1
|
Tejada de Rink MM, Naumann U, Kollmar R, Schwab S, Dietel B, Harada H, Tauchi M. A Single Injection of N-Oleoyldopamine, an Endogenous Agonist for Transient Receptor Potential Vanilloid-1, Induced Brain Hypothermia, but No Neuroprotective Effects in Experimentally Induced Cerebral Ischemia in Rats. Ther Hypothermia Temp Manag 2019; 10:91-101. [PMID: 31084468 DOI: 10.1089/ther.2018.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Targeted temperature management, or therapeutic hypothermia, is a potent neuroprotective approach after ischemic brain injury. Hypothermia should be induced as soon as possible after the onset of acute stroke to assure better outcomes. Accordingly, drugs with a fast-acting hypothermic effect sustainable through the period of emergency transportation to hospital would have clinical advantages. Activation of the transient receptor potential vanilloid-1 (TRPV1) can induce hypothermia. Our immunohistochemical investigations confirmed that TRPV1 was distributed to perivascular and periventricular regions of the rat brain, where TRPV1 can be easily detected by TRPV1 agonists. An endogenous TRPV1 selective agonist, N-oleoyldopamine (OLDA), and a synthetic antagonist, AMG 9810, were injected intraperitoneally into healthy adult male Wister rats, and brain and core temperatures and gross motor activities were monitored. Comparison with baseline temperatures showed that TRPV1 injection immediately induced mild hypothermia (p < 0.05 in brain and p < 0.01 in body), and AMG 9810 induced immediate mild hyperthermia (not significant). However, the OLDA-induced hypothermia did not decrease lesion volume after middle carotid artery occlusion in rats. Relative to vehicle, OLDA yielded poorer outcomes and AMG 9810 yielded better outcomes in neurological scores and lesion size. Our study showed that, as an agonist of TRPV1, OLDA has suitable hypothermia-inducing properties, but did not decrease lesion volume. Therefore, the search for novel TRPV1 agonists and/or antagonists providing hypothermia and neuroprotection should continue. Further investigations should also target OLDA-induced transient hypothermia combined with long-term hypothermia maintenance with surface cooling, which mimics the anticipated clinical use of this class of drug.
Collapse
Affiliation(s)
- Maria Mercedes Tejada de Rink
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrike Naumann
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Kollmar
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Dietel
- Department of Medicine 2-Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hideki Harada
- Neuroanesthesia Research Laboratory, Cognitive and Molecular Institute of Brain Diseases, Kurume University School of Medicine, Kurume, Japan.,Department of Anesthesiology, Kurume University School of Medicine, Kurume, Japan
| | - Miyuki Tauchi
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Medicine 2-Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Jiménez-Jiménez C, Lara-Chica M, Palomares B, Collado JA, Lopez-Miranda J, Muñoz E, Calzado MA. Effect of N-acyl-dopamines on beta cell differentiation and wound healing in diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1539-1551. [PMID: 30327197 DOI: 10.1016/j.bbamcr.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
N-acyl-dopamines are endolipids with neuroprotective, antiinflammatory and immunomodulatory properties. Previously, we showed the ability of these compounds to induce HIF-1α stabilization. Hypoxia and HIF-1α play an important role in the most relevant stages of diabetic pathogenesis. This work analyzes the possible role of these molecules on beta cell differentiation, insulin production and diabetic foot ulcer. Hypoxia response pathway has been characterized in beta-cell differentiation in rat pancreatic acinar cell line and human islet-derived precursor cells. Protein and mRNA expression of key proteins in this process have been analyzed, as well as those involved in beta cells reprogramming. The effect of N-acyl-dopamines on hypoxia response pathway, beta cells reprogramming and insulin production have been studied in both cell types, as well as its role in angiogenesis models in vitro and wound closure in type 2 diabetic mice. Our results show how the hypoxia response pathway is altered during beta cells differentiation, accompanied by an induction of the transcription factor HIF-1α. We demonstrate how some N-acyl-dopamines induce beta cell differentiation and insulin production in two different cell models. In parallel, these endolipids promote angiogenesis in vitro and wound closure in type 2 diabetic mice. These results provide a biological mechanism through which some endolipids could induce beta cell differentiation. We demonstrate how N-acyl-dopamines can modulate insulin production and, in parallel, reverse HIF-1α inhibition in a wound healing model in diabetic mice. Therefore, the potential use of the pharmacological modulation of N-acyl-dopamines may have implications for diabetes prevention and treatment strategies.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Belén Palomares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Juan Antonio Collado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - J Lopez-Miranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Unidad de lípidos y aterosclerosis, Hospital Universitario Reina Sofía, Córdoba, Universidad de Córdoba, Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
3
|
Grabiec U, Dehghani F. N-Arachidonoyl Dopamine: A Novel Endocannabinoid and Endovanilloid with Widespread Physiological and Pharmacological Activities. Cannabis Cannabinoid Res 2017; 2:183-196. [PMID: 29082315 PMCID: PMC5627668 DOI: 10.1089/can.2017.0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
N-arachidonoyl dopamine (NADA) is a member of the family of endocannabinoids to which several other N-acyldopamines belong as well. Their activity is mediated through various targets that include cannabinoid receptors or transient receptor potential vanilloid (TRPV)1. Synthesis and degradation of NADA are not yet fully understood. Nonetheless, there is evidence that NADA plays an important role in nociception and inflammation in the central and peripheral nervous system. The TRPV1 receptor, for which NADA is a potent agonist, was shown to be an endogenous transducer of noxious heat. Moreover, it has been demonstrated that NADA exerts protective and antioxidative properties in microglial cell cultures, cortical neurons, and organotypical hippocampal slice cultures. NADA is present in very low concentrations in the brain and is seemingly not involved in activation of the classical pathways. We believe that treatment with exogenous NADA during and after injury might be beneficial. This review summarizes the recent findings on biochemical properties of NADA and other N-acyldopamines and their role in physiological and pathological processes. These findings provide strong evidence that NADA is an effective agent to manage neuroinflammatory diseases or pain and can be useful in designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Urszula Grabiec
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Involvement of TRPV1 channels in the periaqueductal grey on the modulation of innate fear responses. Acta Neuropsychiatr 2015; 27:97-105. [PMID: 25529842 DOI: 10.1017/neu.2014.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The transient receptor potential vanilloid type-1 channel (TRPV1) is expressed in the midbrain periaqueductal grey (PAG), a region of the brain related to aversive responses. TRPV1 antagonism in the dorsolateral PAG (dlPAG) induces anxiolytic-like effects in models based on conflict situations. No study, however, has investigated whether these receptors could contribute to fear responses to proximal threat. Thus, we tested the hypothesis that TRPV1 in the PAG could mediate fear response in rats exposed to a predator. METHODS We verified whether exposure to a live cat (a natural predator) would activate TRPV1-expressing neurons in the PAG. Double-staining immunohistochemistry was used as a technique to detect c-Fos, a marker of neuronal activation, and TRPV1 expression. We also investigated whether intra-dlPAG injections of the TRPV1 antagonist, capsazepine (CPZ), would attenuate the behavioural consequences of predator exposure. RESULTS Exposure to a cat increased c-Fos expression in TRPV1-positive neurons, mainly in the dorsal columns of the PAG, suggesting that TRPV1-expressing neurons are activated by threatening stimuli. Accordingly, local injection of CPZ inhibited the fear responses. CONCLUSION These data support the hypothesis that TRPV1 channels mediate fear reactions in the dlPAG. This may have an implication for the development of TRPV1-antagonists as potential drugs for the treatment of certain psychiatric disorders.
