1
|
Liu H, Zhou Z, Long C, Qing T, Feng B, Zhang P, Chen YP. Light/dark synergy enhances cyanophycin accumulation in algal-bacterial consortia: Boosted strategy for nitrogen recovery from wastewater. BIORESOURCE TECHNOLOGY 2025; 425:132309. [PMID: 40023333 DOI: 10.1016/j.biortech.2025.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Recovering the nitrogen-rich biopolymer cyanophycin [(β-Asp-Arg)n] from algal-bacterial consortia enhances the reclamation of value-added chemicals from wastewater. However, the modulation of light/dark conditions on cyanophycin accumulation remain unknown. In this study, the trends and mechanisms of cyanophycin synthesis in algal-bacterial consortia under light/dark conditions were investigated. The results showed that cyanophycin production during the dark periods ranged from 137-150 mg/g MLSS (mixed liquid suspended solids), which was 32 %-38 % higher than those during the light period (p < 0.001). Metatranscriptomics results demonstrated that 50 metagenome-assembled genomes contribute to cyanophycin production, with the Planktothrix genus being the dominant contributor. Metabolomics findings suggested that algal-bacterial consortia produce higher level of arginine for cyanophycin synthesis under light conditions. This study demonstrates the feasibility of increasing cyanophycin production by merging light/dark cycles, and offers a novel strategy for high yield of valuable biopolymers from wastewater substrate.
Collapse
Affiliation(s)
- Hongyuan Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zirui Zhou
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Caicheng Long
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Taiping Qing
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bo Feng
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - You-Peng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| |
Collapse
|
2
|
Sun C, Wang Y, Hu B, Wang J, Zhou J, Li J, Chen J, Du G, Wang B, Zhao X. Establishing an Efficient Electron Transfer System for P450 Enzyme OleP to Improve the Biosynthesis of Murideoxycholic Acid by Redox Partner Engineering. Angew Chem Int Ed Engl 2025; 64:e202423209. [PMID: 40040534 DOI: 10.1002/anie.202423209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
The electron transfer from NAD(P)H to heme is a rate-limiting step in the redox partner-mediated catalysis of P450 enzyme. However, due to the lack of efficient engineering strategies, it is difficult to improve the properties of redox partner. Herein, we construct an effective approach to modify the redox partner for a typical P450 enzyme (OleP) that can catalyze the stereoselective conversion of lithocholic acid to murideoxycholic acid. First, the combination of computational modeling and experimental validation was performed to rapidly identify the most suitable redox partner (PetH/PetF). Next, the interactions between PetF and OleP were investigated and the engineering on PetF was conducted to enhance the efficiency of electron transfer. Using a novel microplate screening method, a superior mutant (PetFF64D) was efficiently selected, which exhibited a significant enhancement in MDCA conversion yield from 32.5% to 80.9% and total turnover number (TTN) from 406.2 to 1617.9. Finally, through a combination of molecular dynamics simulations, the analysis of electron transfer pathway, and the calculations of electron transfer rate, the mechanism of electron transfer was investigated. The applied engineering strategies, high-throughput screening methods, and analytical approaches provide a feasible way to construct an ideal redox partner for other P450 enzymes.
Collapse
Affiliation(s)
- Chixiang Sun
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yongchao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianan Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Chan A, Tajkhorshid E, Luthey-Schulten Z, Sener M. Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of Procholorococcus marinus MIT9313. J Phys Chem B 2025; 129:52-70. [PMID: 39723618 PMCID: PMC12060261 DOI: 10.1021/acs.jpcb.4c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of Prochlorococcus, the most abundant phototroph on Earth by mass. A modeling approach for ferredoxin and plastocyanin diffusion is presented that uses ensembles of coarse-grained molecular dynamics simulations in Martini 2.2P with GROMACS 2021.2. The simulation ensembles are used to construct the diffusion coefficient and drift for ferredoxin and plastocyanin as spatial functions in the photosystem I domain of the MIT9313 ecotype. Four separate models are constructed, corresponding to ferredoxin and plastocyanin in reduced and oxidized states. A single scaling constant of 0.7 is found to be sufficient to adjust the diffusion coefficient obtained from the Martini simulation ensemble to match the in vitro values for both ferredoxin and plastocyanin. A comparison of Martini versions (2.2P, 2.2, 3) is presented with respect to diffusion scaling. The diffusion coefficient and drift together quantify the inhomogeneity of diffusive behavior. Notably, a funnel-like convergence toward the corresponding putative binding positions is observed for both ferredoxin and plastocyanin, even without such a priori foreknowledge supplied in the simulation protocol. The approach presented here is of relevance for studying diffusion kinetics in photosynthetic and other bioenergetic processes.
Collapse
Affiliation(s)
- Aaron Chan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Biochemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Zaida Luthey-Schulten
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Melih Sener
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
4
|
Bunik VI. Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance. Biomolecules 2024; 14:1342. [PMID: 39595519 PMCID: PMC11592160 DOI: 10.3390/biom14111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
In recent decades, biology has made tremendous progress in the high-throughput analytic and genetic techniques used to characterize the molecular components of living cells and their interactions [...].
Collapse
Affiliation(s)
- Victoria I. Bunik
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov Medical University, 105043 Moscow, Russia
| |
Collapse
|
5
|
Roy RR, Ullmann GM. Virtual Model Compound Approach for Calculating Redox Potentials of [Fe 2S 2]-Cys 4 Centers in Proteins - Structure Quality Matters. J Chem Theory Comput 2023; 19:8930-8941. [PMID: 37974307 DOI: 10.1021/acs.jctc.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The midpoint potential of the [Fe2S2]-Cys4-cluster in proteins is known to vary between -200 and -450 mV. This variation is caused by the different electrostatic environment of the cluster in the respective proteins. Continuum electrostatics can quantify the impact of the protein environment on the redox potential. Thus, if the redox potential of a [Fe2S2]-Cys4-cluster model compound in aqueous solution would be known, then redox potentials in various protein complexes could be calculated. However, [Fe2S2]-Cys4-cluster models are not water-soluble, and thus, their redox potential can not be measured in aqueous solution. To overcome this problem, we introduce a method that we call Virtual Model Compound Approach (VMCA) to extrapolate the model redox potential from known redox potentials of proteins. We carefully selected high-resolution structures for our analysis and divide them into a fit set, for fitting the model redox potential, and an independent test set, to check the validity of the model redox potential. However, from our analysis, we realized that the some structures can not be used as downloaded from the PDB but had to be re-refined in order to calculate reliable redox potentials. Because of the re-refinement, we were able to significantly reduce the standard deviation of our derived model redox potential for the [Fe2S2]-Cys4-cluster from 31 mV to 10 mV. As the model redox potential, we obtained -184 mV. This model redox potential can be used to analyze the redox behavior of [Fe2S2]-Cys4-clusters in larger protein complexes.
