1
|
Kenderdine T, Fabris D. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. MASS SPECTROMETRY REVIEWS 2023; 42:1332-1357. [PMID: 34939674 PMCID: PMC9218015 DOI: 10.1002/mas.21766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 06/07/2023]
Abstract
The deceptively simple concepts of mass determination and fragment analysis are the basis for the application of mass spectrometry (MS) to a boundless range of analytes, including fundamental components and polymeric forms of nucleic acids (NAs). This platform affords the intrinsic ability to observe first-hand the effects of NA-active drugs on the chemical structure, composition, and conformation of their targets, which might affect their ability to interact with cognate NAs, proteins, and other biomolecules present in a natural environment. The possibility of interfacing with high-performance separation techniques represents a multiplying factor that extends these capabilities to cover complex sample mixtures obtained from organisms that were exposed to NA-active drugs. This report provides a brief overview of these capabilities in the context of the analysis of the products of NA-drug activity and NA therapeutics. The selected examples offer proof-of-principle of the applicability of this platform to all phases of the journey undertaken by any successful NA drug from laboratory to bedside, and provide the rationale for its rapid expansion outside traditional laboratory settings in support to ever growing manufacturing operations.
Collapse
Affiliation(s)
| | - Dan Fabris
- Department of Chemistry, University of Connecticut
| |
Collapse
|
2
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
3
|
Sosic A, Göttlich R, Fabris D, Gatto B. B-CePs as cross-linking probes for the investigation of RNA higher-order structure. Nucleic Acids Res 2021; 49:6660-6672. [PMID: 34125908 PMCID: PMC8266612 DOI: 10.1093/nar/gkab468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Elucidating the structure of RNA and RNA ensembles is essential to understand biological functions. In this work, we explored the previously uncharted reactivity of bis-chloropiperidines (B-CePs) towards RNA. We characterized at the molecular level the different adducts induced by the fast reacting compound B-CeP 1 with RNA. Following an approach based on solution thermal melting coupled with ESI mass spectrometry (STHEM-ESI), we proved the ability of B-CePs to induce inter-molecular cross-links between guanines in double stranded RNA. These results open the possibility of using B-CePs as structural probes for investigating higher-order structures, such as the kissing loop complex established by the dimerization initiation site (DIS) of the HIV-1 genome. We confirmed the potential of B-CePs to reveal the identity of RNA structures involved in long-range interactions, expecting to benefit the characterization of samples that are not readily amenable to traditional high-resolution techniques, and thus promoting the elucidation of pertinent RNA systems associated with old and new diseases.
Collapse
Affiliation(s)
- Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dan Fabris
- Departments of Chemistry and Biological Sciences, University at Albany-SUNY, Albany, NY, 12222, USA
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Kenderdine T, Nemati R, Baker A, Palmer M, Ujma J, FitzGibbon M, Deng L, Royzen M, Langridge J, Fabris D. High-resolution ion mobility spectrometry-mass spectrometry of isomeric/isobaric ribonucleotide variants. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4465. [PMID: 31697854 PMCID: PMC8363168 DOI: 10.1002/jms.4465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 06/01/2023]
Abstract
In this report, we explored the benefits of cyclic ion mobility (cIM) mass spectrometry in the analysis of isomeric post-transcriptional modifications of RNA. Standard methyl-cytidine samples were initially utilized to test the ability to correctly distinguish different structures sharing the same elemental composition and thus molecular mass. Analyzed individually, the analytes displayed characteristic arrival times (tD ) determined by the different positions of the modifying methyl groups onto the common cytidine scaffold. Analyzed in mixture, the widths of the respective signals resulted in significant overlap that initially prevented their resolution on the tD scale. The separation of the four isomers was achieved by increasing the number of passes through the cIM device, which enabled to fully differentiate the characteristic ion mobility behaviors associated with very subtle structural variations. The placement of the cIM device between the mass-selective quadrupole and the time-of-flight analyzer allowed us to perform gas-phase activation of each of these ion populations, which had been first isolated according to a common mass-to-charge ratio and then separated on the basis of different ion mobility behaviors. The observed fragmentation patterns confirmed the structures of the various isomers thus substantiating the benefits of complementing unique tD information with specific fragmentation data to reach more stringent analyte identification. These capabilities were further tested by analyzing natural mono-nucleotide mixtures obtained by exonuclease digestion of total RNA extracts. In particular, the combination of cIM separation and post-mobility dissociation allowed us to establish the composition of methyl-cytidine and methyl-adenine components present in the entire transcriptome of HeLa cells. For this reason, we expect that this technique will benefit not only epitranscriptomic studies requiring the determination of identity and expression levels of RNA modifications, but also metabolomics investigations involving the analysis of natural extracts that may possibly contain subsets of isomeric/isobaric species.
Collapse
Affiliation(s)
| | | | - A. Baker
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - M. Palmer
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - J. Ujma
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - M FitzGibbon
- University at Albany, Albany, NY 12222
- University of California San Diego, La Jolla, CA 92093
| | - L. Deng
- University at Albany, Albany, NY 12222
| | - M. Royzen
- University at Albany, Albany, NY 12222
| | | | - D. Fabris
- University at Albany, Albany, NY 12222
| |
Collapse
|
5
|
Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods 2018; 144:64-78. [PMID: 29753003 DOI: 10.1016/j.ymeth.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
With the goal of expanding the very limited toolkit of cross-linking agents available for nucleic acids and their protein complexes, we evaluated the merits of a wide range of bifunctional agents that may be capable of reacting with the functional groups characteristic of these types of biopolymers. The survey specifically focused on the ability of test reagents to produce desirable inter-molecular conjugates, which could reveal the identity of interacting components and the position of mutual contacts, while also considering a series of practical criteria for their utilization as viable nucleic acid probes. The survey employed models consisting of DNA, RNA, and corresponding protein complexes to mimic as close as possible typical applications. Denaturing polyacrylamide gel electrophoresis (PAGE) and mass spectrometric (MS) analyses were implemented in concert to monitor the formation of the desired conjugates. In particular, the former was used as a rapid and inexpensive tool for the efficient evaluation of cross-linker activity under a broad range of experimental conditions. The latter was applied after preliminary rounds of reaction optimization to enable full-fledged product characterization and, more significantly, differentiation between mono-functional and intra- versus inter-molecular conjugates. This information provided the feedback necessary to further optimize reaction conditions and explain possible outcomes. Among the reagents tested in the study, platinum complexes and nitrogen mustards manifested the most favorable characteristics for practical cross-linking applications, whereas other compounds provided inferior yields, or produced rather unstable conjugates that did not survive the selected analytical conditions. The observed outcomes will help guide the selection of the most appropriate cross-linking reagent for a specific task, whereas the experimental conditions described here will provide an excellent starting point for approaching these types of applications. As a whole, the results of the survey clearly emphasize that finding a universal reagent, which may afford excellent performance with all types of nucleic acid substrates, will require extending the exploration beyond the traditional chemistries employed to modify the constitutive functional groups of these vital biopolymers.