Collapse
|
5
|
Soler-Torronteras R, Lara-Chica M, García V, Calzado MA, Muñoz E. Hypoximimetic activity of N-acyl-dopamines. N-arachidonoyl-dopamine stabilizes HIF-1α protein through a SIAH2-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2730-43. [DOI: 10.1016/j.bbamcr.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/30/2023]
|
6
|
Aguiar D, Moreira F, Terzian A, Fogaça M, Lisboa S, Wotjak C, Guimaraes F. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channels. Neurosci Biobehav Rev 2014; 46 Pt 3:418-28. [DOI: 10.1016/j.neubiorev.2014.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
7
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
8
|
Chaudhari SS, Kadam AB, Khairatkar-Joshi N, Mukhopadhyay I, Karnik PV, Raghuram A, Rao SS, Vaiyapuri TS, Wale DP, Bhosale VM, Gudi GS, Sangana RR, Thomas A. Synthesis and pharmacological evaluation of novel N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides as TRPM8 antagonists. Bioorg Med Chem 2013; 21:6542-53. [PMID: 24055075 DOI: 10.1016/j.bmc.2013.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
A novel series of N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides was identified as transient receptor potential melastatin 8 (TRPM8) channel blockers through analogue-based rational design, synthesis and screening. Details of the synthesis, effect of aryl groups and their substituents on in-vitro potency were studied. The effects of selected functional groups on the 4-position of the chromene ring were also studied, which showed interesting results. The 4-hydroxy derivatives showed excellent potency and selectivity. Optical resolution and screening of alcohols revealed that (R)-(-)-isomers were in general more potent than the corresponding (S)-(+)-isomers. The isomer (R)-(-)-10e (IC50: 8.9nM) showed a good pharmacokinetic profile upon oral dosing at 10mg/kg in Sprague-Dawley (SD) rats. The compound (R)-(-)-10e also showed excellent efficacy in relevant rodent models of neuropathic pain.
Collapse
Affiliation(s)
- Sachin S Chaudhari
- Glenmark Research Centre, Glenmark Pharmaceuticals Ltd., A-607, TTC Industrial Area, MIDC Mahape, Navi Mumbai 400 709, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kamakura T, Ishida Y, Nakamura Y, Yamada T, Kitahara T, Takimoto Y, Horii A, Uno A, Imai T, Okazaki S, Inohara H, Shimada S. Functional expression of TRPV1 and TRPA1 in rat vestibular ganglia. Neurosci Lett 2013; 552:92-7. [PMID: 23916509 DOI: 10.1016/j.neulet.2013.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022]
Abstract
Both TRPV1 and TRPA1 are non-selective cation channels. They are co-expressed, and interact in sensory neurons such as dorsal root ganglia (DRG) and trigeminal ganglia (TG), and are involved in nociception, being activated by nociceptive stimuli. Immunohistological localization of TRPV1 in vestibular ganglion (VG) neurons has been reported. Although TRPA1 is co-expressed with TRPV1 in DRG and TG neurons, it is unclear whether TRPA1 channels are expressed in VG neurons. Moreover, it is unknown whether TRPV1 and TRPA1 channels are functional in VG neurons. We investigated the expression of TRPV1 and TRPA1 in rat VG neurons by RT-PCR, in situ hybridization, immunohistochemistry, and Ca(2+) imaging experiments. Both TRPV1 and TRPA1 RT-PCR products were amplified from the mRNA of rat VG neurons. In situ hybridization experiments showed TRPV1 and TRPA1 mRNA expression in the majority of VG neurons. Immunohistochemistry experiments confirmed TRPV1 protein expression. In Ca(2+) imaging experiments, capsaicin, a TRPV1 agonist, induced a significant increase in intracellular calcium ion concentration ([Ca(2+)]i) in rat primary cultured VG neurons, which was almost completely blocked by capsazepine, a TRPV1-specific antagonist. Cinnamaldehyde, a TRPA1 agonist, also caused an increase in [Ca(2+)]i, which was completely inhibited by HC030031, a TRPA1-specific antagonist. Moreover, in some VG neurons, a [Ca(2+)]i increase was evoked by both capsaicin and cinnamaldehyde in the same neuron. In summary, our histological and physiological studies reveal that TRPV1 and TRPA1 are expressed in VG neurons. It is suggested that TRPV1 and TRPA1 in VG neurons might participate in vestibular function and/or dysfunction such as vertigo.