Collapse
Affiliation(s)
- Rajeev Ranjan Roy
- Computational Biochemistry, Universitätsstr. 30, NWI, University of Bayreuth, Bayreuth, 95440, Germany
| | - G Matthias Ullmann
- Computational Biochemistry, Universitätsstr. 30, NWI, University of Bayreuth, Bayreuth, 95440, Germany
| |
Collapse
|
6
|
Riziotis IG, Ribeiro AJM, Borkakoti N, Thornton JM. The 3D Modules of Enzyme Catalysis: Deconstructing Active Sites into Distinct Functional Entities. J Mol Biol 2023; 435:168254. [PMID: 37652131 DOI: 10.1016/j.jmb.2023.168254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Enzyme catalysis is governed by a limited toolkit of residues and organic or inorganic co-factors. Therefore, it is expected that recurring residue arrangements will be found across the enzyme space, which perform a defined catalytic function, are structurally similar and occur in unrelated enzymes. Leveraging the integrated information in the Mechanism and Catalytic Site Atlas (M-CSA) (enzyme structure, sequence, catalytic residue annotations, catalysed reaction, detailed mechanism description), 3D templates were derived to represent compact groups of catalytic residues. A fuzzy template-template search, allowed us to identify those recurring motifs, which are conserved or convergent, that we define as the "modules of enzyme catalysis". We show that a large fraction of these modules facilitate binding of metal ions, co-factors and substrates, and are frequently the result of convergent evolution. A smaller number of convergent modules perform a well-defined catalytic role, such as the variants of the catalytic triad (i.e. Ser-His-Asp/Cys-His-Asp) and the saccharide-cleaving Asp/Glu triad. It is also shown that enzymes whose functions have diverged during evolution preserve regions of their active site unaltered, as shown by modules performing similar or identical steps of the catalytic mechanism. We have compiled a comprehensive library of catalytic modules, that characterise a broad spectrum of enzymes. These modules can be used as templates in enzyme design and for better understanding catalysis in 3D.
Collapse
Affiliation(s)
- Ioannis G Riziotis
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| | - António J M Ribeiro
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Neera Borkakoti
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Janet M Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| |
Collapse
|
7
|
Han Z, Wu F, Yu P, Mao L. Computer-Aided Rational Construction of Mediated Bioelectrocatalysis with π-Conjugated (Hetero)cyclic Molecules: Toward Promoted Distant Electron Tunneling and Improved Biosensing. Anal Chem 2022; 94:8033-8040. [PMID: 35604848 DOI: 10.1021/acs.analchem.2c01289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly π-conjugated (hetero)cyclic molecules having delocalized orbitals and tunable charge mobilities are attractive redox relays for mediated bioelectrocatalysis in manifold applications. As rigid molecules, their dynamics within the soft but confined intraprotein space becomes the crucial determinant of the enzyme-mediator electron-tunneling efficiency. However, it is rarely investigated in designing the mediated interface with a particular biocatalyst (e.g., oxidoreductase), which remains an empirical but try-and-error process. Herein, we present the computer-aided exploration of interactions between a flavin-containing reductive synthase and structurally diverse π-extended (hetero)cyclic mediators to realize reversed bioelectrocatalytic oxidation at low overpotentials. Compared to ring-fused systems with unbroken molecular planarity, heteroatom-bridged cyclic, and rotatable conjugated structures (e.g., indophenols) can experience unusually large dynamic torsion under biased forces of hydrogen bonding with enzyme residues. This behavior led to fast intraprotein reorientation (<50 ps) that shortened the electron-tunneling distance from 12 to 9 Å. Meanwhile, the lowest unoccupied molecular orbital level upon molecular torsion was decreased by 0.5 eV to further promote electron abstraction from the reduced flavin cofactor. An efficient distant electron tunneling also obviated mediator transport through the substrate channel, thus avoiding competitive inhibition on enzyme kinetics to broaden the operating concentration range. The resulting bioelectrocatalytic interface enables low-potential biosensing of glutamate with improved selectivity. Our finding provides new structural insights into constructing efficient long-range heterogeneous charge transport with biomacromolecular catalysts.
Collapse
Affiliation(s)
- Zhongjie Han
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Lewis CM, Flory JD, Moore TA, Moore AL, Rittmann BE, Vermaas WFJ, Torres CI, Fromme P. Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II. J Am Chem Soc 2022; 144:2933-2942. [PMID: 35157427 DOI: 10.1021/jacs.1c09291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live Synechocystis (ΔpsbB) cells lacking PSII. MEPS-generated, light-dependent current increased with light intensity up to 2050 μmol photons m-2 s-1, which yielded a delivery rate of 113 μmol electrons h-1 mg-chl-1 and an average current density of 150 A m-2 s-1 mg-chl-1. P700+ re-reduction kinetics demonstrated that initial rates exceeded wildtype PSII-driven electron delivery. The electron delivery occurs ahead of the cytochrome b6f complex to enable both NADPH and ATP production. This work demonstrates an electrochemical system that can drive photosynthetic electron transport, provides a platform for photosynthetic foundational studies, and has the potential for improving photosynthetic performance at high light intensities.
Collapse
Affiliation(s)
- Christine M Lewis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin D Flory
- Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.,Engineering Center for Negative Carbon Emmisions, at Arizona State University, Tempe, Arizona 85281, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Wim F J Vermaas
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - César I Torres
- Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States.,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Sharma N, Singh S, Tanwar AS, Mondal J, Anand R. Mechanism of Coordinated Gating and Signal Transduction in Purine Biosynthetic Enzyme Formylglycinamidine Synthetase. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nandini Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sukhwinder Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ajay S. Tanwar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jagannath Mondal
- Centre for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
10
|
Koo J, Cha Y. Investigation of the Ferredoxin's Influence on the Anaerobic and Aerobic, Enzymatic H 2 Production. Front Bioeng Biotechnol 2021; 9:641305. [PMID: 33718343 PMCID: PMC7952640 DOI: 10.3389/fbioe.2021.641305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Ferredoxins are metalloproteins that deliver electrons to several redox partners, including [FeFe] hydrogenases that are potentially a component of biological H2 production technologies. Reduced ferredoxins can also lose electrons to molecular oxygen, which may lower the availability of electrons for cellular or synthetic reactions. Ferredoxins thus play a key role in diverse kinds of redox biochemistry, especially the enzymatic H2 production catalyzed by [FeFe] hydrogenases. We investigated how the yield of anaerobic and aerobic H2 production vary among the four different types of ferredoxins that are used to deliver electrons extracted from NADPH within the synthetic, fermentative pathway. We also assessed the electron loss due to O2 reduction by reduced ferredoxins within the pathway, for which the difference was as high as five-fold. Our findings provide valuable insights for further improving biological H2 production technologies and can also facilitate elucidation of mechanisms governing interactions between Fe–S cluster(s) and molecular oxygen.