Collapse
|
6
|
Silverman IM, Berkowitz ND, Gosai SJ, Gregory BD. Genome-Wide Approaches for RNA Structure Probing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:29-59. [PMID: 27256381 DOI: 10.1007/978-3-319-29073-7_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA molecules of all types fold into complex secondary and tertiary structures that are important for their function and regulation. Structural and catalytic RNAs such as ribosomal RNA (rRNA) and transfer RNA (tRNA) are central players in protein synthesis, and only function through their proper folding into intricate three-dimensional structures. Studies of messenger RNA (mRNA) regulation have also revealed that structural elements embedded within these RNA species are important for the proper regulation of their total level in the transcriptome. More recently, the discovery of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has shed light on the importance of RNA structure to genome, transcriptome, and proteome regulation. Due to the relatively small number, high conservation, and importance of structural and catalytic RNAs to all life, much early work in RNA structure analysis mapped out a detailed view of these molecules. Computational and physical methods were used in concert with enzymatic and chemical structure probing to create high-resolution models of these fundamental biological molecules. However, the recent expansion in our knowledge of the importance of RNA structure to coding and regulatory RNAs has left the field in need of faster and scalable methods for high-throughput structural analysis. To address this, nuclease and chemical RNA structure probing methodologies have been adapted for genome-wide analysis. These methods have been deployed to globally characterize thousands of RNA structures in a single experiment. Here, we review these experimental methodologies for high-throughput RNA structure determination and discuss the insights gained from each approach.
Collapse
Affiliation(s)
- Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nathan D Berkowitz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sager J Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Incarnato D, Neri F, Anselmi F, Oliviero S. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 2015; 15:491. [PMID: 25323333 PMCID: PMC4220049 DOI: 10.1186/s13059-014-0491-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 12/21/2022] Open
Abstract
Background The understanding of RNA structure is a key feature toward the comprehension of RNA functions and mechanisms of action. In particular, non-coding RNAs are thought to exert their functions by specific secondary structures, but an efficient annotation on a large scale of these structures is still missing. Results By using a novel high-throughput method, named chemical inference of RNA structures, CIRS-seq, that uses dimethyl sulfate, and N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate to modify RNA residues in single-stranded conformation within native deproteinized RNA secondary structures, we investigate the structural features of mouse embryonic stem cell transcripts. Our analysis reveals an unexpected higher structuring of the 5′ and 3′ untranslated regions compared to the coding regions, a reduced structuring at the Kozak sequence and stop codon, and a three-nucleotide periodicity across the coding region of messenger RNAs. We also observe that ncRNAs exhibit a higher degree of structuring with respect to protein coding transcripts. Moreover, we find that the Lin28a binding protein binds selectively to RNA motifs with a strong preference toward a single stranded conformation. Conclusions This work defines for the first time the complete RNA structurome of mouse embryonic stem cells, revealing an extremely distinct RNA structural landscape. These results demonstrate that CIRS-seq constitutes an important tool for the identification of native deproteinized RNA structures. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0491-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danny Incarnato
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino 10126, Italy
| | | | | | | |
Collapse
|
8
|
Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Res 2015; 43:5171-81. [PMID: 25904631 PMCID: PMC4446422 DOI: 10.1093/nar/gkv288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202-3489, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Scalabrin M, Siu Y, Asare-Okai PN, Fabris D. Structure-specific ribonucleases for MS-based elucidation of higher-order RNA structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1136-1145. [PMID: 24845355 PMCID: PMC6911265 DOI: 10.1007/s13361-014-0911-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Supported by high-throughput sequencing technologies, structure-specific nucleases are experiencing a renaissance as biochemical probes for genome-wide mapping of nucleic acid structure. This report explores the benefits and pitfalls of the application of Mung bean (Mb) and V1 nuclease, which attack specifically single- and double-stranded regions of nucleic acids, as possible structural probes to be employed in combination with MS detection. Both enzymes were found capable of operating in ammonium-based solutions that are preferred for high-resolution analysis by direct infusion electrospray ionization (ESI). Sequence analysis by tandem mass spectrometry (MS/MS) was performed to confirm mapping assignments and to resolve possible ambiguities arising from the concomitant formation of isobaric products with identical base composition and different sequences. The observed products grouped together into ladder-type series that facilitated their assignment to unique regions of the substrate, but revealed also a certain level of uncertainty in identifying the boundaries between paired and unpaired regions. Various experimental factors that are known to stabilize nucleic acid structure, such as higher ionic strength, presence of Mg(II), etc., increased the accuracy of cleavage information, but did not completely eliminate deviations from expected results. These observations suggest extreme caution in interpreting the results afforded by these types of reagents. Regardless of the analytical platform of choice, the results highlighted the need to repeat probing experiments under the most diverse possible conditions to recognize potential artifacts and to increase the level of confidence in the observed structural information.
Collapse
Affiliation(s)
- Matteo Scalabrin
- The RNA Institute, University at Albany-SUNY, Albany, NY, 12222, USA
| | | | | | | |
Collapse
|
10
|
Nei YW, Hallowita N, Steill JD, Oomens J, Rodgers MT. Infrared multiple photon dissociation action spectroscopy of deprotonated DNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 2013; 117:1319-35. [PMID: 23289585 DOI: 10.1021/jp3077936] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The gas phase structures of the deprotonated 2'-deoxymononucleotides including 2'-deoxyadenosine-5'-monophosphate (dA5'p), 2'-deoxycytidine-5'-monophosphate (dC5'p), 2'-deoxyguanosine-5'-monophosphate (dG5'p), and thymidine-5'-monophosphate (T5'p) are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. The measured IRMPD action spectra of all four deprotonated DNA mononucleotides exhibit unique spectral features in the region extending from ~600 to 1800 cm(-1) such that they can be readily differentiated from one another. The measured IRMPD action spectra are compared to the linear IR spectra calculated at the B3LYP/6-311+G(d,p) level of theory to determine the conformations of these species accessed in the experiments. On the basis of these comparisons and the computed energetic information, the most stable conformations of the deprotonated forms of dA5'p, dC5'p, and T5'p are conformers where the ribose moiety adopts a C3' endo conformation and the nucleobase is in an anti conformation. By contrast, the most stable conformations of the deprotonated form of dG5'p are conformers where the ribose adapts a C3' endo conformation and the nucleobase is in a syn conformation. In addition to the ground-state conformers, several stable low-energy excited conformers that differ slightly in the orientation of the phosphate ester moiety were also accessed in the experiments.
