. And strikingly, lipopolysaccharide (LPS) becomes nonessential for the activation of PgtE when the protein is reconstituted in the phospholipid bilayer, contrasting a long-standing notion that LPS is required for proteases belonging to the omptin family to be proteolytically active. These findings suggest intriguing biological nuances for the proteolytic function of PgtE that were not well appreciated previously and offer new perspectives that may generally be applicable for omptins.
Collapse
Affiliation(s)
- Siau Ling Kum
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
| | - James C. S. Ho
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
| | - Atul N. Parikh
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
- Department of Chemistry and Department of
Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Bo Liedberg
- Centre
for Biomimetic Sensor Science, Nanyang Technological
University, 50 Nanyang Drive, 637553 Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Ave, 639798 Singapore
| |
Collapse
|
3
|
Ardalan A, Sowlati-Hashjin S, Uwumarenogie SO, Fish M, Mitchell J, Karttunen M, Smith MD, Jelokhani-Niaraki M. Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. J Phys Chem B 2020; 125:169-183. [PMID: 33373220 DOI: 10.1021/acs.jpcb.0c09422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stoichiometry of uncoupling proteins (UCPs) and their coexistence as functional monomeric and associated forms in lipid membranes remain intriguing open questions. In this study, tertiary and quaternary structures of UCP2 were analyzed experimentally and through molecular dynamics (MD) simulations. UCP2 was overexpressed in the inner membrane of Escherichia coli, then purified and reconstituted in lipid vesicles. Structure and proton transport function of UCP2 were characterized by circular dichroism (CD) spectroscopy and fluorescence methods. Findings suggest a tetrameric functional form for UCP2. MD simulations conclude that tetrameric UCP2 is a dimer of dimers, is more stable than its monomeric and dimeric forms, is asymmetrical and induces asymmetry in the membrane's lipid structure, and a biphasic on-off switch between the dimeric units is its possible mode of transport. MD simulations also show that the water density inside the UCP2 monomer is asymmetric, with the cytoplasmic side having a higher water density and a wider radius. In contrast, the structurally comparable adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier (AAC1) did not form tetramers, implying that tetramerization cannot be generalized to all mitochondrial carriers.
Collapse
Affiliation(s)
- Afshan Ardalan
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7
| | - Stephanie O Uwumarenogie
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Michael Fish
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5.,Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Joel Mitchell
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7.,Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
4
|
Kargar F, Emadi S, Fazli H. Dimerization of Aβ40 inside dipalmitoylphosphatidylcholine bilayer and its effect on bilayer integrity: Atomistic simulation at three temperatures. Proteins 2020; 88:1540-1552. [PMID: 32557766 DOI: 10.1002/prot.25972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/28/2020] [Accepted: 06/07/2020] [Indexed: 11/10/2022]
Abstract
Amyloid-beta (Aβ) protein is related to Alzheimer disease (AD), and various experiments have shown that oligomers as small as dimers are cytotoxic. Recent studies have concluded that interactions of Aβ with neuronal cell membranes lead to disruption of membrane integrity and toxicity and they play a key role in the development of AD. Molecular dynamics (MD) simulations have been used to investigate Aβ in aqueous solution and membranes. We have previously studied monomeric Aβ40 embedded in dipalmitoylphosphatidylcholine (DPPC) membrane using MD simulations. Here, we explore interactions of two Aβ40 peptides in DPPC bilayer and its consequences on dimer distribution in a lipid bilayer and on the secondary structure of the peptides. We explored that N-terminals played an important role in dimeric Aβ peptide aggregations and Aβ-bilayer interactions, while C-terminals bound peptides to bilayer like anchors. We did not observe exiting of peptides in our simulations although we observed insertion of peptides into the core of bilayer in some of our simulations. So it seems that the presence of Aβ on membrane surface increases its aggregation rate, and as diffusion occurs in two dimensions, it can increase the probability of interpeptide interactions. We found that dimeric Aβ, like monomeric one, had the ability to cause structural destabilization of DPPC membrane, which in turn might ultimately lead to cell death in an in vivo system. This information could have important implications for understanding the affinity of Aβ oligomers (here dimer) for membranes and the mechanism of Aβ oligomer toxicity in AD.
Collapse
Affiliation(s)
- Faezeh Kargar
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Saeed Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Hossein Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
5
|
Mori T, Sugita Y. Implicit Micelle Model for Membrane Proteins Using Superellipsoid Approximation. J Chem Theory Comput 2019; 16:711-724. [DOI: 10.1021/acs.jctc.9b00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
6
|
Smeddle GM, Bruce Macdonald HE, Essex JW, Khalid S. Prediction of the Closed Conformation and Insights into the Mechanism of the Membrane Enzyme LpxR. Biophys J 2018; 115:1445-1456. [PMID: 30287112 PMCID: PMC6260217 DOI: 10.1016/j.bpj.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Covalent modification of outer membrane lipids of Gram-negative bacteria can impact the ability of the bacterium to develop resistance to antibiotics as well as modulating the immune response of the host. The enzyme LpxR from Salmonella typhimurium is known to deacylate lipopolysaccharide molecules of the outer membrane; however, the mechanism of action is unknown. Here, we employ molecular dynamics and Monte Carlo simulations to study the conformational dynamics and substrate binding of LpxR in representative outer membrane models as well as detergent micelles. We examine the roles of conserved residues and provide an understanding of how LpxR binds its substrate. Our simulations predict that the catalytic H122 must be Nε-protonated for a single water molecule to occupy the space between it and the scissile bond, with a free binding energy of -8.5 kcal mol-1. Furthermore, simulations of the protein within a micelle enable us to predict the structure of the putative "closed" protein. Our results highlight the need for including dynamics, a representative environment, and the consideration of multiple tautomeric and rotameric states of key residues in mechanistic studies; static structures alone do not tell the full story.