Collapse
Affiliation(s)
- Jamin Koo
- Department of Chemical Engineering, Hongik University, Seoul, South Korea
| | - Yeeun Cha
- Department of Chemical Engineering, Hongik University, Seoul, South Korea
| |
Collapse
|
11
|
Campbell IJ, Kahanda D, Atkinson JT, Sparks ON, Kim J, Tseng CP, Verduzco R, Bennett GN, Silberg JJ. Recombination of 2Fe-2S Ferredoxins Reveals Differences in the Inheritance of Thermostability and Midpoint Potential. ACS Synth Biol 2020; 9:3245-3253. [PMID: 33226772 DOI: 10.1021/acssynbio.0c00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recombination can be used in the laboratory to overcome component limitations in synthetic biology by creating enzymes that exhibit distinct activities and stabilities from native proteins. To investigate how recombination affects the properties of an oxidoreductase that transfers electrons in cells, we created ferredoxin (Fd) chimeras by recombining distantly related cyanobacterial and cyanomyophage Fds (53% identity) that present similar midpoint potentials but distinct thermostabilities. Fd chimeras having a wide range of amino acid substitutions retained the ability to coordinate an iron-sulfur cluster, although their thermostabilities varied with the fraction of residues inherited from each parent. The midpoint potentials of chimeric Fds also varied. However, all of the synthetic Fds exhibited midpoint potentials outside of the parental protein range. Each of the chimeric Fds could also support electron transfer between Fd-NADP reductase and sulfite reductase in Escherichia coli, although the chimeric Fds varied in the expression required for similar levels of cellular electron transfer. These results show how Fds can be diversified through recombination and reveal differences in the inheritance of thermostability and electrochemical properties. Furthermore, they illustrate how electron transfer efficiencies of chimeric Fds can be rapidly evaluated using a synthetic metabolic pathway.
Collapse
Affiliation(s)
- Ian J. Campbell
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Dimithree Kahanda
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T. Atkinson
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Othneil Noble Sparks
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Jinyoung Kim
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| |
Collapse
|
12
|
de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles 2020; 24:923-935. [PMID: 33030592 PMCID: PMC7561548 DOI: 10.1007/s00792-020-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
The aerobic thermoalkaliphile Caldalkalibacillus thermarum strain TA2.A1 is a member of a separate order of alkaliphilic bacteria closely related to the Bacillales order. Efforts to relate the genomic information of this evolutionary ancient organism to environmental adaptation have been thwarted by the inability to construct a complete genome. The existing draft genome is highly fragmented due to repetitive regions, and gaps between and over repetitive regions were unbridgeable. To address this, Oxford Nanopore Technology's MinION allowed us to span these repeats through long reads, with over 6000-fold coverage. This resulted in a single 3.34 Mb circular chromosome. The profile of transporters and central metabolism gives insight into why the organism prefers glutamate over sucrose as carbon source. We propose that the deamination of glutamate allows alkalization of the immediate environment, an excellent example of how an extremophile modulates environmental conditions to suit its own requirements. Curiously, plant-like hallmark electron transfer enzymes and transporters are found throughout the genome, such as a cytochrome b6c1 complex and a CO2-concentrating transporter. In addition, multiple self-splicing group II intron-encoded proteins closely aligning to those of a telomerase reverse transcriptase in Arabidopsis thaliana were revealed. Collectively, these features suggest an evolutionary relationship to plant life.
Collapse
Affiliation(s)
- Samuel I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Falk Kalamorz
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, The University of Otago, Dunedin, New Zealand
| | | | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
13
|
Campbell IJ, Olmos JL, Xu W, Kahanda D, Atkinson JT, Sparks ON, Miller MD, Phillips GN, Bennett GN, Silberg JJ. Prochlorococcus phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases. J Biol Chem 2020; 295:10610-10623. [PMID: 32434930 DOI: 10.1074/jbc.ra120.013501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Indexed: 01/13/2023] Open
Abstract
Marine cyanobacteria are infected by phages whose genomes encode ferredoxin (Fd) electron carriers. These Fds are thought to redirect the energy harvested from light to phage-encoded oxidoreductases that enhance viral fitness, but it is unclear how the biophysical properties and partner specificities of phage Fds relate to those of photosynthetic organisms. Here, results of a bioinformatics analysis using a sequence similarity network revealed that phage Fds are most closely related to cyanobacterial Fds that transfer electrons from photosystems to oxidoreductases involved in nutrient assimilation. Structural analysis of myovirus P-SSM2 Fd (pssm2-Fd), which infects the cyanobacterium Prochlorococcus marinus, revealed high levels of similarity to cyanobacterial Fds (root mean square deviations of ≤0.5 Å). Additionally, pssm2-Fd exhibited a low midpoint reduction potential (-336 mV versus a standard hydrogen electrode), similar to other photosynthetic Fds, although it had lower thermostability (Tm = 28 °C) than did many other Fds. When expressed in an Escherichia coli strain deficient in sulfite assimilation, pssm2-Fd complemented bacterial growth when coexpressed with a P. marinus sulfite reductase, revealing that pssm2-Fd can transfer electrons to a host protein involved in nutrient assimilation. The high levels of structural similarity with cyanobacterial Fds and reactivity with a host sulfite reductase suggest that phage Fds evolved to transfer electrons to cyanobacterially encoded oxidoreductases.
Collapse
Affiliation(s)
- Ian J Campbell
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Jose Luis Olmos
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Weijun Xu
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | | | | | | | | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemistry, Rice University, Houston, Texas, USA
| | - George N Bennett
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Jonathan J Silberg
- Department of Biosciences, Rice University, Houston, Texas, USA .,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA.,Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
14
|
Artz JH, Tokmina-Lukaszewska M, Mulder DW, Lubner CE, Gutekunst K, Appel J, Bothner B, Boehm M, King PW. The structure and reactivity of the HoxEFU complex from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2020; 295:9445-9454. [PMID: 32409585 PMCID: PMC7363133 DOI: 10.1074/jbc.ra120.013136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H2)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H2, NAD(P)H, and Fdx remain to be resolved. To address these questions, here we analyzed recombinantly produced HoxEFU by electron paramagnetic resonance spectroscopy and kinetic assays with natural substrates. The purified HoxEFU subcomplex catalyzed electron transfer reactions among NAD(P)H, flavodoxin, and several ferredoxins, thus functioning in vitro as a shuttle among different cyanobacterial pools of reducing equivalents. Both Fdx1-dependent reductions of NAD+ and NADP+ were cooperative. HoxEFU also catalyzed the flavodoxin-dependent reduction of NAD(P)+, Fdx2-dependent oxidation of NADH and Fdx4- and Fdx11-dependent reduction of NAD+. MS-based mapping identified an Fdx1-binding site at the junction of HoxE and HoxF, adjacent to iron-sulfur (FeS) clusters in both subunits. Overall, the reactivity of HoxEFU observed here suggests that it functions in managing peripheral electron flow from photosynthetic electron transfer, findings that reveal detailed insights into how ubiquitous cellular components may be used to allocate energy flow into specific bioenergetic products.