Collapse
Affiliation(s)
- Y-w Nei
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
11
|
Kim SH, Jun HJ, Jang SI, You JC. The determination of importance of sequences neighboring the Psi sequence in lentiviral vector transduction and packaging efficiency. PLoS One 2012. [PMID: 23185560 PMCID: PMC3503997 DOI: 10.1371/journal.pone.0050148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of lentiviral vector systems have been developed for gene delivery and therapy by eliminating and/or modifying viral genetic elements. However, all lentiviral vector systems derived from HIV-1 must have a viral packaging signal sequence, Psi (Ψ), which is placed downstream of 5' long terminal repeat in a transgene plasmid to effectively package and deliver transgene mRNA. In this study, we examined feasible regions or sequences around Psi that could be manipulated to further modify the packaging sequence. Surprisingly, we found that the sequences immediately upstream of the Psi are highly refractory to any modification and resulted in transgene vectors with very poor gene transduction efficiency. Analysis around the Psi region revealed that there are a few sites that can be used for manipulation of the Psi sequence without disturbing the virus production as well as the efficiency of transgene RNA packaging and gene transduction. By exploiting this new vector system, we investigated the requirement of each of four individual stem-loops of the Psi sequence by deletion mapping analysis and found that all stem-loops, including the SL4 region, are needed for efficient transgene RNA packaging and gene delivery. These results suggest a possible frame of the lentiviral vector that might be useful for further modifying the region/sequence around the packaging sequence as well as directly on the Psi sequence without destroying transduction efficiency.
Collapse
Affiliation(s)
- Seon Hee Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Soo In Jang
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Avixgen Inc., Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Abstract
Alternative approaches complementing the existing technologies for analysis of nucleic acids and their assemblies are necessary to take on the new challenges posed by the postgenomic era. The versatility of MS in biopolymer analysis and its ability to reach beyond sequence information are the basis of ever expanding applications aimed at the elucidation of nucleic acid structure-function relationships. This Feature summarizes the current state of MS-based approaches devised to overcome the limitations of traditional techniques and to advance different facets of nucleic acids research.
Collapse
Affiliation(s)
- D Fabris
- The RNA Institute, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
13
|
Parr C, Pierce SE, Smith SI, Brodbelt JS. Investigation of the Reactivity of Oligodeoxynucleotides with Glyoxal and KMnO(4) Chemical Probes by Electrospray Ionization Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 304:115-123. [PMID: 21743793 PMCID: PMC3130548 DOI: 10.1016/j.ijms.2010.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The reactions of two well-known chemical probes, glyoxal and potassium permanganate (KMnO(4)), with oligodeoxynucleotides were monitored by electrospray ionization (ESI) mass spectrometry to evaluate the influence of the sequence of DNA, its secondary structure, and interactions with associated ligands on the reactivity of the two probes. Glyoxal, a guanine-reactive probe, incorporated a mass shift of 58 Da, and potassium permanganate (KMnO(4)) is a thymine-reactive probe that resulted in a mass shift of 34 Da. The reactions depended on the accessibility of the nucleobases, and the peak abundances of the adducts in the ESI-mass spectra were used to quantify the extent of the chemical probe reactions. In this study, both mixed-base sequences were studied as well as control sequences in which one reactive site was located at the terminus or center of the oligodeoxynucleotide while the surrounding bases were a second, different nucleobase. In addition, the reactions of the chemical probes with non-covalent complexes formed between DNA and either actinomycin D or ethidium bromide, both known to interact with single strand DNA, were evaluated.
Collapse
Affiliation(s)
- Carol Parr
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| | | | | | | |
Collapse
|
14
|
Smith SI, Brodbelt JS. Characterization of oligodeoxynucleotides and modifications by 193 nm photodissociation and electron photodetachment dissociation. Anal Chem 2010; 82:7218-26. [PMID: 20681614 PMCID: PMC2932781 DOI: 10.1021/ac100989q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet photodissociation (UVPD) at 193 nm is compared to collision induced dissociation (CID) for sequencing and determination of modifications of multideprotonated 6-20-mer oligodeoxynucleotides. UVPD at 193 nm causes efficient charge reduction of the deprotonated oligodeoxynucleotides via electron detachment, in addition to extensive backbone cleavages to yield sequence ions of relatively low abundance, including w, x, y, z, a, a-B, b, c, and d ions. Although internal ions populate UVPD spectra, base loss ions from the precursor are absent. Subsequent CID of the charge-reduced oligodeoxynucleotides formed upon electron detachment, in a net process called electron photodetachment dissociation (EPD), results in abundant sequence ions in terms of w, z, a, a-B, and d products, with a marked decrease in the abundance of precursor base loss ions and internal fragments. Complete sequencing was possible for virtually all oligodeoxynucleotides studied. EPD of three modified oligodeoxynucleotides, a methylated oligodeoxynucleotide, a phosphorothioate-modified oligodeoxynucleotide, and an ethylated-oligodeoxynucleotide, resulted in specific and extensive backbone cleavages, specifically, w, z, a, a-B, and d products, which allowed the modification site(s) to be pinpointed to a more specific location than by conventional CID.
Collapse
Affiliation(s)
- Suncerae I Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
15
|
Fabris D, Yu ET. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:841-60. [PMID: 20648672 PMCID: PMC3432860 DOI: 10.1002/jms.1762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA.
| | | |
Collapse
|
16
|
Smith SI, Brodbelt JS. Rapid characterization of cross-links, mono-adducts, and non-covalent binding of psoralens to deoxyoligonucleotides by LC-UV/ESI-MS and IRMPD mass spectrometry. Analyst 2010; 135:943-52. [PMID: 20419242 PMCID: PMC2890229 DOI: 10.1039/b924023c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon UV photoactivation, psoralen analogs form covalent mono-adducts and cross-links with DNA at thymine residues. Electrospray ionization mass spectrometric analysis allowed rapid and efficient determination of the reaction percentages of each psoralen analog with DNA duplexes containing different binding sites after exposure to UV irradiation. The distribution of cross-linked products and mono-adducts was monitored by both LC-UV and IRMPD-MS methods with the highest ratio of cross-linked products to mono-adducts obtained for 8-methoxypsoralen (8-MOP), psoralen (P), and 5-methoxypsoralen (5-MOP). Reactions at 5'-TA sites were favored over 5'-AT sites, and duplexes containing two and three binding sites showed extensive binding by the psoralens. 4'-Aminomethyl-4,5',8-trimethylpsoralen (AMP) bound non-selectively via non-covalent interactions and was the only psoralen analog to show significant binding in the absence of UV irradiation. 8-MOP binding displayed the greatest sequence selectivity among the psoralen analogs. The sites of interstrand cross-linking were determined by fragmentation of the duplex/psoralen complexes by infrared multiphoton dissociation (IRMPD), which produced cross-linked product ions containing an intact single strand, the psoralen analog, and either a w(n) or a(n)-B portion of the complementary strand. IRMPD of DNA/AMP complexes after UV irradiation also produced high abundances of the intact single strands with the AMP ligand attached, products indicative of a significant population of mono-adducts.