Collapse
Affiliation(s)
- Takefumi Kamakura
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marco EM, Laviola G. The endocannabinoid system in the regulation of emotions throughout lifespan: a discussion on therapeutic perspectives. J Psychopharmacol 2012; 26:150-63. [PMID: 21693551 DOI: 10.1177/0269881111408459] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alterations in emotion regulation processes may form the basis of psychopathologies. The endocannabinoid (eCB) system, composed of endogenous ligands, the enzymatic machinery in charge of their metabolism and the specific metabotropic receptors, has emerged as a major neuromodulatory system critically involved in the control of emotional homeostasis and stress responsiveness. Data from animal models indicate that the eCB system plays a key role in brain development, and is probably involved in the control of emotional states from early developmental stages. The present review summarizes the latest information on the role of the eCB system in emotionality and anxiety-related disorders throughout the lifespan. Putative therapeutic strategies based on the pharmacological modulation of this system will be discussed. Given the fact that the pharmacological modulation of the eCB system has recently arisen as a promising strategy in the management of anxiety and mood disorders, the potential efficacy of this pharmacological approach (i.e. blockers of the catabolic pathway) will be discussed, as well as pharmacological alternatives such as modulators of cannabinoid receptors other than the classical CB1 receptor, or administration of other plant-derived compounds (e.g. cannabidiol).
Collapse
Affiliation(s)
- Eva M Marco
- Department of Animal Physiology (Animal Physiology II), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| | | |
Collapse
|
11
|
Farkas I, Tuboly G, Benedek G, Horvath G. The antinociceptive potency of N-arachidonoyl-dopamine (NADA) and its interaction with endomorphin-1 at the spinal level. Pharmacol Biochem Behav 2011; 99:731-7. [DOI: 10.1016/j.pbb.2011.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 04/27/2011] [Accepted: 05/15/2011] [Indexed: 11/27/2022]
|
12
|
Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res 2011; 31:350-8. [PMID: 21848366 DOI: 10.3109/10799893.2011.602413] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transient receptor potential subfamily A member 1 (TRPA1) is a non-selective cation channel implicated in the pathogenesis of several airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Most of the research on TRPA1 focuses on its expression and function in neuronal context; studies investigating non-neuronal expression of TRPA1 are lacking. In the present study, we show functional expression of TRPA1 in human lung fibroblast cells (CCD19-Lu) and human pulmonary alveolar epithelial cell line (A549). We demonstrate TRPA1 expression at both mRNA and protein levels in these cell types. TRPA1 selective agonists like allyl isothiocyanate (AITC), 4-hydroxynonenal (4-HNE), crotonaldehyde and zinc, induced a concentration-dependent increase in Ca+2 influx in CCD19-Lu and A549 cells. AITC-induced Ca+2 influx was inhibited by Ruthenium red (RR), a TRP channel pore blocker, and by GRC 17536, a TRPA1 specific antagonist. Furthermore, we also provide evidence that activation of the TRPA1 receptor by TRPA1 selective agonists promotes release of the chemokine IL-8 in CCD19-Lu and A549 cells. The IL-8 release in response to TRPA1 agonists was attenuated by TRPA1 selective antagonists. In conclusion, we demonstrate here for the first time that TRPA1 is functionally expressed in cultured human lung fibroblast cells (CCD19-Lu) and human alveolar epithelial cell line (A549) and may have a potential role in modulating release of this important chemokine in inflamed airways.
Collapse
Affiliation(s)
- Indranil Mukhopadhyay
- Biological Research, Glenmark Pharmaceuticals Ltd., Glenmark Research Centre, Navi Mumbai, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferrini F, Salio C, Lossi L, Gambino G, Merighi A. Modulation of inhibitory neurotransmission by the vanilloid receptor type 1 (TRPV1) in organotypically cultured mouse substantia gelatinosa neurons. Pain 2010; 150:128-140. [DOI: 10.1016/j.pain.2010.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 01/28/2010] [Accepted: 04/12/2010] [Indexed: 11/25/2022]
|
14
|
Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318:34-43. [PMID: 19747957 PMCID: PMC2826518 DOI: 10.1016/j.mce.2009.08.031] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/14/2022]
Abstract
Circulating factors are typically invoked to explain bidirectional communication between the CNS and white adipose tissue (WAT). Thus, initiation of lipolysis has been relegated primarily to adrenal medullary secreted catecholamines and the inhibition of lipolysis primarily to pancreatic insulin, whereas signals of body fat levels to the brain have been ascribed to adipokines such as leptin. By contrast, evidence is given for bidirectional communication between brain and WAT occurring via the sympathetic nervous system (SNS) and sensory innervation of this tissue. Using retrograde transneuronal viral tract tracers, the SNS outflow from brain to WAT has been defined. Functionally, sympathetic denervation of WAT blocks lipolysis to a variety of lipolytic stimuli. Using anterograde transneuronal viral tract tracers, the sensory input from WAT to brain has been defined. Functionally, these WAT sensory nerves respond electrophysiologically to increases in WAT SNS drive suggesting a possible neural negative feedback loop to regulate lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | | | | | | | | |
Collapse
|
15
|
Andrianova EL, Bobrov MY, Gretskaya NM, Zinchenko GN, Serkov IV, Fomina-Ageeva EV, Bezuglov VV. The effects of neurolipins and their synthetic analogues on normal and transformed glial cells. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Navarrete CM, Pérez M, de Vinuesa AG, Collado JA, Fiebich BL, Calzado MA, Muñoz E. Endogenous N-acyl-dopamines induce COX-2 expression in brain endothelial cells by stabilizing mRNA through a p38 dependent pathway. Biochem Pharmacol 2010; 79:1805-14. [PMID: 20206142 DOI: 10.1016/j.bcp.2010.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 01/31/2023]
Abstract
Cerebral microvascular endothelial cells play an active role in maintaining cerebral blood flow, microvascular tone and blood brain barrier (BBB) functions. Endogenous N-acyl-dopamines like N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA) have been recently identified as a new class of brain neurotransmitters sharing endocannabinoid and endovanilloid biological activities. Endocannabinoids are released in response to pathogenic insults and may play an important role in neuroprotection. In this study we demonstrate that NADA differentially regulates the release of PGE(2) and PGD(2) in the microvascular brain endothelial cell line, b.end5. We found that NADA activates a redox-sensitive p38 MAPK pathway that stabilizes COX-2 mRNA resulting in the accumulation of the COX-2 protein, which depends on the dopamine moiety of the molecule and that is independent of CB(1) and TRPV1 activation. In addition, NADA inhibits the expression of mPGES-1 and the release of PGE(2) and upregulates the expression of L-PGD synthase enhancing PGD(2) release. Hence, NADA and other molecules of the same family might be included in the group of lipid mediators that could prevent the BBB injury under inflammatory conditions and our findings provide new mechanistic insights into the anti-inflammatory activities of NADA in the central nervous system and its potential to design novel therapeutic strategies to manage neuroinflammatory diseases.