Collapse
Affiliation(s)
- Graham M Smeddle
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | - Jonathan W Essex
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
7
|
Direct observation of multiple conformational states in Cytochrome P450 oxidoreductase and their modulation by membrane environment and ionic strength. Sci Rep 2018; 8:6817. [PMID: 29717147 PMCID: PMC5931563 DOI: 10.1038/s41598-018-24922-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is the primary electron donor in eukaryotic cytochrome P450 (CYP) containing systems. A wealth of ensemble biophysical studies of Cytochrome P450 oxidoreductase (POR) has reported a binary model of the conformational equilibrium directing its catalytic efficiency and biomolecular recognition. In this study, full length POR from the crop plant Sorghum bicolor was site-specifically labeled with Cy3 (donor) and Cy5 (acceptor) fluorophores and reconstituted in nanodiscs. Our single molecule fluorescence resonance energy transfer (smFRET) burst analyses of POR allowed the direct observation and quantification of at least three dominant conformational sub-populations, their distribution and occupancies. Moreover, the state occupancies were remodeled significantly by ionic strength and the nature of reconstitution environment, i.e. phospholipid bilayers (nanodiscs) composed of different lipid head group charges vs. detergent micelles. The existence of conformational heterogeneity in POR may mediate selective activation of multiple downstream electron acceptors and association in complexes in the ER membrane.
Collapse
|
8
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
9
|
Jalily Hasani H, Ahmed M, Barakat K. A comprehensive structural model for the human KCNQ1/KCNE1 ion channel. J Mol Graph Model 2017; 78:26-47. [PMID: 28992529 DOI: 10.1016/j.jmgm.2017.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The voltage-gated KCNQ1/KCNE1 potassium ion channel complex, forms the slow delayed rectifier (IKs) current in the heart, which plays an important role in heart signaling. The importance of KCNQ1/KCNE1 channel's function is further implicated by the linkage between loss-of-function and gain-of-function mutations in KCNQ1 or KCNE1, and long QT syndromes, congenital atrial fibrillation, and short QT syndrome. Also, KCNQ1/KCNE1 channels are an off-target for many non-cardiovascular drugs, leading to fatal cardiac irregularities. One solution to address and study the mentioned aspects of KCNQ1/KNCE1 channel would be the structural studies using a validated and accurate model. Along the same line in this study, we have used several top-notch modeling approaches to build a structural model for the open state of KCNQ1 protein, which is both accurate and compatible with available experimental data. Next, we included the KCNE1 protein components using data-driven protein-protein docking simulations, encompassing a 4:2 stoichiometry to complete the picture of the channel complex formed by these two proteins. All the protein systems generated through these processes were refined by long Molecular Dynamics simulations. The refined models were analyzed extensively to infer data about the interaction of KCNQ1 channel with its accessory KCNE1 beta subunits.
Collapse
Affiliation(s)
- Horia Jalily Hasani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Kargar F, Emadi S, Fazli H. The molecular behavior of a single β-amyloid inside a dipalmitoylphosphatidylcholine bilayer at three different temperatures: An atomistic simulation study: Aβ interaction with DPPC: Atomistic simulation. Proteins 2017; 85:1298-1310. [PMID: 28342211 DOI: 10.1002/prot.25290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/29/2023]
Abstract
The behavior of a single Aβ40 molecule within a dipalmitoylphosphatidylcholine (DPPC) bilayer was studied by all-atom molecular dynamics simulations. The effect of membrane structure was investigated on Aβ40 behavior, secondary structure, and insertion depth. Simulations were performed at three temperatures (323, 310, and 300 K) to probe three different bilayer fluidities. Results show that at all above temperatures, the peptide contains two short helices, coil, bend, and turn structures. At 300 K, the peptide contains a region with β structure in C-terminal region. Our results also show that Aβ decreases the bilayer thickness and the order of lipids in its vicinity which leads to water insertion into the bilayer and concomitant increase in the local fluidity. The peptide remains embedded in the bilayer at all temperatures, and become inserted into the bilayer up to several residues at 323 and 310 K. At 310 and 300 K, the dominant interaction energy between Aβ and bilayer changes from electrostatic to van der Waals. It can be proposed that at higher temperatures (e.g., 323 K), Lys28 and the C-terminal region of the peptide play the role of two anchors that keep Aβ inside the top leaflet. This study demonstrates that Aβ molecule can perturb the integrity of cellular membranes. Proteins 2017; 85:1298-1310. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Faezeh Kargar
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Saeed Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Hossein Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.,Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
11
|
Pothula KR, Dhanasekar NN, Lamichhane U, Younas F, Pletzer D, Benz R, Winterhalter M, Kleinekathöfer U. Single Residue Acts as Gate in OccK Channels. J Phys Chem B 2017; 121:2614-2621. [DOI: 10.1021/acs.jpcb.7b01787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Karunakar R. Pothula
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Naresh N. Dhanasekar
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Usha Lamichhane
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Farhan Younas
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Daniel Pletzer
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Roland Benz
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Winterhalter
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
12
|
Dojčilović R, Pajović JD, Božanić DK, Vodnik VV, Dimitrijević-Branković S, Milosavljević AR, Kaščàkovà S, Réfrégiers M, Djoković V. A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. Analyst 2017; 141:1988-96. [PMID: 26858997 DOI: 10.1039/c5an02358k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the interaction of silver nanoparticles and live bacteria cells is of particular importance for understanding and controlling their bactericidal properties. In this study, the process of internalization of silver nanoparticles in Escherichia coli cells was followed by means of synchrotron excitation deep ultraviolet (DUV) fluorescence imaging. Antimicrobial nanostructures that can absorb and emit light in the UV region were prepared by functionalization of silver nanoparticles with tryptophan amino acid and used as environmentally sensitive fluorescent probes. The nanostructures were characterized by morphological (TEM) and spectroscopic methods (UV-vis, FTIR, XPS, and photoluminescence). The TEM images and the analyses of the UV-vis spectra suggested that the addition of tryptophan led to the formation of hybrid nanostructures with pronounced eccentricity and larger sizes with respect to that of the initial silver nanoparticles. The DUV imaging showed that it was possible to distinguish the fluorescent signal pertaining to silver-tryptophan nanostructures from the autofluorescence of the bacteria. The spatial resolution of the fluorescence images was 154 nm which was sufficient to perform analyses of the accumulation of the nanostructures within a single bacterium. The DUV imaging results imply that the tryptophan-functionalized silver nanoparticles interact with cell membranes via insertion of the amino acid into the phospholipid bilayer and enter the cells.