Collapse
Affiliation(s)
- Suncerae I Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
17
|
Gardner MW, Li N, Ellington AD, Brodbelt JS. Infrared multiphoton dissociation of small-interfering RNA anions and cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:580-91. [PMID: 20129797 PMCID: PMC2847665 DOI: 10.1016/j.jasms.2009.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 05/13/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5' P-O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for approximately 25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5' P-O bonds began to populate the product ion mass spectra as well as higher abundances of [a - Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a - Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H](+), [A + H](+), and [C + H](+), which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | |
Collapse
|
18
|
Brodbelt JS. Evaluation of DNA/Ligand interactions by electrospray ionization mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:67-87. [PMID: 20636034 DOI: 10.1146/annurev.anchem.111808.073627] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) has enabled the detection and characterization of DNA/ligand complexes, including evaluation of both relative binding affinities and selectivities of DNA-interactive ligands. The noncovalent complexes that are transferred from the solution to the gas phase retain the signature of the native species, thus allowing the use of MS to screen DNA/ligand complexes, reveal the stoichiometries of the complexes, and provide insight into the nature of the interactions. Ligands that bind to DNA via metal-mediated modes and those that bind to unusual DNA structures, such as quadruplexes, are amenable to ESI. Chemical probe methods applied to DNA/ligand complexes with ESI-MS detection afford information about ligand-binding sites and conformational changes of DNA that occur upon ligand binding.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, 78712, USA.
| |
Collapse
|
19
|
Fabris D. A role for the MS analysis of nucleic acids in the post-genomics age. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1-13. [PMID: 19897384 DOI: 10.1016/j.jasms.2009.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
The advances of mass spectrometry in the analysis of nucleic acids have tracked very closely the exciting developments of instrumentation and ancillary technologies, which have taken place over the years. However, their diffusion in the broader life sciences community has been and will be linked to the ever evolving focus of biomedical research and its changing demands. Before the completion of the Human Genome Project, great emphasis was placed on sequencing technologies that could help accomplish this project of exceptional scale. After the publication of the human genome, the emphasis switched toward techniques dedicated to the exploration of sequences not coding for actual protein products, which amount to the vast majority of transcribed elements. The broad range of capabilities offered by mass spectrometry is rapidly advancing this platform to the forefront of the technologies employed for the structure-function investigation of these noncoding elements. Increasing focus on the characterization of functional assemblies and their specific interactions has prompted a re-evaluation of what has been traditionally construed as nucleic acid analysis by mass spectrometry. Inspired by the accelerating expansion of the broader field of nucleic acid research, new applications to fundamental biological studies and drug discovery will help redefine the evolving role of MS-analysis of nucleic acids in the post-genomics age.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA.
| |
Collapse
|
20
|
Oberacher H. Frontiers of mass spectrometry in nucleic acids analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:351-365. [PMID: 20530841 DOI: 10.1255/ejms.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids research is a highly competitive field of research. A number of well established methods are available. The current output of high throughput ("next generation") sequencing technologies is impressive, and still technologies are continuing to make progress regarding read lengths, bp per second, accuracy and costs. Although in the 1990s MS was considered as an analytical platform for sequencing, it was soon realized that MS will never be competitive. Thus, the focus shifted from de novo sequencing towards other areas of application where MS has proven to be a powerful analytical tool. Potential niches for the application of MS in nucleic acids research include genotyping of genetic markers (single nucleotide polymorphisms, short tandem repeats, and combinations thereof), quality control of synthetic oligonucleotides, metabolic profiling of therapeutics, characterization of modified nucleobases in DNA and RNA molecules, and the study of non covalent interactions among nucleic acids as well as interactions of nucleic acids with drugs and proteins. The diversity of possible applications for MS highlights its significance for nucleic acid research.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
21
|
Smith S, Guziec FS, Guziec L, Brodbelt JS. Interactions of sulfur-containing acridine ligands with DNA by ESI-MS. Analyst 2009; 134:2058-66. [PMID: 19768213 PMCID: PMC2892893 DOI: 10.1039/b905071j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkylating proficiency of sulfur-containing mustards may be increased by using an acridine moiety to guide the sulfur mustard to its cellular target. In this study, the interactions of a new series of sulfur-containing acridine ligands, some that also function as alkylating mustards, with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/acridine mixtures. The extent of binding observed for the series of sulfur-containing acridines was similar, presumably because the intercalating acridine moiety was identical. Upon infrared multi-photon dissociation (IRMPD) of the resulting oligonucleotide/sulfur-containing acridine complexes, ejection of the ligand was the dominant pathway for most of the complexes. However, for AS4, an acridine sulfide mustard, and AN1, an acridine nitrogen mustard, strand separation with the ligand remaining on one of the single strands was observed. At higher irradiation times, a variety of sequence ions were observed, some retaining the AS4/AN1 ligand, which was indicative of covalent binding.
Collapse
Affiliation(s)
- Suncerae Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| | - Frank S. Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX 79626
| | - Lynn Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX 79626
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
22
|
Turner KB, Yi-Brunozzi HY, Brinson RG, Marino JP, Fabris D, Le Grice SFJ. SHAMS: combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids. RNA (NEW YORK, N.Y.) 2009; 15:1605-1613. [PMID: 19535461 PMCID: PMC2714758 DOI: 10.1261/rna.1615409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2'-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)-containing RNA/DNA hybrids, their size (20-25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (M(r) = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2'-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.
Collapse
Affiliation(s)
- Kevin B Turner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | |
Collapse
|
23
|
Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. Biochimie 2009; 91:916-23. [PMID: 19401213 DOI: 10.1016/j.biochi.2009.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/15/2009] [Indexed: 11/22/2022]
Abstract
Due to its highly conserved zinc fingers and its nucleic acid chaperone properties which are critical for HIV-1 replication, the nucleocapsid protein (NC) constitutes a major target in AIDS therapy. Different families of molecules targeting NC zinc fingers and/or inhibiting the binding of NC with its target nucleic acids have been developed. However, their limited specificity and their cellular toxicity prompted us to develop a screening assay to target molecules able to inhibit NC chaperone properties, and more specifically the initial NC-promoted destabilization of the nucleic acid secondary structure. Since this destabilization is critically dependent on the properly folded fingers, the developed assay is thought to be highly specific. The assay was based on the use of cTAR DNA, a stem-loop sequence complementary to the transactivation response element, doubly labelled at its 5' and 3' ends by a rhodamine 6G fluorophore and a fluorescence quencher, respectively. Addition of NC(12-55), a peptide corresponding to the zinc finger domain of NC, to this doubly-labelled cTAR, led to a partial melting of the cTAR stem, which increases the distance between the two labels and thus, restores the rhodamine 6G fluorescence. Thus, positive hits were detected through the decrease of rhodamine 6G fluorescence. An "in-house" chemical library of 4800 molecules was screened and five compounds with IC(50) values in the micromolar range have been selected. The hits were shown by mass spectrometry and fluorescence anisotropy titration to prevent binding of NC(12-55) to cTAR through direct interaction with the NC folded fingers, but without promoting zinc ejection. These non-zinc ejecting NC binders are a new series of anti-NC molecules that could be used to rationally design molecules with potential anti-viral activities.