Collapse
Affiliation(s)
- Carmen M Navarrete
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba. Facultad de Medicina. Avda de Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 103:2-17. [PMID: 19835908 DOI: 10.1016/j.pbiomolbio.2009.10.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/07/2009] [Indexed: 12/19/2022]
Abstract
The Transient Receptor Potential Vanilloid 4 channel, TRPV4, is a Ca(2+) and Mg(2+) permeable non-selective cation channel involved in many different cellular functions. It is activated by a variety of physical and chemical stimuli, including heat, mechano-stimuli, endogenous substances such as arachidonic acid and its cytochrome P450-derived metabolites (epoxyeicosatrienoic acids), endocannabinoids (anandamide and 2-arachidonoylglycerol), as well as synthetic alpha-phorbol derivatives. Recently, TRPV4 has been characterized as an important player modulating osteoclast differentiation in bone remodelling and as a urothelial mechanosensor that controls normal voiding. Several TRPV4 gain-of-function mutations are shown to cause autosomal-dominant bone dysplasias such as brachyolmia and Koszlowski disease. In this review we comprehensively describe the structural, biophysical and (patho)physiological properties of the TRPV4 channel and we summarize the current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Wouter Everaerts
- Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, KULeuven, Herestraat 49, bus 802, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
18
|
Hsu CC, Bien MY, Huang YT, Ruan T, Kou YR, Lin YS. N-arachidonyl dopamine sensitizes rat capsaicin-sensitive lung vagal afferents via activation of TRPV1 receptors. Respir Physiol Neurobiol 2009; 167:323-32. [PMID: 19539789 DOI: 10.1016/j.resp.2009.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
We investigated the effect of N-arachidonyl dopamine (NADA), an endogenous agonist of both transient receptor potential vanilloid 1 (TRPV1) and cannabinoid CB1 receptors, on the sensitivity of rat capsaicin-sensitive lung vagal afferent (CSLVA) fibers. In artificially ventilated rats, an intravenous infusion of NADA (400 microg/kg/ml, 0.5 ml/min for 2 min) mildly elevated the baseline CSLVA fiber activity, whereas it markedly potentiated CSLVA fiber responses to a right atrial injection of capsaicin or adenosine, and to lung inflation. The potentiating effect on CSLVA fiber sensitivity to an adenosine injection or lung inflation was blocked by capsazepine pretreatment (a TRPV1 receptor antagonist), but was unaffected by AM251 pretreatment (a CB1 receptor antagonist). In spontaneously breathing rats, a NADA infusion similarly potentiated the CSLVA fiber-mediated apneic response evoked by an adenosine injection, and this potentiating effect was also prevented by capsazepine pretreatment. We concluded that NADA at the dose tested non-specifically increases CSLVA fiber sensitivity to chemical and mechanical stimulation via activation of TRPV1 receptors.
Collapse
Affiliation(s)
- Chun-Chun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Tóth A, Blumberg PM, Boczán J. Chapter 15 Anandamide and the Vanilloid Receptor (TRPV1). VITAMINS AND HORMONES 2009; 81:389-419. [DOI: 10.1016/s0083-6729(09)81015-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Antioxidant and neuroprotective properties of N-arachidonoyldopamine. Neurosci Lett 2007; 431:6-11. [PMID: 18069125 DOI: 10.1016/j.neulet.2007.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/30/2007] [Accepted: 11/02/2007] [Indexed: 11/21/2022]
Abstract
N-Acyldopamines were recently described as putative endogenous substances in the rat brain. Among them, N-arachidonoyldopamine (AADA) was characterized as cannabinoid CB1 and vanilloid TRPV1 receptor ligand. The physiological significance of such compounds is yet poorly understood. In this study, we describe the novel properties of AADA as antioxidant and neuroprotectant. Antioxidant potential of AADA and its analogs were first tested in the galvinoxyl assay. It was found that N-acyldopamines are potent antioxidants and that the number of free hydroxyl groups in the phenolic moiety of dopamine is essential for the activity. AADA dose dependently (0.1-10 microM) protected cultured cerebellar granule neurons (CGN) in the model of oxidative stress induced by hydrogen peroxide. N-Oleoyldopamine, another endogenous substance, was much less potent in these conditions while the natural antioxidant alpha-tocopherol was inactive. In this test, AADA decreased the peroxide level in CGN preparations and its neuroprotection was independent of cannabinoid/vanilloid receptors blockade. AADA (10 microM) also protected CGN from death induced by K(+)/serum deprivation and glutamate exitotoxicity. These data indicate that AADA may act as endogenous antioxidant in different pathological conditions.
Collapse
|
21
|
Vandevoorde S, Lambert DM. The Multiple Pathways of Endocannabinoid Metabolism: A Zoom Out. Chem Biodivers 2007; 4:1858-81. [PMID: 17712823 DOI: 10.1002/cbdv.200790156] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Séverine Vandevoorde
- Unité de chimie pharmaceutique et radiopharmacie, UCL/CMFA 7340, Avenue E. Mounier, B-1200 Brussels.