Collapse
Affiliation(s)
- R Dojčilović
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia.
| | - J D Pajović
- University of Belgrade, Faculty of Physics, P.O. Box 368, 11001 Belgrade, Serbia
| | - D K Božanić
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia.
| | - V V Vodnik
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia.
| | - S Dimitrijević-Branković
- University of Belgrade, Department of Bioengineering and Biotechnology, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - A R Milosavljević
- University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - S Kaščàkovà
- University Paris-Sud 11, UMR-S785, F-94800 Villejuif, France and Inser U785, F-94800 Villejuif, France
| | - M Réfrégiers
- DISCO Beamline, Synchrotron SOLEIL, F-91192 Gif sur Yvette, France
| | - V Djoković
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia.
| |
Collapse
|
13
|
Hung HM, Nguyen VP, Ngo ST, Nguyen MT. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer. Biophys Chem 2016; 217:1-7. [DOI: 10.1016/j.bpc.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/16/2016] [Accepted: 07/16/2016] [Indexed: 01/22/2023]
|
14
|
Lu Y, Zhang H, Niedzwiedzki DM, Jiang J, Blankenship RE, Gross ML. Fast Photochemical Oxidation of Proteins Maps the Topology of Intrinsic Membrane Proteins: Light-Harvesting Complex 2 in a Nanodisc. Anal Chem 2016; 88:8827-34. [PMID: 27500903 PMCID: PMC5201186 DOI: 10.1021/acs.analchem.6b01945] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although membrane proteins are crucial participants in photosynthesis and other biological processes, many lack high-resolution structures. Prior to achieving a high-resolution structure, we are investigating whether MS-based footprinting can provide coarse-grained protein structure by following structural changes that occur upon ligand binding, pH change, and membrane binding. Our platform probes topology and conformation of membrane proteins by combining MS-based footprinting, specifically fast photochemical oxidation of proteins (FPOP), and lipid Nanodiscs, which are more similar to the native membrane environment than are the widely used detergent micelles. We describe here results that show a protein's outer membrane regions are more heavily footprinted by OH radicals whereas the regions spanning the lipid bilayer remain inert to the labeling. Nanodiscs generally exhibit more protection of membrane proteins compared to detergent micelles and less shielding to those protein residues that exist outside the membrane. The combination of immobilizing the protein in Nanodiscs and footprinting with FPOP is a feasible approach to map extra-membrane protein surfaces, even at the amino-acid level, and to illuminate intrinsic membrane protein topology.
Collapse
Affiliation(s)
- Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jing Jiang
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Parkin J, Chavent M, Khalid S. Molecular Simulations of Gram-Negative Bacterial Membranes: A Vignette of Some Recent Successes. Biophys J 2016; 109:461-8. [PMID: 26244728 DOI: 10.1016/j.bpj.2015.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/05/2023] Open
Abstract
In the following review we use recent examples from the literature to discuss progress in the area of atomistic and coarse-grained molecular dynamics simulations of selected bacterial membranes and proteins, with a particular focus on Gram-negative bacteria. As structural biology continues to provide increasingly high-resolution data on the proteins that reside within these membranes, simulations have an important role to play in linking these data with the dynamical behavior and function of these proteins. In particular, in the last few years there has been significant progress in addressing the issue of biochemical complexity of bacterial membranes such that the heterogeneity of the lipid and protein components of these membranes are now being incorporated into molecular-level models. Thus, in future we can look forward to complementary data from structural biology and molecular simulations combining to provide key details of structure-dynamics-function relationships in bacterial membranes.
Collapse
Affiliation(s)
- Jamie Parkin
- School of Chemistry, University of Southampton, Southampton, UK
| | | | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK.
| |
Collapse
|
16
|
Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 2016; 32:139-55. [DOI: 10.3109/09687688.2015.1125536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan,
| | - Gary S. Thompson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | | |
Collapse
|
17
|
Bocharov EV, Lesovoy DM, Pavlov KV, Pustovalova YE, Bocharova OV, Arseniev AS. Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1254-61. [PMID: 26903218 DOI: 10.1016/j.bbamem.2016.02.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The human epidermal growth factor receptor (EGFR) of HER/ErbB receptor tyrosine kinase family mediates a broad spectrum of cellular responses transducing biochemical signals via lateral dimerization in plasma membrane, while inactive receptors can exist in both monomeric and dimeric forms. Recently, the dimeric conformation of the helical single-span transmembrane domains of HER/ErbB employing the relatively polar N-terminal motifs in a fashion permitting proper kinase activation was experimentally determined. Here we describe the EGFR transmembrane domain dimerization via an alternative weakly polar C-terminal motif A(661)xxxG(665) presumably corresponding to the inactive receptor state. During association, the EGFR transmembrane helices undergo a structural adjustment with adaptation of inter-molecular polar and hydrophobic interactions depending upon the surrounding membrane properties that directly affect the transmembrane helix packing. This might imply that signal transduction through membrane and allosteric regulation are inclusively mediated by coupled protein-protein and protein-lipid interactions, elucidating paradoxically loose linkage between ligand binding and kinase activation.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
| | - Dmitry M Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Yulia E Pustovalova
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Olga V Bocharova
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Alexander S Arseniev
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
18
|
Abstract
The recognition of β-barrel membrane proteins based on their sequence is more challenging than the recognition of α-helical membrane proteins. This goal could benefit from a better understanding of the physical determinants of transmembrane β-barrel structure. To that end, we first extend the IMM1 implicit membrane model in a way that allows the modeling of membrane proteins with an internal aqueous pore. The new model (IMM1-pore) gives stable molecular dynamics trajectories for three β-barrel membrane proteins of different sizes and negative water-to-membrane transfer energies of reasonable magnitude. It also discriminates the correct fold for a pair of 10-stranded and 12-stranded transmembrane β-barrels. We then consider a pair of β-barrel proteins: OmpA, which is a membrane β-barrel with hydrophobic residues on the exterior and polar residues in the interior, and retinol binding protein, which is a water soluble protein with polar residues on the exterior and hydrophobic residues in the interior. By threading the sequence of one onto the structure of the other we make two pairs of structures for each sequence, one native and the other a decoy, and evaluate their energy. The energy function discriminates the correct structure. By decomposing the energy into residue contributions we examine which features of each sequence make it fold into one or the other structure. It is found that for the OmpA sequence the largest contribution to stability comes from interactions between polar residues in the interior of the barrel. The major factor that prevents the retinol binding protein sequence from adopting a transmembrane fold is the presence of polar/charged residues at the edges of the putative transmembrane β-strands as well as the less favorable interior polar residue interactions. These results could help design simplified scoring functions for fold recognition and structure prediction of transmembrane β-barrels.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY, 138th Street & Convent Avenue, New York, New York 10031
| |
Collapse
|
19
|
Rice AJ, Alvarez FJD, Davidson AL, Pinkett HW. Effects of lipid environment on the conformational changes of an ABC importer. Channels (Austin) 2015; 8:327-33. [PMID: 24852576 PMCID: PMC4203734 DOI: 10.4161/chan.29294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability.