Collapse
|
24
|
Mo J, Todd GC, Håkansson K. Characterization of nucleic acid higher order structure by gas-phase H/D exchange in a quadrupole-FT-ICR mass spectrometer. Biopolymers 2009; 91:256-64. [DOI: 10.1002/bip.21134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Turner KB, Kohlway AS, Hagan NA, Fabris D. Noncovalent probes for the investigation of structure and dynamics of protein-nucleic acid assemblies: the case of NC-mediated dimerization of genomic RNA in HIV-1. Biopolymers 2009; 91:283-96. [PMID: 18946871 PMCID: PMC2776628 DOI: 10.1002/bip.21107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nature of specific RNA-RNA and protein-RNA interactions involved in the process of genome dimerization and isomerization in HIV-1, which is mediated in vitro by stemloop 1 (SL1) of the packaging signal and by the nucleocapsid (NC) domain of the viral Gag polyprotein, was investigated by using archetypical nucleic acid ligands as noncovalent probes. Small-molecule ligands make contact with their target substrates through complex combinations of H-bonds, salt bridges, and hydrophobic interactions. Therefore, their binding patterns assessed by electrospray ionization mass spectrometry can provide valuable insights into the factors determining specific recognition between species involved in biopolymer assemblies. In the case of SL1, dimerization and isomerization create unique structural features capable of sustaining stable interactions with classic nucleic acid ligands. The binding modes exhibited by intercalators and minor groove binders were adversely affected by the significant distortion of the duplex formed by palindrome annealing in the kissing-loop (KL) dimer, whereas the modes observed for the corresponding extended duplex (ED) confirmed a more regular helical structure. Consistent with the ability to establish electrostatic interactions with highly negative pockets typical of helix anomalies, polycationic aminoglycosides bound to the stem-bulge motif conserved in all SL1 conformers, to the unpaired nucleotides located at the hinge between kissing hairpins in KL, and to the exposed bases flanking the palindrome duplex in ED. The patterns afforded by intercalators and minor groove binders did not display detectable variations when the corresponding NC-SL1 complexes were submitted to probing. In contrast, aminoglycosides displayed the ability to compete with the protein for overlapping sites, producing opposite effects on the isomerization process. Indeed, displacing NC from the stem-bulges of the KL dimer induced inhibition of stem melting and decreased the efficiency of isomerization. Competition for the hinge region, instead, eliminated the NC stabilization of a grip motif formed by nucleobases of opposite strands, thus facilitating the strand-exchange required for isomerization. These noncovalent probes provided further evidence that the structural context of the actual binding sites has significant influence on the chaperone activities of NC, which should be taken in account when developing potential drug candidates aimed at disrupting genome dimerization and isomerization in HIV-1.
Collapse
Affiliation(s)
- Kevin B Turner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | | | | | | |
Collapse
|
26
|
Zhang Q, Crosland E, Fabris D. Nested Arg-specific bifunctional crosslinkers for MS-based structural analysis of proteins and protein assemblies. Anal Chim Acta 2008; 627:117-28. [PMID: 18790135 PMCID: PMC2677909 DOI: 10.1016/j.aca.2008.05.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 01/14/2023]
Abstract
The combination of chemical probing and high-resolution mass spectrometry constitutes a powerful alternative for the structural elucidation of biomolecules possessing unfavorable size, solubility, and flexibility. We have developed nested Arg-specific bifunctional crosslinkers to obtain complementary information to typical Cys- and Lys-specific reagents available on the market. The structures of 1,4-phenyl-diglyoxal (PDG) and 4,4'-biphenyl-diglyoxal (BDG) include two identical 1,2-dicarbonyl functions capable of reacting with the guanido group of Arg residues in proteins, as well as the base-pairing face of guanine in nucleic acids. The reactive functions are separated by modular spacers consisting of one or two benzene rings, which confer greater rigidity to the crosslinker structure than it is afforded by typical aliphatic spacers. Analysis by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has shown that the probes provide both mono- and bifunctional products with model protein substrates, which are stabilized by the formation of diester derivatives in the presence of borate buffer. The identification of crosslinked sites was accomplished by employing complementary proteolytic procedures and peptide mapping by ESI-FTICR. The results showed excellent correlation with the solvent accessibility and structural context of susceptible residues, and highlighted the significance of possible dynamic effects in determining the outcome of crosslinking reactions. The application of nested reagents with different spacing has provided a new tool for experimentally recognizing flexible regions that may be involved in prominent dynamics in solution. The development of new bifunctional crosslinkers with diverse target specificity and different bridging spans is expected to facilitate the structure elucidation of progressively larger biomolecular assemblies by increasing the number and diversity of spatial constraints available for triangulating the position of crosslinked structures in the three dimensions.
Collapse
Affiliation(s)
- Qingrong Zhang
- University of Maryland Baltimore County, Baltimore, MD 21228, United States
| | | | | |
Collapse
|
27
|
Abstract
The structure of HIV-1 Psi-RNA has been elucidated by a concerted approach combining structural probes with mass spectrometric detection (MS3D), which is not affected by the size and crystallization properties of target biomolecules. Distance constraints from bifunctional cross-linkers provided the information required for assembling an all-atom model from the high-resolution coordinates of separate domains by triangulating their reciprocal placement in 3D space. The resulting structure revealed a compact cloverleaf morphology stabilized by a long-range tertiary interaction between the GNRA tetraloop of stemloop 4 (SL4) and the upper stem of stemloop 1 (SL1). The preservation of discrete stemloop structures ruled out the possibility that major rearrangements might produce a putative supersite with enhanced affinity for the nucleocapsid (NC) domain of the viral Gag polyprotein, which would drive genome recognition and packaging. The steric situation of single-stranded regions exposed on the cloverleaf structure offered a valid explanation for the stoichiometry exhibited by full-length Psi-RNA in the presence of NC. The participation of SL4 in a putative GNRA loop-receptor interaction provided further indications of the plasticity of this region of genomic RNA, which can also anneal with upstream sequences to stabilize alternative conformations of the 5' untranslated region (5'-UTR). Considering the ability to sustain specific NC binding, the multifaceted activities supported by the SL4 sequence suggest a mechanism by which Gag could actively participate in regulating the vital functions mediated by 5'-UTR. Substantiated by the 3D structure of Psi-RNA, the central role played by SL4 in specific RNA-RNA and protein-RNA interactions advances this domain as a primary target for possible therapeutic intervention.