| | | |
Collapse
|
22
|
Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 2007; 114:13-33. [PMID: 17349697 DOI: 10.1016/j.pharmthera.2007.01.005] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
Endovanilloids are defined as endogenous ligands and activators of transient receptor potential (TRP) vanilloid type 1 (TRPV1) channels. The first endovanilloid to be identified was anandamide (AEA), previously discovered as an endogenous agonist of cannabinoid receptors. In fact, there are several similarities, in terms of opposing actions on the same intracellular signals, role in the same pathological conditions, and shared ligands and tissue distribution, between TRPV1 and cannabinoid CB(1) receptors. After AEA and some of its congeners (the unsaturated long chain N-acylethanolamines), at least 2 other families of endogenous lipids have been suggested to act as endovanilloids: (i) unsaturated long chain N-acyldopamines and (ii) some lipoxygenase (LOX) metabolites of arachidonic acid (AA). Here we discuss the mechanisms for the regulation of the levels of the proposed endovanilloids, as well as their TRPV1-mediated pharmacological actions in vitro and in vivo. Furthermore, we outline the possible pathological conditions in which endovanilloids, acting at sometimes aberrantly expressed TRPV1 receptors, might play a role.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, C.N.R., Pozzuoli, Naples, Italy
| | | | | |
Collapse
|
23
|
Zhou J, Balaban C, Durrant JD. Effect of intracochlear perfusion of vanilloids on cochlear neural activity in the guinea pig. Hear Res 2006; 218:43-9. [PMID: 16781098 DOI: 10.1016/j.heares.2006.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/31/2006] [Accepted: 02/21/2006] [Indexed: 11/17/2022]
Abstract
Recent findings show that the vanilloid receptor subtype 1 (TRPV1) is expressed by cochlear outer hair cells and spiral ganglion cells, and that its expression is up-regulated in ganglion cells after aminoglycoside treatment. This study tested the hypothesis that agents that act on TRPV1 receptors affect the spectrum of ensemble background activity (EBA). Consecutive intracochlear perfusions of the TRPV1 agonist, capsaicin (CAP 0.1, 1, and 10 parts per million), as well as its antagonist capsazepine (CZP), were used to test effects of TRPV1 activation on EBA recorded from the cochlear base. Perfusion with CAP alone produced a dose-dependent increase of the 900-Hz peak ratio (power normalized re the overall spectrum) of the EBA. The CAP effect was attenuated during concurrent perfusion with CZP. These findings are consistent with the hypothesis that TRPV1 activation increases background activity of spiral ganglion cells and support a role of TRPV1 in gating spontaneous and evoked auditory nerve excitability.
Collapse
Affiliation(s)
- Jianxun Zhou
- Department of Communication Science and Disorders, University of Pittsburgh, Forbes Tower 4033, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
24
|
Lappin SC, Randall AD, Gunthorpe MJ, Morisset V. TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. Eur J Pharmacol 2006; 540:73-81. [PMID: 16737693 DOI: 10.1016/j.ejphar.2006.04.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/12/2006] [Accepted: 04/28/2006] [Indexed: 01/17/2023]
Abstract
The anti-hyperalgesic effects of TRPV1 receptor antagonists are well documented in animal models of pain, however, the precise site of their action is not known. Here we have examined the effects of the selective TRPV1 antagonist SB-366791 on glutamatergic synaptic transmission in substantia gelatinosa using spinal cord slices from either control rats or animals that had undergone a peripheral inflammation induced by intraplantar injection of Freund's complete adjuvant (FCA). In control animals, SB-366791 (30 microM) had no effect on spontaneous excitatory post-synaptic currents (sEPSC) or evoked EPSCs. In slices from FCA-inflamed animals, SB-366791 decreased sEPSC frequency to 66+/-8% of control in 5/10 neurones, and decreased miniature glutamatergic EPSCs (mEPSC) frequency to 63+/-4% of control, in 6/7 neurones; with no significant effect on sEPSC or mEPSC amplitude. Dorsal root evoked EPSCs at C-fibre intensity were reduced to 72+/-6% of control by SB-366791 (30 microM) in 3/4 neurones from FCA-treated animals. In conclusion, SB-366791 inhibited glutamatergic transmission in a subset of neurones via a pre-synaptic mechanism following peripheral inflammation. We hypothesise that during peripheral inflammation spinal TRPV1 becomes tonically active, promoting the synaptic release of glutamate. These results provide evidence for a mechanism by which TRPV1 contributes to inflammatory pain and provides a basis for the understanding of the efficacy of TRPV1 antagonists.
Collapse
Affiliation(s)
- Sarah C Lappin
- Neurology and GI CEDD, GlaxoSmithKline, New Frontiers Science Park North, Third Avenue, Harlow, Essex, CM19 5AW, UK.
| | | | | | | |
Collapse
|
25
|
Lizanecz E, Bagi Z, Pásztor ET, Papp Z, Edes I, Kedei N, Blumberg PM, Tóth A. Phosphorylation-dependent desensitization by anandamide of vanilloid receptor-1 (TRPV1) function in rat skeletal muscle arterioles and in Chinese hamster ovary cells expressing TRPV1. Mol Pharmacol 2006; 69:1015-23. [PMID: 16338989 DOI: 10.1124/mol.105.015644] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that activation of vanilloid receptor-1 (TRPV1) affects the vasotone of resistance arteries. One of the endogenous activators of TRPV1 is anandamide. The effects of anandamide on TRPV1 responsiveness were tested on isolated, pressurized (80 mm Hg) skeletal muscle (m. gracilis) arterioles (179 +/- 33 microm in diameter). We found that the TRPV1 agonist capsaicin (1 microM) elicited a substantial constriction in isolated arterioles (51 +/- 12%). In contrast, anandamide (0-100 microM) did not affect arteriolar diameter significantly (3 +/- 5%). Isolated vessels were also preincubated with anandamide (30 microM for 20 min). This anandamide pretreatment completely blocked capsaicin-induced arteriolar constriction (response decreased to 1 +/- 0.6%), and this inhibition was reversed by a protein phosphatase-2B inhibitor (cyclosporin-A; 100 nM, 5 min) treatment (constriction, 31 +/- 1%). An exogenous TRPV1-expressing cell line [Chinese hamster ovary (CHO)-TRPV1] was used to specifically evaluate TRPV1-mediated effects of anandamide. The efficacy of anandamide in this system, as determined by 45Ca2+ uptake, was 65 +/- 8% of that of capsaicin. Upon treatment of the cells with cyclosporin-A or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), anandamide was transformed to a full agonist. Anandamide treatment caused an acute desensitization in these cells as measured by intracellular Ca2+ imaging. Application of cyclosporin-A or PMA reversed this desensitization. Our data suggest that anandamide may cause a complete (albeit phosphorylation-dependent) desensitization of TRPV1 in skeletal muscle arterioles and in CHO-TRPV1 cells, which apparently transforms the ligand-gated TRPV1 into a phosphorylation-gated channel. This property of anandamide may provide a new therapeutic strategy to manipulate TRPV1 activity.