Collapse
|
20
|
Rad-Malekshahi M, Visscher KM, Rodrigues JPGLM, de Vries R, Hennink WE, Baldus M, Bonvin AMJJ, Mastrobattista E, Weingarth M. The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail. J Am Chem Soc 2015; 137:7775-84. [DOI: 10.1021/jacs.5b02919] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mazda Rad-Malekshahi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Koen M. Visscher
- NMR
Spectroscopy, Bijvoet Center for Biomolecular Research, Department
of Chemistry, Faculty of Science, Utrecht University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - João P. G. L. M. Rodrigues
- NMR
Spectroscopy, Bijvoet Center for Biomolecular Research, Department
of Chemistry, Faculty of Science, Utrecht University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Renko de Vries
- Laboratory
of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Marc Baldus
- NMR
Spectroscopy, Bijvoet Center for Biomolecular Research, Department
of Chemistry, Faculty of Science, Utrecht University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- NMR
Spectroscopy, Bijvoet Center for Biomolecular Research, Department
of Chemistry, Faculty of Science, Utrecht University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Markus Weingarth
- NMR
Spectroscopy, Bijvoet Center for Biomolecular Research, Department
of Chemistry, Faculty of Science, Utrecht University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Rouse SL, Sansom MSP. Interactions of lipids and detergents with a viral ion channel protein: molecular dynamics simulation studies. J Phys Chem B 2014; 119:764-72. [PMID: 25286030 PMCID: PMC4306293 DOI: 10.1021/jp505127y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
Structural
studies of membrane proteins have highlighted the likely
influence of membrane mimetic environments (i.e., lipid bilayers versus
detergent micelles) on the conformation and dynamics of small α-helical
membrane proteins. We have used molecular dynamics simulations to
compare the conformational dynamics of BM2 (a small α-helical
protein from the membrane of influenza B) in a model phospholipid
bilayer environment with its behavior in protein–detergent
complexes with either the zwitterionic detergent dihexanoylphosphatidylcholine
(DHPC) or the nonionic detergent dodecylmaltoside (DDM). We find that
DDM more closely resembles the lipid bilayer in terms of its interaction
with the protein, while the short-tailed DHPC molecule forms “nonphysiological”
interactions with the protein termini. We find that the intrinsic
micelle properties of each detergent are conserved upon formation
of the protein–detergent complex. This implies that simulations
of detergent micelles may be used to help select optimal conditions
for experimental studies of membrane proteins.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
22
|
Baturin S, Galka JJ, Piyadasa H, Gajjeraman S, O'Neil JD. The effects of a protein osmolyte on the stability of the integral membrane protein glycerol facilitator. Biochem Cell Biol 2014; 92:564-75. [PMID: 25387032 DOI: 10.1139/bcb-2014-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osmolytes are naturally occurring molecules used by a wide variety of organisms to stabilize proteins under extreme conditions of temperature, salinity, hydrostatic pressure, denaturant concentration, and desiccation. The effects of the osmolyte trimethylamine N-oxide (TMAO) as well as the influence of detergent head group and acyl chain length on the stability of the Escherichia coli integral membrane protein glycerol facilitator (GF) tetramer to thermal and chemical denaturation by sodium dodecyl sulphate (SDS) are reported. TMAO promotes the association of the normally tetrameric α-helical protein into higher order oligomers in dodecyl-maltoside (DDM), but not in tetradecyl-maltoside (TDM), lyso-lauroylphosphatidyl choline (LLPC), or lyso-myristoylphosphatidyl choline (LMPC), as determined by dynamic light scattering (DLS); an octameric complex is particularly stable as indicated by SDS polyacrylamide gel electrophoresis. TMAO increases the heat stability of the GF tetramer an average of 10 °C in the 4 detergents and also protects the protein from denaturation by SDS. However, it did not promote re-association to the tetramer when added to SDS-dissociated protein. TMAO also promotes the formation of rod-like detergent micelles, and DLS was found to be useful for monitoring the structure of the protein and the redistribution of detergent during thermal dissociation of the protein. The protein is more thermally stable in detergents with the phosphatidylcholine head group (LLPC and LMPC) than in the maltoside detergents. The implications of the results for osmolyte mechanism, membrane protein stability, and protein-protein interactions are discussed.
Collapse
Affiliation(s)
- Simon Baturin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
23
|
Harris BJ, Cheng X, Frymier P. All-atom molecular dynamics simulation of a photosystem i/detergent complex. J Phys Chem B 2014; 118:11633-45. [PMID: 25233289 DOI: 10.1021/jp507157e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All-atom molecular dynamics (MD) simulation was used to investigate the solution structure and dynamics of the photosynthetic pigment-protein complex photosystem I (PSI) from Thermosynechococcus elongatus embedded in a toroidal belt of n-dodecyl-β-d-maltoside (DDM) detergent. Evaluation of root-mean-square deviations (RMSDs) relative to the known crystal structure show that the protein complex surrounded by DDM molecules is stable during the 200 ns simulation time, and root-mean-square fluctuation (RMSF) analysis indicates that regions of high local mobility correspond to solvent-exposed regions such as turns in the transmembrane α-helices and flexible loops on the stromal and lumenal faces. Comparing the protein-detergent complex to a pure detergent micelle, the detergent surrounding the PSI trimer is found to be less densely packed but with more ordered detergent tails, contrary to what is seen in most lipid bilayer models. We also investigated any functional implications for the observed conformational dynamics and protein-detergent interactions, discovering interesting structural changes in the psaL subunits associated with maintaining the trimeric structure of the protein. Importantly, we find that the docking of soluble electron mediators such as cytochrome c6 and ferredoxin to PSI is not significantly impacted by the solubilization of PSI in detergent.