Collapse
|
28
|
Rosu F, De Pauw E, Gabelica V. Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 2008; 90:1074-87. [DOI: 10.1016/j.biochi.2008.01.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/11/2008] [Indexed: 12/27/2022]
|
29
|
Mazzitelli CL, Brodbelt JS. Probing ligand binding to duplex DNA using KMnO4 reactions and electrospray ionization tandem mass spectrometry. Anal Chem 2007; 79:4636-47. [PMID: 17508717 PMCID: PMC2531255 DOI: 10.1021/ac070145p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrospray ionization tandem mass spectrometry (ESI-MS/MS) strategy employing the thymine-selective KMnO4 oxidation reaction to detect conformational changes and ligand binding sites in noncovalent DNA/drug complexes is reported. ESI-MS/MS is used to detect specific mass shifts of the DNA ions that are associated with the oxidation of thymines. This KMnO4 oxidation/ESI-MS/MS approach is an alternative to conventional gel-based oxidation methods and affords excellent sensitivity while eliminating the reliance on radiolabeled DNA. Comparison of single-strand versus duplex DNA indicates that the duplexes exhibit a significant resistance to the reaction, thus confirming that the oxidation process is favored for unwound or single-strand regions of DNA. DNA complexes containing different drugs including echinomycin, actinomycin-D, ethidium bromide, Hoechst 33342, and cis-C1 were subjected to the oxidation reaction. Echinomycin, a ligand with a bisintercalative binding mode, was found to induce the greatest KMnO4 reactivity, while Hoechst 33342, a minor groove binder, caused no increase in the oxidation of DNA. The oxidation of echinomycin/DNA complexes containing duplexes with different sequences and lengths was also assessed. Duplexes with thymines closer to the terminal ends of the duplex demonstrated a greater increase in the degree of oxidation than those with thymines in the middle of the sequence. Collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) experiments were used to determine the site of oxidation based on oligonucleotide fragmentation patterns.
Collapse
Affiliation(s)
- Carolyn L Mazzitelli
- Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
30
|
Zhang Q, Yu ET, Kellersberger KA, Crosland E, Fabris D. Toward building a database of bifunctional probes for the MS3D investigation of nucleic acids structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1570-1581. [PMID: 16875836 DOI: 10.1016/j.jasms.2006.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 05/11/2023]
Abstract
This report illustrates the approaches employed to investigate critical aspects of the activity of crosslinking reagents toward nucleic acid substrates, which should be evaluated to identify candidate probes for mass spectrometric 3D (MS3D) investigations of biomolecules and macromolecular complexes. Representative members of different classes of bifunctional reagents were taken into consideration, including bikethoxal and phenyl-diglyoxal [bis-(1,2-dicarbonyls)], cisplatin (coordinative binding agents), chlorambucil and nitrogen mustard [bis-(2-chloroethyl)amines], and sym-triazine trichloride (triazines). Nanospray-Fourier transform mass spectrometry (FTMS) was applied without desalting or separation procedures to characterize the covalent products obtained by probing dinucleotide and trinucleotide substrates under a variety of experimental conditions in vitro. The carefully controlled composition of these substrates enabled us to obtain valid comparisons of probe activity toward individual nucleotides and evaluate possible base-specific effects, including the stability of the different adducts in solution under the selected reaction conditions. The gas-phase behavior of the observed products was investigated using sustained off-resonance irradiation collision-induced dissociation (SORI-CID) to obtain valuable information for guiding the design of sequencing experiments and helping the data interpretation. Structured RNA substrates, such as HIV-1 stemloop 1, were finally employed to investigate the structural determinant of adduct formation and highlight the different nature of the spatial information provided by the various candidate probes.
Collapse
Affiliation(s)
- Qingrong Zhang
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Eizadora T Yu
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | | | | | - Daniele Fabris
- Marlene and Stewart, Greenbaum Cancer Center, University of Maryland Baltimore County and University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
31
|
Mo J, Håkansson K. Characterization of nucleic acid higher order structure by high-resolution tandem mass spectrometry. Anal Bioanal Chem 2006; 386:675-81. [PMID: 16855815 DOI: 10.1007/s00216-006-0614-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
Mass spectrometry (MS) is extensively used for the identification and sequencing of nucleic acids but has so far seen limited use for characterization of their higher order structures. Here, we have applied a range of different tandem mass spectrometry techniques, including electron detachment dissociation (EDD), infrared multiphoton dissociation (IRMPD), activated ion (AI) EDD, and EDD/IRMPD MS(3), in a Fourier transform ion cyclotron resonance mass spectrometer to the characterization of three isomeric 15mer DNAs with different sequences and predicted solution-phase structures. Our goal was to explore whether their structural differences could be directly probed with these techniques. We found that all three 15mers had higher order structures in the gas phase, although preferred structures were predicted for only two of them in solution. Nevertheless, EDD, AI EDD, and EDD/IRMPD MS(3) experiments yielded different cleavage patterns with less backbone fragmentation for the more stable solution-phase structure than for the other two 15mers. By contrast, no major differences were observed in IRMPD, although the extent of backbone cleavage was higher with that technique for all three 15mers. Thus, experiments utilizing the radical ion chemistry of EDD can provide complementary structural information compared to traditional slow heating methods, such as IRMPD, for structured nucleic acids.
Collapse
Affiliation(s)
- Jingjie Mo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
32
|
Turner KB, Hagan NA, Fabris D. Inhibitory effects of archetypical nucleic acid ligands on the interactions of HIV-1 nucleocapsid protein with elements of Psi-RNA. Nucleic Acids Res 2006; 34:1305-16. [PMID: 16522643 PMCID: PMC1390681 DOI: 10.1093/nar/gkl004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 11/14/2022] Open
Abstract
Disrupting the interactions between human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein and structural elements of the packaging signal (Psi-RNA) could constitute an ideal strategy to inhibit the functions of this region of the genome leader in the virus life cycle. We have employed electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS) to assess the ability of a series of nucleic acid ligands to bind selected structures of Psi-RNA and inhibit their specific interactions with NC in vitro. We found that the majority of the ligands included in the study were able to form stable non-covalent complexes with stem-loop 2, 3 and 4 (SL2-4), consistent with their characteristic nucleic acid binding modes. However, only aminoglycosidic antibiotics were capable of dissociating preformed NC*SL3 and NC*SL4 complexes, but not NC*SL2. The apparent specificity of these inhibitory effects is closely dependent on distinctive structural features of the different NC*RNA complexes. The trends observed for the IC50 values correlate very well with those provided by the ligand binding affinities and the dissociation constants of target NC*RNA complexes. This systematic investigation of archetypical nucleic acid ligands provides a valid framework to support the design of novel ligand inhibitors for HIV-1 treatment.