Collapse
Affiliation(s)
- Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Jens Appel
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Marko Boehm
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
15
|
Srivastava AP, Mishra N, Prasad RLA, Rajesh P, Knaff DB. Thermodynamics of ferredoxin binding to cyanobacterial nitrate reductase. PHOTOSYNTHESIS RESEARCH 2020; 144:73-84. [PMID: 32222887 DOI: 10.1007/s11120-020-00738-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
The role of the seven negatively charged amino acids of Synechocystis sp. PCC 6803 ferredoxin (Fd), i.e., Glu29, Glu30, Asp60, Asp65, Asp66, Glu92, and Glu93, predicted to form complex with nitrate reductase (NR), was investigated using site-directed mutagenesis and isothermal titration calorimetry (ITC). These experiments identified four Fd amino acids, i.e., Glu29, Asp60, Glu92, and Glu93, that are essential for the Fd binding and efficient electron transfer to the NR. ITC measurements showed that the most likely stoichiometry for the wild-type NR/wild-type Fd complex is 1:1, a Kd value 4.7 μM for the complex at low ionic strength residues and both the enthalpic and entropic components are associated with complex formation. ITC titrations of wild-type NR with four Fd variants, E29N, D60N, E92Q, and E93N demonstrated that the complex formation, although favorable, was less energetically favorable when compared to complex formation between the two wild-type proteins, suggesting that these negatively charged Fd residues at these positions are important for the effective and productive interaction with wild-type enzyme.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
| | - Neelam Mishra
- Department of Botany, St. Joseph's College, Bangalore, Karnataka, India
| | | | - Preethi Rajesh
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
16
|
Sharma N, Ahalawat N, Sandhu P, Strauss E, Mondal J, Anand R. Role of allosteric switches and adaptor domains in long-distance cross-talk and transient tunnel formation. SCIENCE ADVANCES 2020; 6:eaay7919. [PMID: 32284973 PMCID: PMC7124931 DOI: 10.1126/sciadv.aay7919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/08/2020] [Indexed: 06/11/2023]
Abstract
Transient tunnels that assemble and disassemble to facilitate passage of unstable intermediates in enzymes containing multiple reaction centers are controlled by allosteric cues. Using the 140-kDa purine biosynthetic enzyme PurL as a model system and a combination of biochemical and x-ray crystallographic studies, we show that long-distance communication between ~25-Å distal active sites is initiated by an allosteric switch, residing in a conserved catalytic loop, adjacent to the synthetase active site. Further, combinatory experiments seeded from molecular dynamics simulations help to delineate transient states that bring out the central role of nonfunctional adaptor domains. We show that carefully orchestrated conformational changes, facilitated by interplay of dynamic interactions at the allosteric switch and adaptor-domain interface, control reactivity and concomitant formation of the ammonia tunnel. This study asserts that substrate channeling is modulated by allosteric hotspots that alter protein energy landscape, thereby allowing the protein to adopt transient conformations paramount to function.
Collapse
Affiliation(s)
- Nandini Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Navjeet Ahalawat
- Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Padmani Sandhu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Jagannath Mondal
- Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Jaroensuk J, Intasian P, Kiattisewee C, Munkajohnpon P, Chunthaboon P, Buttranon S, Trisrivirat D, Wongnate T, Maenpuen S, Tinikul R, Chaiyen P. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J Biol Chem 2019; 294:11536-11548. [PMID: 31182484 DOI: 10.1074/jbc.ra119.008246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/08/2019] [Indexed: 11/06/2022] Open
Abstract
An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Cholpisit Kiattisewee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pobthum Munkajohnpon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Paweenapon Chunthaboon
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Duangthip Trisrivirat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
18
|
Wu F, Yu P, Yang X, Han Z, Wang M, Mao L. Exploring Ferredoxin-Dependent Glutamate Synthase as an Enzymatic Bioelectrocatalyst. J Am Chem Soc 2018; 140:12700-12704. [DOI: 10.1021/jacs.8b08020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xiaoti Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Zhongjie Han
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| |
Collapse
|
19
|
Hemschemeier A, Happe T. The plasticity of redox cofactors: from metalloenzymes to redox-active DNA. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0029-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Fam RR, Hiong KC, Choo CY, Wong WP, Chew SF, Ip YK. Molecular characterization of a novel algal glutamine synthetase (GS) and an algal glutamate synthase (GOGAT) from the colorful outer mantle of the giant clam, Tridacna squamosa , and the putative GS-GOGAT cycle in its symbiotic zooxanthellae. Gene 2018; 656:40-52. [DOI: 10.1016/j.gene.2018.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
|
21
|
Nasr B, Chatterton R, Yong JHM, Jamshidi P, D'Abaco GM, Bjorksten AR, Kavehei O, Chana G, Dottori M, Skafidas E. Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids. BIOSENSORS 2018; 8:E14. [PMID: 29401739 PMCID: PMC5872062 DOI: 10.3390/bios8010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
Neurons release neurotransmitters such as glutamate to communicate with each other and to coordinate brain functioning. As increased glutamate release is indicative of neuronal maturation and activity, a system that can measure glutamate levels over time within the same tissue and/or culture system is highly advantageous for neurodevelopmental investigation. To address such challenges, we develop for the first time a convenient method to realize functionalized borosilicate glass capillaries with nanostructured texture as an electrochemical biosensor to detect glutamate release from cerebral organoids generated from human embryonic stem cells (hESC) that mimic various brain regions. The biosensor shows a clear catalytic activity toward the oxidation of glutamate with a sensitivity of 93 ± 9.5 nA·µM-1·cm-2. It was found that the enzyme-modified microelectrodes can detect glutamate in a wide linear range from 5 µM to 0.5 mM with a limit of detection (LOD) down to 5.6 ± 0.2 µM. Measurements were performed within the organoids at different time points and consistent results were obtained. This data demonstrates the reliability of the biosensor as well as its usefulness in measuring glutamate levels across time within the same culture system.