Collapse
Affiliation(s)
- Bradley J Harris
- Department of Chemical and Biomolecular Engineering, ‡Department of Biochemistry and Cellular and Molecular Biology, §Sustainable Energy Education and Research Center, and ∥Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
24
|
Sušac L, Horst R, Wüthrich K. Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. Chembiochem 2014; 15:995-1000. [PMID: 24692152 DOI: 10.1002/cbic.201300729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 01/08/2023]
Abstract
X-ray crystallography and solution NMR of detergent-reconstituted OmpA (outer membrane protein A from E. coli) had shown that this protein forms an eight-stranded transmembrane β-barrel, but only limited information was obtained for the extracellular loops. In NMR studies of OmpA in two different detergent micelles, "NMR-invisible" amino acid residues in-between the extracellular loops and the β-barrel prevented complete structural characterization. Here, we show that this NMR-invisible ring around the β-barrel of OmpA is also present in lipid bilayer nanodiscs and in mixed micelles with a third detergent, thus suggesting that the implicated rate processes have a functional role rather than representing an artifact of the protein reconstitution. In addition to sequence-specific NMR assignments for OmpA in the nanodiscs, the present results are based on a protocol of micro-coil TROSY- and CRINEPT-type NMR diffusion measurements for studying the hydrodynamic properties and the foldedness of [(2)H,(15)N]-labeled membrane proteins in nanodiscs. This protocol can be applied under conditions closely similar to those used for NMR structure determinations or crystallization trials.
Collapse
Affiliation(s)
- Lukas Sušac
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | | | | |
Collapse
|
25
|
Rouse SL, Marcoux J, Robinson CV, Sansom MSP. Dodecyl maltoside protects membrane proteins in vacuo. Biophys J 2014; 105:648-56. [PMID: 23931313 DOI: 10.1016/j.bpj.2013.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022] Open
Abstract
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
26
|
Cheng X, Jo S, Marassi FM, Im W. NMR-based simulation studies of Pf1 coat protein in explicit membranes. Biophys J 2014; 105:691-8. [PMID: 23931317 DOI: 10.1016/j.bpj.2013.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences, The University of Kansas, Lawrence, USA
| | | | | | | |
Collapse
|
27
|
Koutsioubas A, Berthaud A, Mangenot S, Pérez J. Ab Initio and All-Atom Modeling of Detergent Organization around Aquaporin-0 Based on SAXS Data. J Phys Chem B 2013; 117:13588-94. [DOI: 10.1021/jp407688x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandros Koutsioubas
- Synchrotron Soleil,
Beamline SWING, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
- Jülich
Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation
at MLZ, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Alice Berthaud
- Synchrotron Soleil,
Beamline SWING, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
- Institut Curie,
Centre de Recherche, CNRS UMR168, Université Pierre et Marie Curie, F-75248 Paris Cedex, France
| | - Stéphanie Mangenot
- Institut Curie,
Centre de Recherche, CNRS UMR168, Université Pierre et Marie Curie, F-75248 Paris Cedex, France
| | - Javier Pérez
- Synchrotron Soleil,
Beamline SWING, Saint Aubin BP48, F-91192 Gif sur Yvette Cedex, France
| |
Collapse
|
28
|
Khelashvili G, LeVine MV, Shi L, Quick M, Javitch JA, Weinstein H. The membrane protein LeuT in micellar systems: aggregation dynamics and detergent binding to the S2 site. J Am Chem Soc 2013; 135:14266-75. [PMID: 23980525 PMCID: PMC3788620 DOI: 10.1021/ja405984v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Structural and functional properties of integral membrane proteins are often studied in detergent micellar environments (proteomicelles), but how such proteomicelles form and organize is not well understood. This makes it difficult to evaluate the relationship between the properties of the proteins measured in such a detergent-solubilized form and under native conditions. To obtain mechanistic information about this relationship for the leucine transporter (LeuT), a prokaryotic homologue of the mammalian neurotransmitter/sodium symporters (NSSs), we studied the properties of proteomicelles formed by n-dodecyl-β,D-maltopyranoside (DDM) detergent. Extensive atomistic molecular dynamics simulations of different protein/detergent/water number ratios revealed the formation of a proteomicelle characterized by a constant-sized shell of detergents surrounding LeuT protecting its transmembrane segments from unfavorable hydrophobic/hydrophilic exposure. Regardless of the DDM content in the simulated system, this shell consisted of a constant number of DDM molecules (∼120 measured at a 4 Å cutoff distance from LeuT). In contrast, the overall number of DDMs in the proteomicelle (aggregation number) was found to depend on the detergent concentration, reaching a saturation value of 226±17 DDMs in the highest concentration regime simulated. Remarkably, we found that at high detergent-to-protein ratios we observed two independent ways of DDM penetration into LeuT, both leading to a positioning of the DDM molecule in the second substrate (S2) binding site of LeuT. Consonant with several recent experimental studies demonstrating changes in functional properties of membrane proteins due to detergent, our findings highlight how the environment in which the membrane proteins are examined may affect the outcome and interpretation of their mechanistic features.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC) , New York, New York 10065, United States
| | | | | | | | | | | |
Collapse
|
29
|
Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. J Chem Inf Model 2013; 53:2171-80. [PMID: 23865552 DOI: 10.1021/ci4002684] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micelle Builder in CHARMM-GUI, http://www.charmm-gui.org/input/micelle , is a web-based graphical user interface to build pure/mixed micelle and protein/micelle complex systems for molecular dynamics (MD) simulation. The robustness of Micelle Builder is tested by simulating four detergent-only homogeneous micelles of DHPC (dihexanoylphosphatidylcholine), DPC (dodecylphosphocholine), TPC (tetradecylphosphocholine), and SDS (sodium dodecyl sulfate) and comparing the calculated micelle properties with experiments and previous simulations. As a representative protein/micelle model, Pf1 coat protein is modeled and simulated in DHPC micelles with three different numbers of DHPC molecules. While the number of DHPC molecules in direct contact with Pf1 protein converges during the simulation, distinct behavior and geometry of micelles lead to different protein conformations in comparison to that in bilayers. It is our hope that CHARMM-GUI Micelle Builder can be used for simulation studies of various protein/micelle systems to better understand the protein structure and dynamics in micelles as well as distribution of detergents and their dynamics around proteins.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