Collapse
Affiliation(s)
- Kevin B. Turner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County1000 Hilltop Circle, Baltimore, MD 21228 USA
| | - Nathan A. Hagan
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County1000 Hilltop Circle, Baltimore, MD 21228 USA
| | - Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County1000 Hilltop Circle, Baltimore, MD 21228 USA
| |
Collapse
|
33
|
Thomas B, Akoulitchev AV. Mass spectrometry of RNA. Trends Biochem Sci 2006; 31:173-81. [PMID: 16483781 DOI: 10.1016/j.tibs.2006.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/16/2005] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
A complex population of non-coding RNAs is present in higher organisms. These RNAs have a multitude of functions and execute control over gene expression through various, often poorly understood, mechanisms. At present, the identification and analysis of functional regulatory RNAs and disparate ribonucleoprotein complexes remain an experimental challenge for biologists. They require specially designed approaches and techniques in genomics and RNA biochemistry. Developments in technologies based on mass spectrometry could offer sensitive and efficient solutions to analysis of the sequence, structure, modification and composition of RNA.
Collapse
Affiliation(s)
- Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
34
|
Meng Z, Limbach PA. Mass spectrometry of RNA: linking the genome to the proteome. BRIEFINGS IN FUNCTIONAL GENOMICS & PROTEOMICS 2006; 5:87-95. [PMID: 16769684 PMCID: PMC2442014 DOI: 10.1093/bfgp/ell012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribonucleic acids (RNAs) are continuing to attract increased attention as they are found to play pivotal roles in biological systems. Just as genomics and proteomics have been enabled by the development of effective analytical techniques and instrumentation, the large-scale analysis of non-protein coding (nc)RNAs will benefit as new analytical methodologies, such as mass spectrometry (MS), are developed for their analysis. Mass spectrometry offers a number of advantages for RNA analysis arising from its ability to provide mass and sequence information starting with limited amounts of sample. This review will highlight recent developments in the field of MS that enable the characterization of RNA modification status, RNA tertiary structures, and ncRNA expression levels. These developments will also be placed in perspective of how MS of RNAs can help elucidate the link between the genome and proteome.
Collapse
Affiliation(s)
- Zhaojing Meng
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | | |
Collapse
|
35
|
Akinsiku OT, Yu ET, Fabris D. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1372-81. [PMID: 16237662 DOI: 10.1002/jms.932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reactivity of the RNA footprinting reagent kethoxal (KT) toward proteins was investigated by electrospray ionization-Fourier transform mass spectrometry. Using standard peptides, KT was shown to selectively modify the guanidino group of arginine side chains at neutral pH, while primary amino groups of lysine and N-terminus were found to be unreactive under these conditions. Gas-phase fragmentation of KT adducts provided evidence for a cyclic 1,2-diol structure. Esterification of the 1,2-diol product was obtained in borate buffer, and its structure was also investigated by tandem mass spectrometry. When model proteins were probed with this RNA footprinting reagent, the adducts proved to be sufficiently stable to allow for the application of different peptide-mapping procedures to identify the location of modified arginines. Probing of proteins under native folding conditions provided modification patterns that very closely matched the structural context of arginines in the global protein structure. A strong correlation was demonstrated between the susceptibility to modification and residue accessibility calculated from the known 3D structure. When the complexes formed by HIV-1 nucleocapsid (NC) protein and RNA stemloops SL2 and SL3 were investigated, KT footprinting provided accurate information regarding the involvement of individual arginines in binding RNA and showed different reactivity according to their mode of interaction.
Collapse
Affiliation(s)
- Olusimidele T Akinsiku
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
36
|
Abstract
As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein-RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.
Collapse
Affiliation(s)
- Victoria D'Souza
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
37
|
Kanevsky I, Chaminade F, Ficheux D, Moumen A, Gorelick R, Negroni M, Darlix JL, Fossé P. Specific Interactions Between HIV-1 Nucleocapsid Protein and the TAR Element. J Mol Biol 2005; 348:1059-77. [PMID: 15854644 DOI: 10.1016/j.jmb.2005.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
During retroviral reverse transcription, the minus-strand strong-stop DNA (ss-cDNA) is transferred to the 3' end of the genomic RNA and this requires the repeat (R) sequences present at both ends of the genome. In vitro, the human immunodeficiency virus type 1 (HIV-1) R sequence can promote DNA strand transfer when present in ectopic internal positions. Using HIV-1 model systems, the R sequences and nucleocapsid protein (NC) were found to be key determinants of ss-cDNA transfer. To gain insights into specific interactions between HIV-1 NC and RNA and the influence of NC on R folding, we investigated the secondary structures of R in two natural contexts, namely at the 5' or 3' end of RNAs representing the terminal regions of the genome, and in two ectopic internal positions that also support efficient minus-strand transfer. To investigate the roles of NC zinc fingers and flanking basic domains in the NC/RNA interactions, we used NC mutants. Analyses of the viral RNA/NC complexes by chemical and enzymatic probings, and gel retardation assays were performed under conditions allowing ss-cDNA transfer by reverse transcriptase. We report that NC binds the TAR apical loop specifically in the four genetic contexts without changing the folding of the TAR hairpin and R region significantly, and this requires the NC zinc fingers. In addition, we show that efficient annealing of cTAR DNA to the 3' R relies on sequence complementarities between TAR and cTAR terminal loops. These findings suggest that the TAR apical loop in the acceptor RNA is the initiation site for the annealing reaction that is chaperoned by NC during the minus-strand transfer.
Collapse
Affiliation(s)
- Igor Kanevsky
- CNRS UMR8113, LBPA-Alembert, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu E, Fabris D. Toward multiplexing the application of solvent accessibility probes for the investigation of RNA three-dimensional structures by electrospray ionization-Fourier transform mass spectrometry. Anal Biochem 2005; 334:356-66. [PMID: 15494143 DOI: 10.1016/j.ab.2004.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Indexed: 11/16/2022]
Abstract
Multiple solvent accessibility probes can be applied simultaneously to investigate the three-dimensional structure of complex RNA substrates when electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS) is employed in place of polyacrylamide gel electrophoresis (PAGE). We show that classic chemical probes, such as dimethylsulfate, kethoxal, and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate, can be combined in probing mixtures designed to assess the full spectrum of base pairing and steric protection for the most abundant ribonucleotides included in RNA. After probe-independent hydrolysis of the alkylated substrate, the mixture of oligonucleotide products is mass mapped by ESI-FTMS analysis, which enables the unambiguous identification of probed bases from the unique mass signatures provided by the different chemical modifiers. In this bottom-up approach, any theoretical limit to the size of the possible target RNA will be determined by the effectiveness of the hydrolysis procedure rather than by the performance of the detection technique. Control experiments performed on the stem-loop 4 of human immunodeficiency virus type 1 have shown no adverse interactions between the reagents combined in the probing cocktails. No significant discrepancies between the alkylation patterns offered by the cocktails and the individual reagents could be detected, indicating that multiplexing the probe application does not necessarily lead to structural distortion but provides valid data on base accessibility and protection. To demonstrate the ruggedness of this approach, optimized cocktails were finally employed to assess the stability of the folded structure of mouse mammary tumor virus pseudoknot in the presence of different amounts of Mg2+. Multiplexing the probe application constitutes an essential step toward high-throughput applications, which will take advantage of a strategy that maximizes the information attainable from a single experiment, while minimizing time and sample consumption over PAGE-based methods.