Collapse
Affiliation(s)
- Babak Nasr
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
- ARC Centre of Excellence for Integrative Brain Function, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Rachael Chatterton
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
| | - Jason Hsien Ming Yong
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pegah Jamshidi
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
| | - Giovanna Marisa D'Abaco
- The Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Andrew Robin Bjorksten
- The Department of Anaesthesia & Pain Management, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
| | - Omid Kavehei
- Faculty of Engineering and Information Technology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3050, Australia.
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
- Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC 3053, Australia.
- The Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
- ARC Centre of Excellence for Integrative Brain Function, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
22
|
García-Gutiérrez Á, Cánovas FM, Ávila C. Glutamate synthases from conifers: gene structure and phylogenetic studies. BMC Genomics 2018; 19:65. [PMID: 29351733 PMCID: PMC5775586 DOI: 10.1186/s12864-018-4454-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plants synthesize glutamate from ammonium by the combined activity of the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) through the glutamate synthase cycle. In plants, there are two forms of glutamate synthases that differ in their electron donors, NADH-GOGAT (EC 1.4.1.14) and Fd-GOGAT (EC 1.4.7.1), which have differential roles either in primary ammonia assimilation or in the reassimilation of ammonium from different catabolic processes. Glutamate synthases are complex iron-sulfur flavoproteins containing functional domains involved in the control and coordination of their catalytic activities in annual plants. In conifers, partial cDNA sequences for GOGATs have been isolated and used for gene expression studies. However, knowledge of the gene structure and of phylogenetic relationships with other plant enzymes is quite scant. RESULTS Technological advances in conifer megagenomes sequencing have made it possible to obtain full-length cDNA sequences encoding Fd- and NADH-GOGAT from maritime pine, as well as BAC clones containing sequences for NADH-GOGAT and Fd-GOGAT genes. In the current study, we studied the genomic organization of pine GOGAT genes, the size of their exons/introns, copy numbers in the pine genome and relationships with other plant genes. Phylogenetic analysis was performed, and the degree of preservation and dissimilarity of key domains for the catalytic activities of these enzymes in different taxa were determined. CONCLUSIONS Fd- and NADH-GOGAT are encoded by single-copy genes in the maritime pine genome. The Fd-GOGAT gene is extremely large spanning more than 330 kb and the presence of very long introns highlights the important contribution of LTR retrotransposons to the gene size in conifers. In contrast, the structure of the NADH-GOGAT gene is similar to the orthologous genes in angiosperms. Our phylogenetic analysis indicates that these two genes had different origins during plant evolution. The results provide new insights into the structure and molecular evolution of these essential genes.
Collapse
Affiliation(s)
- Ángel García-Gutiérrez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
23
|
Hirasawa M, Solis J, Vaidyanathan N, Srivastava AP, Wynn RM, Sutton RB, Knaff DB. Identification of the ferredoxin interaction sites on ferredoxin-dependent glutamate synthase from Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2017; 134:317-328. [PMID: 28975508 DOI: 10.1007/s11120-017-0446-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Based on in silico docking methods, five amino acids in glutamate synthase (Gln-467, His-1144, Asn-1147, Arg-1162, and Trp-676) likely constitute key binding residues in the interface of a glutamate synthase:ferredoxin complex. Although all interfacial mutants studied showed the ability to form a complex under low ionic strength, these docking mutations showed significantly less ferredoxin-dependent activities, while still retaining enzymatic activity. Furthermore, isothermal titration calorimetry showed a possible 1:2 molar ratio between the wild-type glutamate synthase and ferredoxin. However, each of our interfacial mutants showed only a 1:1 complex with ferredoxin, suggesting that the mutations directly affect the glutamate synthase:ferredoxin heterodimer interface.
Collapse
Affiliation(s)
- Masakazu Hirasawa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Jacaranda Solis
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
- Immunology and Molecular Microbiology, Texas Tech University Health Science Center, Lubbock, TX, 79430-6591, USA
| | - Nanditha Vaidyanathan
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
- Depuy Synthes Companies, 1302 Wrights Lane East, West Chester, PA, 19380, USA
| | - Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinoi, 60064, USA
| | - R Max Wynn
- Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA.
| | - Roger B Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech Health Science Center, Lubbock, TX, 79430-6551, USA
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
| |
Collapse
|
24
|
Liu ZW, Li H, Wang WL, Wu ZJ, Cui X, Zhuang J. CsGOGAT Is Important in Dynamic Changes of Theanine Content in Postharvest Tea Plant Leaves under Different Temperature and Shading Spreadings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9693-9702. [PMID: 29020770 DOI: 10.1021/acs.jafc.7b04552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We analyzed the changes of theanine content in postharvest tea leaves under high temperature (38 °C), low temperature (4 °C), and shading spreadings by using ultrahigh-performance liquid chromatography. The differentially expressed proteins (DEPs), CsFd-GOGAT and CsNADH-GOGAT, which are involved in theanine biosynthesis pathway, were identified from the corresponding proteome data. The protein-protein interactions of CsFd-GOGAT and CsNADH-GOGAT, CsTS1, or CsNiR were verified by yeast two-hybrid technology. The expression profiles of 17 genes in theanine metabolism, including CsFd-GOGAT and CsNADH-GOGAT, were analyzed by quantitative real-time polymerase chain reaction. The correlations between the dynamic changes of theanine content and expression profiles of related genes and DEPs were analyzed. This study preliminarily proved the importance of CsGOGAT in dynamic changes of theanine content in postharvest tea leaves during spreading.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University , Nanjing, 210095, People's Republic of China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University , Nanjing, 210095, People's Republic of China
| | - Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University , Nanjing, 210095, People's Republic of China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University , Nanjing, 210095, People's Republic of China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University , Nanjing, 210095, People's Republic of China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University , Nanjing, 210095, People's Republic of China
| |
Collapse
|
25
|
Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part I. [4Fe-4S] + [2Fe-2S] iron-sulfur proteins. J Struct Biol 2017; 200:1-19. [DOI: 10.1016/j.jsb.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023]
|
26
|
Sétif P, Mutoh R, Kurisu G. Dynamics and energetics of cyanobacterial photosystem I:ferredoxin complexes in different redox states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:483-496. [DOI: 10.1016/j.bbabio.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
27
|
Terzyan SS, Cook PF, Heroux A, Hanigan MH. Structure of 6-diazo-5-oxo-norleucine-bound human gamma-glutamyl transpeptidase 1, a novel mechanism of inactivation. Protein Sci 2017; 26:1196-1205. [PMID: 28378915 PMCID: PMC5441403 DOI: 10.1002/pro.3172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023]
Abstract
Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM-1 min-1 and the Ki was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.