30
|
Neale C, Ghanei H, Holyoake J, Bishop RE, Privé GG, Pomès R. Detergent-mediated protein aggregation. Chem Phys Lipids 2013; 169:72-84. [PMID: 23466535 PMCID: PMC5007131 DOI: 10.1016/j.chemphyslip.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein's hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Hamed Ghanei
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - John Holyoake
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Russell E. Bishop
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Gilbert G. Privé
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
31
|
Sharma S, Juffer AH. An atomistic model for assembly of transmembrane domain of T cell receptor complex. J Am Chem Soc 2013; 135:2188-97. [PMID: 23320396 DOI: 10.1021/ja308413e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The T cell receptor (TCR) together with accessory cluster of differentiation 3 (CD3) molecules (TCR-CD3 complex) is a key component in the primary function of T cells. The nature of association of the transmembrane domains is of central importance to the assembly of the complex and is largely unknown. Using multiscale molecular modeling and simulations, we have investigated the structure and assembly of the TCRα-CD3ε-CD3δ transmembrane domains both in membrane and in micelle environments. We demonstrate that in a membrane environment the transmembrane basic residue of the TCR closely interacts with both of the transmembrane acidic residues of the CD3 dimer. In contrast, in a micelle the basic residue interacts with only one of the acidic residues. Simulations of a recent micellar nuclear magnetic resonance structure of the natural killer (NK) cell-activating NKG2C-DAP12-DAP12 trimer in a membrane further indicate that the environment significantly affects the way these trimers associate. Since the currently accepted model for transmembrane association is entirely based on a micellar structure, we propose a revised model for the association of transmembrane domains of the activating immune receptors in a membrane environment.
Collapse
Affiliation(s)
- Satyan Sharma
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
| | | |
Collapse
|
32
|
Paramo T, Garzón D, Holdbrook DA, Khalid S, Bond PJ. The simulation approach to lipid-protein interactions. Methods Mol Biol 2013; 974:435-455. [PMID: 23404287 DOI: 10.1007/978-1-62703-275-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.
Collapse
Affiliation(s)
- Teresa Paramo
- Department of Chemistry, Unilever Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
33
|
Kim S, Lee Y, Tak HM, Park HJ, Sohn YS, Hwang S, Han J, Kang D, Lee KW. Identification of blocker binding site in mouse TRESK by molecular modeling and mutational studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23200789 DOI: 10.1016/j.bbamem.2012.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TWIK (tandem-pore domain weak inward rectifying K(+))-related spinal cord K(+) channel, TRESK, a member of the tandem-pore domain K(+) channel family, is the most recently cloned K(2P) channel. TRESK is highly expressed in dorsal root ganglion neuron, a pain sensing neuron, which is a target for analgesics. In this study, a reliable 3D structure for transmembrane (TM) region of mouse TRESK (mTRESK) was constructed, and then the reasonable blocker binding mode of the protein was investigated. The 3D structure of the mTRESK built by homology modeling method was validated with recommend value of stereochemical quality. Based on the validated structure, K(+) channel blocker-bound conformation was obtained by molecular docking and 5ns MD simulation with DPPC lipid bilayer. Our docking study provides the plausible binding mode of known blockers with key interacting residues, especially, F156 and F364. Finally, these modeling results were verified by experimental study with mutation from phenylalanine to alanine (F156A, F364A and F156A/F364A) at the TM2 and TM4. This is the first modeling study for TRESK that can provide structural information of the protein including ligand binding information. These results can be useful in structure based drug design for finding new blockers of the TRESK as potential therapeutic target of pain treatment.
Collapse
Affiliation(s)
- Songmi Kim
- Gyeongsang National University, Gazha-dong, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahmed MAM, De Avila M, Polverini E, Bessonov K, Bamm VV, Harauz G. Solution nuclear magnetic resonance structure and molecular dynamics simulations of a murine 18.5 kDa myelin basic protein segment (S72-S107) in association with dodecylphosphocholine micelles. Biochemistry 2012; 51:7475-87. [PMID: 22947219 DOI: 10.1021/bi300998x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 18.5 kDa myelin basic protein (MBP), the most abundant splice isoform in adult mammalian myelin, is a multifunctional, intrinsically disordered protein involved in the development and compaction of the myelin sheath in the central nervous system. A highly conserved central segment comprises a membrane-anchoring amphipathic α-helix followed by a proline-rich segment that represents a ligand for SH3 domain-containing proteins. Here, we have determined using solution nuclear magnetic resonance spectroscopy the structure of a 36-residue peptide fragment of MBP (murine 18.5 kDa residues S72-S107, denoted the α2-peptide) comprising these two structural motifs, in association with dodecylphosphocholine (DPC) micelles. The structure was calculated using CS-ROSETTA (version 1.01) because the nuclear Overhauser effect restraints were insufficient for this protein. The experimental studies were complemented by molecular dynamics simulations of a corresponding 24-residue peptide fragment (murine 18.5 kDa residues E80-G103, denoted the MD-peptide), also in association with a DPC micelle in silico. The experimental and theoretical results agreed well with one another, despite the independence of the starting structures and analyses, both showing membrane association via the amphipathic α-helix, and a sharp bend in the vicinity of the Pro93 residue (murine 18.5 kDa sequence numbering). Overall, the conformations elucidated here show how the SH3 ligand is presented to the cytoplasm for interaction with SH3 domain-containing proteins such as Fyn and contribute to our understanding of myelin architecture at the molecular level.