Collapse
Affiliation(s)
- Erzsébet Lizanecz
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, 4004, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang SM, Walker JM. Enhancement of Spontaneous and Heat-Evoked Activity in Spinal Nociceptive Neurons by the Endovanilloid/Endocannabinoid N-Arachidonoyldopamine (NADA). J Neurophysiol 2006; 95:1207-12. [PMID: 16267120 DOI: 10.1152/jn.00395.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-arachidonoyldopamine (NADA) is an endogenous molecule found in the nervous system that is capable of acting as a vanilloid agonist via the TRPV1 receptor and as a cannabinoid agonist via the CB1 receptor. Using anesthetized rats, we investigated the neural correlates of behavioral thermal hyperalgesia produced by NADA. Extracellular single cell electrophysiology was conducted to assess the effects of peripheral administration of NADA (i.pl.) on nociceptive neurons in the dorsal horn of the spinal cord. Injection of NADA in the hindpaw caused increased spontaneous discharge of spinal nociceptive neurons compared with injection of vehicle. The neurons also displayed magnified responses to application of thermal stimuli ranging from 34 to 52°C. NADA-induced neural hypersensitivity was dose dependent (EC50 = 1.55 μg) and TRPV1 dependent, as the effect was abolished by co-administration of the TRPV1 antagonist 5′-iodoresiniferatoxin (I-RTX). In contrast, co-administration of the CB1 antagonist SR 141716A did not attenuate this effect. These results suggest that the enhanced responses of spinal nociceptive neurons likely underlie the behavioral thermal hyperalgesia and implicate a possible pain-sensitizing role of endogenous NADA mediated by TRPV1 in the periphery.
Collapse
Affiliation(s)
- Susan M Huang
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
27
|
Abstract
Transient receptor potential (TRP) receptors are, typically, calcium-permeant cation channels that transduce environmental stimuli. Both kidney epithelial and inner ear sensory cells express TRPV1, are mechanosensors and accumulate the aminoglycoside antibiotic gentamicin. Recently, we showed that Texas Red-conjugated gentamicin (GTTR) enters kidney cells via an endosome-independent pathway. Here, we used GTTR to investigate this non-endocytotic mechanism of gentamicin uptake. In serum-free buffers, GTTR penetrated MDCK cells within 30 s and uptake was modulated by extracellular, multivalent cations (Ca2+, La3+, Gd3+) or protons. We verified the La3+ modulation of GTTR uptake using immunocytochemical detection of unconjugated gentamicin. Membrane depolarization, induced by high extracellular K+ or valinomycin, also reduced GTTR uptake, suggesting electrophoretic permeation through ion channels. GTTR uptake was enhanced by the TRPV1 agonists, resiniferatoxin and anandamide, in Ca2+-free media. Competitive antagonists of the TRPV1 cation current, iodo-resiniferatoxin and SB366791, also enhanced GTTR uptake independently of Ca2+, reinforcing these antagonists' potential as latent agonists in specific situations. Ruthenium Red blocked GTTR uptake in the presence or absence of these TRPV1-agonists and antagonists. In addition, GTTR uptake was blocked by RTX in the presence of more physiological levels (2 mM) of Ca2+. Thus gentamicin enters cells via cation channels, and gentamicin uptake can be modulated by regulators of the TRPV1 channel.
Collapse
Affiliation(s)
- Sigrid E Myrdal
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
28
|
Wang JP, Tseng CS, Sun SP, Chen YS, Tsai CR, Hsu MF. Capsaicin stimulates the non-store-operated Ca2+ entry but inhibits the store-operated Ca2+ entry in neutrophils. Toxicol Appl Pharmacol 2006; 209:134-44. [PMID: 15882882 DOI: 10.1016/j.taap.2005.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/30/2005] [Accepted: 04/05/2005] [Indexed: 01/27/2023]
Abstract
Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca2+]i elevation occurred only at high concentrations (> or = 100 microM). This response was substantially decreased in a Ca2+-free medium. Vanilloids displayed similar patterns of Ca2+ response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca2+ response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blocker of receptor-gated and store-operated Ca2+ (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP3) receptor and Ca2+ influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca2+ channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na+-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca2+-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin (> or = 100 microM) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca2+ entry (SOCE). In the absence of external Ca2+, the robust Ca2+ entry after subsequent addition of Ca2+ was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.
Collapse
Affiliation(s)
- Jih-Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung Kang Road, Taichung 407, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
29
|
Bevan S. Chapter 7 TRP Channels as Thermosensors. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Sutton KG, Garrett EM, Rutter AR, Bonnert TP, Jarolimek W, Seabrook GR. Functional characterisation of the S512Y mutant vanilloid human TRPV1 receptor. Br J Pharmacol 2005; 146:702-11. [PMID: 16100528 PMCID: PMC1751200 DOI: 10.1038/sj.bjp.0706356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/08/2005] [Accepted: 07/01/2005] [Indexed: 11/08/2022] Open
Abstract
1 Mammalian transient receptor potential (TRP) channels include the nonselective cation channel TRPV1, which is activated by a range of stimuli including low pH, vanilloids and heat. Previously, selective mutagenesis experiments identified an intracellular residue (S512Y) critical to discriminating between pH and vanilloid (capsaicin) gating of the rat TRPV1 receptor. 2 In this study, switching the equivalent residue in the human TRPV1 (which has some significant differences with the rat TRPV1) also rendered this channel relatively insensitive to activation by capsaicin and proved critical in determining the receptor's sensitivity to the putative endovanilloid N-arachidonoyl-dopamine (NADA), suggesting a similar mode of activation for these two agonists. 3 Potency of pH gating was reduced; however, voltage-dependent outward rectification properties of the pH-dependent current and gating by heat and pH sensitisation of the S512Y heat response remained unaffected. 4 Surprisingly, residual capsaicin gating was detected and could be sensitised by pH even in the presence of a competitive antagonist. Taken together, these findings indicate that effective functional interaction of capsaicin with the S512Y channel still occurred, although the vanilloid-dependent gating per se was severely compromised. 5 This observation provides additional evidence for capsaicin interacting at multiple sites, distinct from the S512 residue located close to the intracellular face of the pore.