Collapse
Affiliation(s)
- Simon S. Terzyan
- Laboratory of Biomolecular Structure and FunctionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| | - Paul F. Cook
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahoma73019
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science DivisionBrookhaven National LaboratoryUptonNew York11973
| | - Marie H. Hanigan
- Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| |
Collapse
|
28
|
Srivastava AP, Hardy EP, Allen JP, Vaccaro BJ, Johnson MK, Knaff DB. Identification of the Ferredoxin-Binding Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase. Biochemistry 2017; 56:5582-5592. [PMID: 28520412 DOI: 10.1021/acs.biochem.7b00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in silico model for the 1:1 ferredoxin (Fd)/nitrate reductase (NR) complex, using the known structure of Synechocystis sp. PCC 6803 Fd and the in silico model of Synechococcus sp. PCC 7942 NR, is used to map the interaction sites that define the interface between Fd and NR. To test the electrostatic interactions predicted by the model complex, five positively charged NR amino acids (Arg43, Arg46, Arg197, Lys201, and Lys614) and a negatively charged amino acid (Glu219) were altered using site-directed mutagenesis and characterized by activity measurements, metal analysis, and electron paramagnetic resonance (EPR) studies. All of the charge replacement variants retained wild-type levels of activity with reduced methyl viologen (MV), but a significant decrease in activity was observed for the R43Q, R46Q, K201Q, and K614Q variants when reduced Fd served as the electron donor. EPR analysis as well as the Fe and Mo analyses showed that loss of activity observed with these variants was not the consequence of perturbation of the Mo center or [4Fe-4S] cluster. Therefore, the loss of the Fd-linked specific activity observed with these variants can be explained only by invoking a role for Arg43, Arg46, Lys201, and Lys614 in Fd binding. The R43Q, R46Q, K201Q, and K614Q NR variants also showed a decreased binding affinity for Fd, compared to that of wild-type NR, supporting a key role of these four positively charged residues in the productive binding of Fd.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - Emily P Hardy
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - James P Allen
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Brian J Vaccaro
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States.,Center for Biotechnology and Genomics, Texas Tech University , Lubbock, Texas 79409-3132, United States
| |
Collapse
|
29
|
The competition between chemistry and biology in assembling iron-sulfur derivatives. Molecular structures and electrochemistry. Part IV. {[Fe3S4](SγCys)3} proteins. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Wei W, Monard G, Gauld J. Computational insights into substrate binding and catalytic mechanism of the glutaminase domain of glucosamine-6-phosphate synthase (GlmS). RSC Adv 2017. [DOI: 10.1039/c7ra04906d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanistic cysteinyl of GlmS can activate its thiol using its own α-amine without the need for a bridging water.
Collapse
Affiliation(s)
- Wanlei Wei
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Gerald Monard
- Université de Lorraine
- UMR 7565 SRSMC
- F-54506 Vandoeuvre-les-Nancy
- France
| | - James W. Gauld
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
31
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
32
|
Quaranta A, Lagoutte B, Frey J, Sétif P. Photoreduction of the ferredoxin/ferredoxin-NADP(+)-reductase complex by a linked ruthenium polypyridyl chromophore. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:347-54. [PMID: 27180037 DOI: 10.1016/j.jphotobiol.2016.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
Abstract
Photosynthetic ferredoxin and its main partner ferredoxin-NADP(+)-reductase (FNR) are key proteins during the photoproduction of reductive power involved in photosynthetic growth. In this work, we used covalent attachment of ruthenium derivatives to different cysteine mutants of ferredoxin to trigger by laser-flash excitation both ferredoxin reduction and subsequent electron transfer from reduced ferredoxin to FNR. Rates and yields of reduction of the ferredoxin [2Fe-2S] cluster by reductively quenched Ru* could be measured for the first time for such a low redox potential protein whereas ferredoxin-FNR electron transfer was characterized in detail for one particular Ru-ferredoxin covalent adduct. For this adduct, the efficiency of FNR single reduction by reduced ferredoxin was close to 100% under both first-order and diffusion-limited second-order conditions. Interprotein intracomplex electron transfer was measured unambiguously for the first time with a fast rate of c. 6500s(-1). Our measurements point out that Ru photosensitizing is a powerful approach to study the functional interactions of ferredoxin with its numerous partners besides FNR.
Collapse
Affiliation(s)
- Annamaria Quaranta
- CEA, iBiTec-S/SB2SM, CEA Saclay, 91191 Gif sur Yvette, France; Université Paris-Saclay, I2BC, UMR 9198, 91190 Gif sur Yvette, France
| | | | - Julien Frey
- CEA, iBiTec-S/SB2SM, CEA Saclay, 91191 Gif sur Yvette, France
| | - Pierre Sétif
- CEA, iBiTec-S/SB2SM, CEA Saclay, 91191 Gif sur Yvette, France; Université Paris-Saclay, I2BC, UMR 9198, 91190 Gif sur Yvette, France.
| |
Collapse
|
33
|
Mutoh R, Muraki N, Shinmura K, Kubota-Kawai H, Lee YH, Nowaczyk MM, Rögner M, Hase T, Ikegami T, Kurisu G. X-ray Structure and Nuclear Magnetic Resonance Analysis of the Interaction Sites of the Ga-Substituted Cyanobacterial Ferredoxin. Biochemistry 2015; 54:6052-61. [DOI: 10.1021/acs.biochem.5b00601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Risa Mutoh
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Norifumi Muraki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Kanako Shinmura
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Hisako Kubota-Kawai
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Young-Ho Lee
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Marc M. Nowaczyk
- Plant
Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Matthias Rögner
- Plant
Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Toshiharu Hase
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Takahisa Ikegami
- Department
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Genji Kurisu
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
34
|
Vit A, Mashabela GT, Blankenfeldt W, Seebeck FP. Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC. Chembiochem 2015; 16:1490-6. [DOI: 10.1002/cbic.201500168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 01/08/2023]
|
35
|
Vanoni MA. Glutamate synthase: A case-study for in silico drug screening on a complex iron–sulfur flavoenzyme? Gene X 2015; 564:233-5. [DOI: 10.1016/j.gene.2015.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022] Open
|
36
|
Yoneyama T, Fujimori T, Yanagisawa S, Hase T, Suzuki A. 15N Tracing Studies on In Vitro Reactions of Ferredoxin-Dependent Nitrite Reductase and Glutamate Synthase Using Reconstituted Electron Donation Systems. PLANT & CELL PHYSIOLOGY 2015; 56:1154-1161. [PMID: 25745028 DOI: 10.1093/pcp/pcv039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