Collapse
Affiliation(s)
- Mumdooh A M Ahmed
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Zhou Y, Moin SM, Urban S, Zhang Y. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Structure 2012; 20:1255-63. [PMID: 22705210 DOI: 10.1016/j.str.2012.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/29/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
Rhomboid proteases regulate key cellular pathways, but their biochemical mechanism including how water is made available to the membrane-immersed active site remains ambiguous. We performed four prolonged molecular dynamics simulations initiated from both gate-open and gate-closed states of Escherichia coli rhomboid GlpG in a phospholipid bilayer. GlpG was notably stable in both gating states, experiencing similar tilt and local membrane thinning, with no observable gating transitions, highlighting that gating is rate-limiting. Analysis of dynamics revealed rapid loss of crystallographic waters from the active site, but retention of a water cluster within a site formed by His141, Ser181, Ser185, and/or Gln189. Experimental interrogation of 14 engineered mutants revealed an essential role for at least Gln189 and Ser185 in catalysis with no effect on structural stability. Our studies indicate that spontaneous water supply to the intramembrane active site of rhomboid proteases is rare, but its availability for catalysis is ensured by an unanticipated active site element, the water-retention site.
Collapse
Affiliation(s)
- Yanzi Zhou
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
36
|
Jiménez RHF, Freed DM, Cafiso DS. Lipid and membrane mimetic environments modulate spin label side chain configuration in the outer membrane protein A. J Phys Chem B 2011; 115:14822-30. [PMID: 22034842 DOI: 10.1021/jp207420d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, the factors that determine EPR line shapes from spin labels at the protein-hydrocarbon interface of a β-barrel membrane protein are examined. The EPR spectra from hydrocarbon facing sites in the outer membrane protein A (OmpA) are highly dependent upon the detergent or lipid into which OmpA is reconstituted. In general, line shapes at these sites are correlated with the solvent accessibility in the supporting amphiphile. A notable exception is CHAPS, which yields rigid limit EPR line shapes for labels at every position along a transmembrane β-strand in OmpA. EPR line shapes from the surface of OmpA are not strongly influenced by steric interference with neighboring side chains, but are modulated by solutes that should interact with hydrophobic surfaces. These results suggest that differences in EPR spectra in different supporting environments are not the result of differences in protein dynamics but are a result of different configurations or rotameric states that are assumed by the label. This conclusion is supported by distance measurements across the OmpA β-barrel, which indicate that labels yielding more motionally restricted line shapes interact more closely with the protein surface. These results have implications for the use of spin-label-derived distance constraints in protein structure determination and demonstrate that spin labels on membrane proteins provide a highly sensitive probe for the environment surrounding a membrane protein.
Collapse
Affiliation(s)
- Ricardo H Flores Jiménez
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | | | | |
Collapse
|
37
|
Otzen D. Protein–surfactant interactions: A tale of many states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:562-91. [DOI: 10.1016/j.bbapap.2011.03.003] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/23/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
38
|
van der Spoel D, Marklund EG, Larsson DSD, Caleman C. Proteins, Lipids, and Water in the Gas Phase. Macromol Biosci 2010; 11:50-9. [DOI: 10.1002/mabi.201000291] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Study of the Alzheimer's Aβ40 peptide in SDS micelles using molecular dynamics simulations. Biophys Chem 2010; 153:179-86. [PMID: 21183271 DOI: 10.1016/j.bpc.2010.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/25/2010] [Accepted: 11/26/2010] [Indexed: 01/04/2023]
Abstract
The interaction of the Alzheimer's amyloid beta peptide, Aβ40, with sodium dodecyl sulfate (SDS) micelles, together with the self-assembly of SDS molecules around the peptide from an initial random distribution were studied using atomistic and coarse-grained (CG) molecular dynamics simulations. In atomistic simulations, the peptide structure in the micelle was characterized by two helical regions connected through a short hinge. The initial structure of the system was shown to affect the simulation results. The atomistic self-assembly of SDS molecules resulted in a 38-molecule micelle around the peptide, along with some globules and individual molecules. Coarse-grained simulation results, however, did not show such a difference, and at the end of all CG simulations, a complete 60-molecule micelle was obtained, with the peptide located at the interface of the micelle with water. The obtained CG radial density profiles and SDS micelle size and shape properties were identical for all CG simulations.
Collapse
|
40
|
Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T. Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nat Chem Biol 2010; 6:891-9. [DOI: 10.1038/nchembio.457] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/15/2010] [Indexed: 01/31/2023]
|
41
|
Choutko A, Glättli A, Fernández C, Hilty C, Wüthrich K, van Gunsteren WF. Membrane protein dynamics in different environments: simulation study of the outer membrane protein X in a lipid bilayer and in a micelle. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:39-58. [PMID: 20922370 DOI: 10.1007/s00249-010-0626-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/24/2022]
Abstract
The bacterial outer membrane protein OmpX from Escherichia coli has been investigated by molecular dynamics simulations when embedded in a phospholipid bilayer and as a protein-micelle aggregate. The resulting simulation trajectories were analysed in terms of structural and dynamic properties of the membrane protein. In agreement with experimental observations, highest relative stability was found for the β-barrel region that is embedded in the lipophilic phase, whereas an extracellular protruding β-sheet, which is a unique structural feature of OmpX that supposedly plays an important role in cell adhesion and invasion, shows larger structure fluctuations. Additionally, we investigated water permeation into the core of the β-barrel protein, which contains a tight salt-bridge and hydrogen-bond network, so that extensive water flux is unlikely. Differences between the bilayer and the micellar system were observed in the length of the barrel and its position inside the lipid environment, and in the protein interactions with the hydrophilic part of the lipids near the lipid/water interface. Those variations suggest that micelles and other detergent environments might not offer a wholly membrane-like milieu to promote adoption of the physiological conformational state by OmpX.