Collapse
Affiliation(s)
- Kathy G Sutton
- The Neuroscience Research Centre, Merck Sharp & Dohme, Harlow, Essex CM20 2QR.
| | | | | | | | | | | |
Collapse
|
31
|
Tóth A, Wang Y, Kedei N, Tran R, Pearce LV, Kang SU, Jin MK, Choi HK, Lee J, Blumberg PM. Different vanilloid agonists cause different patterns of calcium response in CHO cells heterologously expressing rat TRPV1. Life Sci 2005; 76:2921-32. [PMID: 15820503 DOI: 10.1016/j.lfs.2004.10.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 10/23/2004] [Indexed: 10/25/2022]
Abstract
The vanilloid receptor subtype 1 (TRPV1 or VR1) is expressed in nociceptive primary afferents of the C-fiber 'pain' pathway and has attracted considerable attention as a therapeutic target. Here, using rat TRPV1 heterologously expressed in Chinese hamster ovary cells, we show that different agonists show different patterns of modulation of the intracellular Ca2+ concentration, monitored in individual cells by fura-2 Ca2+ imaging. We identified 5 parameters (potency, maximal response, latency of response, variability of latency of response among individual cells, and desensitization) which behaved differently for different compounds. The potencies of the compounds examined ranged from EC50 values of 80 pM to 9 microM. Peak levels of induced [Ca2+]i were observed either higher (RTX) or lower (anandamide) than for capsaicin. Significant latencies of response were observed for some (e.g. RTX) but not other derivatives, with great variation among individual cells in this latency. Marked desensitization after stimulation was detected in some cases (e.g. anandamide, capsaicin); for others, no desensitization was observed. We conclude that structurally diverse vanilloid agonists induce marked diversity in the patterns of Ca2+ response. This diversity of response may provide opportunities for pharmacological exploitation.
Collapse
Affiliation(s)
- Attila Tóth
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bldg. 37, Room 4048, 37 Convent Dr., MSC 4255, Bethesda, MD 20892-4255, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The discovery of the endogenous cannabimimetic lipid mediators, anandamide and 2-arachidonoyl glycerol, opened the door to the discovery of other endogenous lipid mediators similar in structure and function. The majority of these compounds do not bind appreciably to known cannabinoid receptors; yet some of them produce cannabimimetic effects while others exert actions through novel mechanisms that remain to be elucidated. This review explores the growing diversity of recently discovered putative lipid mediators and their relationship to the endogenous cannabinoid system. The possibility that there remain many unidentified signalling lipids coupled with the evidence that many of these yield bioactive metabolites due to actions of known enzymes (e.g. cyclooxygenases, lipoxygenases, cytochrome P450s) suggests the existence of a large and complex family of lipid mediators about which only little is known at this time. The elucidation of the biochemistry and pharmacology of these compounds may provide therapeutic targets for a variety of conditions including sleep dysfunction, eating disorders, cardiovascular disease, as well as inflammation and pain.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Department of Psychology, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, U.S.A
| | - J Michael Walker
- Department of Psychology, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, U.S.A
- Author for correspondence:
| |
Collapse
|
33
|
Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 2005; 48:1857-72. [PMID: 15771431 DOI: 10.1021/jm0495071] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High throughput screening using the recombinant human TRPV1 receptor was used to identify a series of pyridinylpiperazine ureas (3) as TRPV1 vanilloid receptor ligands. Exploration of the structure-activity relationships by parallel synthesis identified the essential pharmacophoric elements for antagonism that permitted further optimization via targeted synthesis to provide a potent orally bioavailable and selective TRPV1 modulator 41 active in several in vivo models.
Collapse
Affiliation(s)
- Devin M Swanson
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kitahara T, Li HS, Balaban CD. Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 2005; 201:132-44. [PMID: 15721568 DOI: 10.1016/j.heares.2004.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
The transient receptor potential cation channel subfamily V (TRPV) is a non-specific cation ion channel receptor family that is gated by heat, protons, low extracellular osmolarity and arachidonic acid derivatives. Since some of these endogenous agonists of TRPV receptors are reactive oxygen intermediates produced by lipoxygenases, it has been hypothesized that some members of the TRPV family may respond to challenges by reactive oxygen species. This study used real-time PCR to quantitatively track changes in TRPV1-4 mRNA expression in the spiral, vestibular, and trigeminal ganglia and the kidney from kanamycin (KM)-treated mice. TRPV1, TRPV2, TRPV3 and TRPV4 mRNAs were expressed in spiral and vestibular ganglia, and TRPV2 and TRPV1 mRNAs were most predominant in control mice. After KM (700 mg/kg s.c. b.i.d., 14 days), TRPV1 mRNA and protein expression were significantly up-regulated both in the spiral and vestibular ganglia, but expression was unaffected in the trigeminal ganglion and kidney. Real-time PCR also demonstrated a significant down-regulation in TRPV4 mRNA expression in the inner ear ganglia and kidney after KM treatment. All these mRNA and protein expression changes were eliminated by simultaneous administration of dihydroxybenzoate (300 mg/kg s.c. b.i.d., 14 days), an anti-oxidant that blocks KM ototoxicity. It is proposed that up-regulated TRPV1 expression during KM exposure may promote ganglion cell survival by contributing to neuronal depolarization, with KM-induced tinnitus and dizziness as consequences.