It is known that plants contain ferredoxin (Fd)-dependent nitrite reductase (NiR) and glutamate synthase (GOGAT). The Fd-NiR reaction produces ammonia from nitrite, and the activity is usually measured by nitrite disappearance. The Fd-GOGAT reaction forms two glutamates of different origin, from glutamine and 2-oxoglutarate, and the activity is measured by the oxidation of reductant (NADPH) or by formation of total glutamate. Here, a quantitative probe of the products and efficiency of the process was conducted using (15)N tracing techniques on these reactions in vitro. We quantified the reduction of (15)N-labeled [Formula: see text] to [Formula: see text] and the formation of [(15)N]glutamate and [(14)N]glutamate from [5-(15)N-amide]glutamine plus 2-oxoglutarate by NiR and GOGAT, respectively, with the reductant-Fd-NADP(+) oxidoreductase (FNR)-Fd system as the sequential electron donors. The supply of dithionite or NADPH to recombinant cyanobacterial NiR led to electron donation system-dependent formation of [(15)N]ammonium from [(15)N]nitrite. Addition of 20 mM NaCl and 20 mM Na-ascorbate accelerated nitrite reduction under high concentrations of NADPH. A sufficient supply of NADPH to recombinant Zea mays Fd-GOGAT generated complete GOGAT activity (transferring the [5-(15)N]amide of glutamine to 2-oxoglutarate to form [(15)N]glutamate), whereas a shortage of NADPH resulted in glutaminase activity only, which removed the amide from glutamine and released ammonia and [(14)N]glutamate. We conclude that although the recombinant Fd-GOGAT enzyme has two forms of glutamate synthesis, the first by glutaminase (ammonia release by glutamine amidotransferase) and the second by glutamate synthase (coupling of the ammonia and exogenously applied 2-oxoglutarate), the first works without NADPH, while the second is strictly dependent on NADPH availability.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Tamaki Fujimori
- Department of Applied Biological Chemistry, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shuichi Yanagisawa
- Department of Applied Biological Chemistry, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toshiharu Hase
- Laboratory of Regulation of Biological Reaction, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871 Japan
| | - Akira Suzuki
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
37
|
Tripathy JN, Hirasawa M, Sutton RB, Dasgupta A, Vaidyanathan N, Zabet-Moghaddam M, Florencio FJ, Srivastava AP, Knaff DB. A loop unique to ferredoxin-dependent glutamate synthases is not absolutely essential for ferredoxin-dependent catalytic activity. PHOTOSYNTHESIS RESEARCH 2015; 123:129-139. [PMID: 25288260 DOI: 10.1007/s11120-014-0044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/22/2014] [Indexed: 06/03/2023]
Abstract
It had been proposed that a loop, typically containing 26 or 27 amino acids, which is only present in monomeric, ferredoxin-dependent, "plant-type" glutamate synthases and is absent from the catalytic α-subunits of both NADPH-dependent, heterodimeric glutamate synthases found in non-photosynthetic bacteria and NADH-dependent heterodimeric cyanobacterial glutamate synthases, plays a key role in productive binding of ferredoxin to the plant-type enzymes. Site-directed mutagenesis has been used to delete the entire 27 amino acid-long loop in the ferredoxin-dependent glutamate synthase from the cyanobacterium Synechocystis sp. PCC 6803. The specific activity of the resulting loopless variant of this glutamate synthase, when reduced ferredoxin serves as the electron donor, is actually higher than that of the wild-type enzyme, suggesting that this loop is not absolutely essential for efficient electron transfer from reduced ferredoxin to the enzyme. These results are consistent with the results of an in-silico study that suggests that the loop is unlikely to interact directly with ferredoxin in the energetically most favorable model of a 1:1 complex of ferredoxin with the wild-type enzyme.
Collapse
Affiliation(s)
- Jatindra N Tripathy
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Pire C, Martínez-Espinosa RM, Pérez-Pomares F, Esclapez J, Bonete MJ. Ferredoxin-dependent glutamate synthase: involvement in ammonium assimilation in Haloferax mediterranei. Extremophiles 2013; 18:147-59. [DOI: 10.1007/s00792-013-0606-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/14/2013] [Indexed: 11/28/2022]
|
40
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
41
|
Srivastava AP, Hirasawa M, Bhalla M, Chung JS, Allen JP, Johnson MK, Tripathy JN, Rubio LM, Vaccaro B, Subramanian S, Flores E, Zabet-Moghaddam M, Stitle K, Knaff DB. Roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 2013; 52:4343-53. [PMID: 23692082 DOI: 10.1021/bi400354n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of four conserved basic amino acids in the reaction catalyzed by the ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 have been investigated using site-directed mutagenesis in combination with measurements of steady-state kinetics, substrate-binding affinities, and spectroscopic properties of the enzyme's two prosthetic groups. Replacement of either Lys58 or Arg70 by glutamine leads to a complete loss of activity, both with the physiological electron donor, reduced ferredoxin, and with a nonphysiological electron donor, reduced methyl viologen. More conservative, charge-maintaining K58R and R70K variants were also completely inactive. Replacement of Lys130 by glutamine produced a variant that retained 26% of the wild-type activity with methyl viologen as the electron donor and 22% of the wild-type activity with ferredoxin as the electron donor, while replacement by arginine produces a variant that retains a significantly higher percentage of the wild-type activity with both electron donors. In contrast, replacement of Arg146 by glutamine had minimal effect on the activity of the enzyme. These results, along with substrate-binding and spectroscopic measurements, are discussed in terms of an in silico structural model for the enzyme.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Johnson TW, Li H, Frigaard NU, Golbeck JH, Bryant DA. [2Fe-2S] proteins in Chlorosomes: redox properties of CsmI, CsmJ, and CsmX of the Chlorosome envelope of Chlorobaculum tepidum. Biochemistry 2013; 52:1331-43. [PMID: 23368794 DOI: 10.1021/bi301455k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chlorosome envelope of Chlorobaculum tepidum contains 10 polypeptides, three of which, CsmI, CsmJ, and CsmX, have an adrenodoxin-like domain harboring a single [2Fe-2S] cluster. Mutants that produced chlorosomes containing two, one, or none of these Fe-S proteins were constructed [Li, H., et al. (2013) Biochemistry 52, preceding paper in this issue ( DOI: 10.1021/bi301454g )]. The electron paramagnetic resonance (EPR) spectra, g values, and line widths of the Fe-S clusters in individual CsmI, CsmJ, and CsmX proteins were obtained from studies with isolated chlorosomes. The Fe-S clusters in these proteins were characterized by EPR and could be differentiated on the basis of their g values and line widths. The EPR spectrum of wild-type chlorosomes could be simulated by a 1:1 admixture of the CsmI and CsmJ spectra. No contribution of CsmX to the EPR spectrum of chlorosomes was observed because of its low abundance. In chlorosomes that contained only CsmI or CsmJ, the midpoint potential of the [2Fe-2S] clusters was -205 or 8 mV, respectively; the midpoint potential of the [2Fe-2S] cluster in CsmX was estimated to be more oxidizing than -180 mV. In wild-type chlorosomes, the midpoint potentials of the [2Fe-2S] clusters were -348 mV for CsmI and 92 mV for CsmJ. The lower potential for CsmI in the presence of CsmJ, and the higher potential for CsmJ in the presence of CsmI, were attributed to interactions that occur when these proteins form complexes in the chlorosome envelope. The redox properties of CsmI and CsmJ are consistent with their proposed participation in the transfer of electrons to and from quenchers of energy transfer in chlorosomes.