Collapse
Affiliation(s)
- Alexandra Choutko
- Institute for Physical Chemistry, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Früh V, IJzerman AP, Siegal G. How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem Rev 2010; 111:640-56. [PMID: 20831158 DOI: 10.1021/cr900088s] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Virginie Früh
- Division of Medicinal Chemistry, Leiden Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | |
Collapse
|
43
|
Yuan H, Jameson CJ, Murad S. Diffusion of gases across lipid membranes with OmpA channel: a molecular dynamics study. Mol Phys 2010. [DOI: 10.1080/00268976.2010.484396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Jusoh SA, Welsch C, Siu SWI, Böckmann RA, Helms V. Contribution of charged and polar residues for the formation of the E1-E2 heterodimer from Hepatitis C Virus. J Mol Model 2010; 16:1625-37. [PMID: 20195665 DOI: 10.1007/s00894-010-0672-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/25/2010] [Indexed: 02/05/2023]
Abstract
The transmembrane domains of the envelope glycoprotein E1 and E2 have crucial multifunctional roles in the biogenesis of hepatitis C virus. We have performed molecular dynamics simulations to investigate a structural model of the transmembrane segments of the E1-E2 heterodimer. The simulations support the key role of the Lys370-Asp728 ion pair for mediating the E1-E2 heterodimerization. In comparison to these two residues, the simulation results also reveal the differential effect of the conserved Arg730 residue that has been observed in experimental studies. Furthermore, we discovered the formation of inter-helical hydrogen bonds via Asn367 that stabilize dimer formation. Simulations of single and double mutants further demonstrate the importance of the ion-pair and polar interactions between the interacting helix monomers. The conformation of the E1 fragment in the simulation of the E1-E2 heterodimer is in close agreement with an NMR structure of the E1 transmembrane segment. The proposed model of the E1-E2 heterodimer supports the postulated cooperative insertion of both helices by the translocon complex into the bilayer.
Collapse
Affiliation(s)
- Siti Azma Jusoh
- Center for Bioinformatics, Saarland University, 66041, Saarbruecken, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
Recent advances in molecular dynamics (MD) simulation methods and in available computational resources have allowed for more reliable simulations of biological phenomena. From all-atom MD simulations, we are now able to visualize in detail the interactions between antimicrobial peptides (AMPs) and a variety of membrane mimics. This helps us to understand the molecular mechanisms of antimicrobial activity and toxicity. This chapter describes how to set up and conduct molecular dynamics simulations of AMPs and membrane mimics. Details are given for the construction of systems of interest for studying AMPs, which can include simulations of peptides in water, micelles, or lipid bilayers. Explanations of the parameters needed for running a simulation are provided as well.
Collapse
|
46
|
Friemann R, Larsson DSD, Wang Y, van der Spoel D. Molecular Dynamics Simulations of a Membrane Protein−Micelle Complex in Vacuo. J Am Chem Soc 2009; 131:16606-7. [DOI: 10.1021/ja902962y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rosmarie Friemann
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Daniel S. D. Larsson
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Yaofeng Wang
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
47
|
Sayyed-Ahmad A, Khandelia H, Kaznessis YN. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. MOLECULAR SIMULATION 2009; 35:986-997. [PMID: 21113423 DOI: 10.1080/08927020902902742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
48
|
Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:68-76. [PMID: 19665446 DOI: 10.1016/j.bbamem.2009.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/22/2009] [Indexed: 11/20/2022]
Abstract
In order to better understand the dynamics of an integral membrane protein, backbone amide (15)N NMR dynamics measurements of the beta-barrel membrane protein OmpA have been performed at three magnetic fields. A total of nine relaxation data sets were globally analyzed using an extended model-free formalism. The diffusion tensor was found to be prolate axially symmetric with an axial ratio of 5.75, indicating a possible rotation of the protein within the micelle. The generalized order parameters gradually decreased from the mid-plane towards the two ends of the barrel, counteracting the dynamic gradient of the lipids in a matching bilayer, and were dramatically reduced in the extracellular loops. Large-scale internal motions on the ns time scale indicate that entire loops most likely undergo concerted ("sea anemone"-like) motions emanating from their anchoring points on the barrel. The case of OmpA in DPC micelles also illustrates inherent limitations of analyzing the data with even the most sophisticated current models of the model-free formalism. It is likely that conformational exchange processes on the ms-mus also play a role in describing the motions of some residues, but their analysis did not produce unique results that could be independently verified.
Collapse
|
49
|
Shi L, Cembran A, Gao J, Veglia G. Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 2009; 96:3648-62. [PMID: 19413970 DOI: 10.1016/j.bpj.2009.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 02/03/2009] [Accepted: 02/12/2009] [Indexed: 02/04/2023] Open
Abstract
We report molecular dynamics simulations in the explicit membrane environment of a small membrane-embedded protein, sarcolipin, which regulates the sarcoplasmic reticulum Ca-ATPase activity in both cardiac and skeletal muscle. In its monomeric form, we found that sarcolipin adopts a helical conformation, with a computed average tilt angle of 28 +/- 6 degrees and azymuthal angles of 66 +/- 22 degrees, in reasonable accord with angles determined experimentally (23 +/- 2 degrees and 50 +/- 4 degrees, respectively) using solid-state NMR with separated-local-field experiments. The effects of time and spatial averaging on both (15)N chemical shift anisotropy and (1)H/(15)N dipolar couplings have been analyzed using short-time averages of fast amide out-of-plane motions and following principal component dynamic trajectories. We found that it is possible to reproduce the regular oscillatory patterns observed for the anisotropic NMR parameters (i.e., PISA wheels) employing average amide vectors. This work highlights the role of molecular dynamics simulations as a tool for the analysis and interpretation of solid-state NMR data.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
50
|
Khalid S, Sansom MSP. Molecular dynamics simulations of a bacterial autotransporter: NalP fromNeisseria meningitidis. Mol Membr Biol 2009; 23:499-508. [PMID: 17127622 DOI: 10.1080/09687860600849531] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane beta-barrel containing a central alpha-helix. The role of this alpha-helix, and of the conformational dynamics of the beta-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane beta-barrel is stable even in the absence of the alpha-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a 'plug'. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|