Collapse
Affiliation(s)
- Eizadora Yu
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
39
|
Hofstadler SA, Sannes-Lowery KA, Hannis JC. Analysis of nucleic acids by FTICR MS. MASS SPECTROMETRY REVIEWS 2005; 24:265-285. [PMID: 15389854 DOI: 10.1002/mas.20016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fourier transform ion cyclotron resonance (FTICR) mass spectrometry represents a unique platform with which to study nucleic acids and non-covalent complexes containing nucleic acids moieties. In particular, systems in which very high mass measurement accuracy is required, very complex mixtures are to be analyzed, or very limited amounts of sample are available may be uniquely suited to interrogation by FTICR mass spectrometry. Although the FTICR platform is now broadly deployed as an integral component of many high-end proteomics-based research efforts, momentum is still building for the application of the platform towards nucleic acid-based analyses. In this work, we review fundamental aspects of nucleic acid analysis by FTICR, focusing primarily on the analysis of DNA oligonucleotides but also describing applications related to the characterization of RNA constructs. The goal of this review article is to give the reader a sense of the breadth and scope of the status quo of FTICR analysis of nucleic acids and to summarize a few recently published reports in which researchers have exploited the performance attributes of FTICR to characterize nucleic acids in support of basic and applied research disciplines including genotyping, drug discovery, and forensic analyses.
Collapse
Affiliation(s)
- Steven A Hofstadler
- Ibis Therapeutics, A Division of Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, California 92008, USA.
| | | | | |
Collapse
|
40
|
Yu ET, Zhang Q, Fabris D. Untying the FIV frameshifting pseudoknot structure by MS3D. J Mol Biol 2005; 345:69-80. [PMID: 15567411 DOI: 10.1016/j.jmb.2004.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 11/28/2022]
Abstract
The structure of the putative feline immunodeficiency virus (FIV) ribosomal frameshifting pseudoknot (PK) has been investigated by a mass spectrometric three-dimensional (MS3D) approach, which involves the application of established solvent-accessibility probes and chemical crosslinkers with detection by electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS). Regardless of their size, probed substrates can be treated with ribonucleases and analyzed by ESI-FTMS to obtain the correct position of chemically modified nucleotides. Protection maps and distance information can be utilized to generate 3D models using the constraint satisfaction algorithm provided by MC-SYM and the energy minimization modules included in CNS. Control experiments were performed on a mutant of mouse mammary tumor virus pseudoknot (VPK), for which an NMR structure is available. Comparison between the MS3D model and the high-resolution structure provided a approximately 3A root-mean-square deviation calculated from all the atoms present in double-stranded regions. Applied to FIV-PK, the MS3D approach confirmed that the selected sequence could fold into an actual pseudoknot, supporting the sequence alignment predictions. Characteristic features of H-type pseudoknots were recognized immediately, but a putative A13-U30 pair was not observed at the stem junction, making FIV-PK resemble VPK more closely than the initially suggested simian retrovirus type-1 pseudoknot. In our model, the unpaired U30 protrudes into the medium, while the hinging A13 assumes a stacked conformation that enables the stems to form a approximately 60 degrees bend and relieve the strain caused by a short loop 1. The model provided the basis to explain the different alkylation patterns observed in the absence and presence of Mg(2+), suggesting the possible formation of a specific metal-binding site between loop 1 and stem 2. This instance illustrates how the MS3D model of FIV-PK can be utilized effectively to generate hypotheses and support functional observations in the absence of a high-resolution structure.
Collapse
Affiliation(s)
- Eizadora T Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
41
|
Kellersberger KA, Yu ET, Merenbloom SI, Fabris D. Atmospheric pressure MALDI-FTMS of normal and chemically modified RNA. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:199-207. [PMID: 15694770 DOI: 10.1016/j.jasms.2004.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/26/2004] [Accepted: 10/28/2004] [Indexed: 05/24/2023]
Abstract
Atmospheric pressure (AP) MALDI has been combined with Fourier transform mass spectrometry (FTMS) to obtain the unambiguous characterization of RNA samples modified by solvent accessibility reagents used in structural studies of RNA and protein-RNA complexes. The formation of cation adducts typical of MS analysis of nucleic acids was effectively reduced by extensive washing of the anionic analytes retained onto the probe surface by strong interactions with a cationic layer of poly(diallyldimethylammonium chloride) (PADMAC). This rapid desalting procedure allowed for the detection of DNA and RNA samples in high femtomole quantities distributed over a 4 x 4 mm sample well. AP MALDI-FTMS was shown to provide high-resolution spectra for analytes as large as approximately 6.4 kDa with little or no evidence of metastable decomposition. The absence of significant metastable decay observed for precursor ions selected for tandem experiments offered a further measure of the low energy content typical of ions generated by AP MALDI. This feature proved to be very beneficial in the characterization of chemically modified RNA samples, which become particularly prone to base losses upon alkylation. The high resolution offered by FTMS enabled the application of a data-reduction algorithm capable of rejecting any signal devoid of plausible isotopic distribution, thus facilitating the analysis of complex analyte mixtures produced by nuclease treatment of RNA substrates. Proper selection of nucleases and digestion conditions can ensure the production of hydrolytic fragments of manageable size, which could extend the range of applicability of this bottom-up strategy to the structural investigation of very large RNA and protein-RNA complexes.
Collapse
|
42
|
Paillart JC, Dettenhofer M, Yu XF, Ehresmann C, Ehresmann B, Marquet R. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem 2004; 279:48397-403. [PMID: 15355993 DOI: 10.1074/jbc.m408294200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.
Collapse
Affiliation(s)
- Jean-Christophe Paillart
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | | | | | | | | | | |
Collapse
|
43
|
John Wiley & Sons, Ltd.. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:1290-1301. [PMID: 14696212 DOI: 10.1002/jms.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
44
|
John Wiley & Sons, Ltd.. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:1215-1224. [PMID: 14648831 DOI: 10.1002/jms.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|