Collapse
Affiliation(s)
- T Wade Johnson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
43
|
Ando N, Kung Y, Can M, Bender G, Ragsdale SW, Drennan CL. Transient B12-dependent methyltransferase complexes revealed by small-angle X-ray scattering. J Am Chem Soc 2012; 134:17945-54. [PMID: 23051056 PMCID: PMC3484714 DOI: 10.1021/ja3055782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the Wood-Ljungdahl carbon fixation pathway, protein-protein interactions between methyltransferase (MeTr) and corrinoid iron-sulfur protein (CFeSP) are required for the transfer of a methyl group. While crystal structures have been determined for MeTr and CFeSP both free and in complex, solution structures have not been established. Here, we examine the transient interactions between MeTr and CFeSP in solution using anaerobic small-angle X-ray scattering (SAXS) and present a global analysis approach for the deconvolution of heterogeneous mixtures formed by weakly interacting proteins. We further support this SAXS analysis with complementary results obtained by anaerobic isothermal titration calorimetry. Our results indicate that solution conditions affect the cooperativity with which CFeSP binds to MeTr, resulting in two distinct CFeSP/MeTr complexes with differing oligomeric compositions, both of which are active. One assembly resembles the CFeSP/MeTr complex observed crystallographically with 2:1 protein stoichiometry, while the other best fits a 1:1 CFeSP/MeTr arrangement. These results demonstrate the value of SAXS in uncovering the rich solution behavior of transient protein interactions visualized by crystallography.
Collapse
Affiliation(s)
- Nozomi Ando
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
44
|
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase. Biochem J 2012; 443:417-26. [PMID: 22280445 DOI: 10.1042/bj20112210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.
Collapse
|
45
|
Shinmura K, Muraki N, Yoshida A, Hase T, Kurisu G. Crystallization and preliminary X-ray studies of an electron-transfer complex of ferredoxin and ferredoxin-dependent glutamate synthase from the cyanobacterium Leptolyngbya boryana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:324-7. [PMID: 22442234 PMCID: PMC3310542 DOI: 10.1107/s1744309112003387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 11/11/2022]
Abstract
Ferredoxin (Fd) dependent glutamate synthase (Fd-GOGAT) is a key enzyme involved in nitrogen assimilation that catalyzes the two-electron reductive conversion of Gln and 2-oxoglutarate to two molecules of Glu. Fd serves as an electron donor for Fd-GOGAT and the two proteins form a transient electron-transfer complex. In this study, these two proteins were cocrystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected and processed at 2.65 Å resolution. The crystals belonged to space group P4(3), with unit-cell parameters a = b = 84.95, c = 476.31 Å.
Collapse
Affiliation(s)
- Kanako Shinmura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norifumi Muraki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayako Yoshida
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiharu Hase
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Cyanidioschyzon merolae
ferredoxin: A high resolution crystal structure analysis and its thermal stability. FEBS Lett 2011; 585:1299-302. [DOI: 10.1016/j.febslet.2011.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
|
47
|
Wisedchaisri G, Dranow DM, Lie TJ, Bonanno JB, Patskovsky Y, Ozyurt SA, Sauder JM, Almo SC, Wasserman SR, Burley SK, Leigh JA, Gonen T. Structural underpinnings of nitrogen regulation by the prototypical nitrogen-responsive transcriptional factor NrpR. Structure 2010; 18:1512-21. [PMID: 21070950 PMCID: PMC2996049 DOI: 10.1016/j.str.2010.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/02/2010] [Accepted: 08/13/2010] [Indexed: 10/18/2022]
Abstract
Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins--the nitrogen regulatory protein NrpR--that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression.
Collapse
Affiliation(s)
| | - David M. Dranow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Thomas J. Lie
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Yury Patskovsky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Sinem A. Ozyurt
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121
| | - J. Michael Sauder
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Stephen R. Wasserman
- Eli Lilly and Company, LRL-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Stephen K. Burley
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121
| | - John A. Leigh
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Tamir Gonen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute
| |
Collapse
|
48
|
Xu X, Scanu S, Chung JS, Hirasawa M, Knaff DB, Ubbink M. Structural and functional characterization of the ga-substituted ferredoxin from Synechocystis sp. PCC6803, a mimic of the native protein. Biochemistry 2010; 49:7790-7. [PMID: 20690702 DOI: 10.1021/bi100712g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosynthetic organisms, ferredoxin (Fd) interacts with many proteins, acting as a shuttle for electrons from Photosystem I to a group of enzymes involved in NADP(+) reduction, sulfur and nitrogen assimilation, and the regulation of carbon assimilation. The study of the dynamic interactions between ferredoxin and these enzymes by nuclear magnetic resonance is severely hindered by the paramagnetic [2Fe-2S] cluster of a ferredoxin. To establish whether ferredoxin in which the cluster has been replaced by Ga is a suitable diamagnetic mimic, the solution structure of Synechocystis Ga-substituted ferredoxin has been determined and compared with the structure of the native protein. The ensemble of 10 structures with the lowest energies has an average root-mean-square deviation of 0.30 +/- 0.05 A for backbone atoms and 0.65 +/- 0.04 A for all heavy atoms. Comparison of the NMR structure of GaFd with the crystal structure of the native Fd indicates that the general structural fold found for the native, iron-containing ferredoxin is conserved in GaFd. The ferredoxin contains a single gallium and no inorganic sulfide. The distortion of the metal binding loop caused by the single gallium substitution is small. The binding site on Fd for binding ferredoxin:NADP(+) reductase in solution, determined using GaFd, includes the metal binding loop and its surroundings, consistent with the crystal structures of related complexes. The results provide a structural justification for the use of the gallium-substituted analogue in interaction studies.
Collapse
Affiliation(s)
- Xingfu Xu
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 2010; 107:2878-83. [PMID: 20133651 DOI: 10.1073/pnas.0906101107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 A resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 A. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 A and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, Delta(1)-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of Delta(1)-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site.
Collapse
|
50
|
Wang XS, Roitberg AE, Richards NGJ. Computational Studies of Ammonia Channel Function in Glutamine 5′-Phosphoribosylpyrophosphate Amidotransferase. Biochemistry 2009; 48:12272-82. [DOI: 10.1021/bi901521d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang S. Wang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| | - Nigel G. J. Richards
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| |
Collapse
|