Collapse
Affiliation(s)
- Tadashi Kitahara
- Department of Otolaryngology, University of Pittsburgh School of Medicine, 107 Eye and Ear Institute, Room 153, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
35
|
Oshita K, Inoue A, Tang HB, Nakata Y, Kawamoto M, Yuge O. CB1 Cannabinoid Receptor Stimulation Modulates Transient Receptor Potential Vanilloid Receptor 1 Activities in Calcium Influx and Substance P Release in Cultured Rat Dorsal Root Ganglion Cells. J Pharmacol Sci 2005; 97:377-85. [PMID: 15750287 DOI: 10.1254/jphs.fp0040872] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Cannabinoids have been reported to have analgesic properties in animals of acute nociception or of inflammatory and neuropathic pain models, but the mechanisms by which they exert such alleviative effects are not yet fully understood. We investigated whether the CB(1)-cannabinoid-receptor agonist HU210 modulates the capsaicin-induced (45)Ca(2+) influx and substance P like-immunoreactivity (SPLI) release in cultured rat dorsal root ganglion (DRG) cells. HU210 attenuated the capsaicin-induced (45)Ca(2+) influx and this effect was reversed by the CB(1) antagonist AM251. Treatment of DRG cells with 100 nM bradykinin for 3 h potentiated capsaicin-induced SPLI release accompanied with the induction of cyclooxygenase-2 mRNA expression. The potentiation of SPLI release by bradykinin was reversed by HU210 or the protein kinase A (PKA) inhibitor H-89. HU210 also reduced forskolin-induced cyclic AMP production and forskolin-induced potentiation of SPLI release. These results suggest that CB(1) could inhibit either the capsaicin-induced Ca(2+) influx or the potentiation of capsaicin-induced SPLI release by a long-term treatment with bradykinin through involvement of a cyclic-AMP-dependent PKA pathway. In conclusion, CB(1)-receptor stimulation modulates the activities of transient receptor potential vanilloid receptor 1 in cultured rat DRG cells.
Collapse
Affiliation(s)
- Kyoko Oshita
- Department of Anesthesiology and Critical Care, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima.
| | | | | | | | | | | |
Collapse
|
36
|
Tang HB, Inoue A, Oshita K, Nakata Y. Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons. Eur J Pharmacol 2004; 498:37-43. [PMID: 15363973 DOI: 10.1016/j.ejphar.2004.07.076] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Vanilloid receptor 1 was recently reported to play an important role in hyperalgesia, but the mechanisms by which this receptor is activated by endogenous inflammatory mediators, such as bradykinin and nerve growth factor, are not yet fully understood. Here, we investigated whether bradykinin, which is a pain-producing inflammatory mediator, sensitizes vanilloid receptor 1 by inducing the activation of cyclooxygenases, phospholipase C and phospholipase A2 in rat dorsal root ganglion cells. We demonstrated this using 45Ca2+ uptake and inositol phosphates accumulation assays, bradykinin activates phospholipase C and cyclooxygenase-1 through the bradykinin B2 receptor. The bradykinin B2 receptor then sensitizes vanilloid receptor 1 activity by facilitating non-selective Ca2+ channel activity, increasing the intracellular Ca2+ concentration from the extracellular pool. These methods would be useful for screening new drugs for activity at vanilloid receptor 1. These data suggest that endogenous substances produced by several enzymes may be capable of producing a synergistic response involving the vanilloid receptor 1.
Collapse
Affiliation(s)
- He-Bin Tang
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
37
|
Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004; 560:867-81. [PMID: 15331673 PMCID: PMC1665286 DOI: 10.1113/jphysiol.2004.071746] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the contribution of the TRPV1 receptor to jejunal afferent sensitivity in the murine intestine. Multiunit activity was recorded in vitro from mesenteric afferents supplying segments of mouse jejunum taken from wild-type (WT) and TRPV1 knockout (TRPV1(-/-)) animals. In WT preparations, ramp distension of the gut (up to 60 mmHg) produced biphasic changes in afferent activity so the pressure-response curve had an initial rapid increase in afferent discharge followed by a second phase of slower increase in activity. Afferent response to distension was significantly lower in TRPV1(-/-) than in WT mice. Single-unit analysis revealed three functional types of afferent fibres: (1) low-threshold fibres (2) wide dynamic range fibres and (3) high-threshold fibres. There was a marked downward shift of the pressure-response curve for wide dynamic range fibres in the TRPV1(-/-) mice as compared to the WT controls. The afferent response to intraluminal hydrochloric acid (20 mM) was also attenuated in the TRPV1(-/-) mice. In contrast, the response to bath application of bradykinin (1 microm, 3 ml) was not significantly different between the two groups. The TRPV1 antagonist capsazepine (10 microm) significantly attenuated the nerve responses to distension, intraluminal acid and bradykinin, as well as the spontaneous discharge in WT mice. The WT jejunal afferents responded to capsaicin with rapid increases in afferent activity, whereas TRPV1(-/-) afferents were not at all sensitive to capsaicin. Previous evidence indicates that TRPV1 is not mechanosensitive, so the results of the present study suggest that activation of TRPV1 may sensitize small intestinal afferent neurones.
Collapse
Affiliation(s)
- Weifang Rong
- Department of Biomedical Science, University of Sheffield, Alfred Danny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
38
|
Van Der Stelt M, Di Marzo V. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. ACTA ACUST UNITED AC 2004; 271:1827-34. [PMID: 15128293 DOI: 10.1111/j.1432-1033.2004.04081.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endovanilloids are defined as endogenous ligands of the transient receptor potential vanilloid type 1 (TRPV1) protein, a nonselective cation channel that belongs to the large family of TRP ion channels, and is activated by the pungent ingredient of hot chilli peppers, capsaicin. TRPV1 is expressed in some nociceptor efferent neurons, where it acts as a molecular sensor of noxious heat and low pH. However, the presence of these channels in various regions of the central nervous system, where they are not likely to be targeted by these noxious stimuli, suggests the existence of endovanilloids. Three different classes of endogenous lipids have been found recently that can activate TRPV1, i.e. unsaturated N-acyldopamines, lipoxygenase products of arachidonic acid and the endocannabinoid anandamide with some of its congeners. To classify a molecule as an endovanilloid, the compound should be formed or released in an activity-dependent manner in sufficient amounts to evoke a TRPV1-mediated response by direct activation of the channel. To control TRPV1 signaling, endovanilloids should be inactivated within a short time-span. In this review, we will discuss, for each of the proposed endogenous ligands of TRPV1, their ability to act as endovanilloids in light of the criteria mentioned above.
Collapse
Affiliation(s)
- Mario Van Der Stelt
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | | |
Collapse
|
39
|
Sancho R, Macho A, de La Vega L, Calzado MA, Fiebich BL, Appendino G, Muñoz E. Immunosuppressive activity of endovanilloids: N-arachidonoyl-dopamine inhibits activation of the NF-kappa B, NFAT, and activator protein 1 signaling pathways. THE JOURNAL OF IMMUNOLOGY 2004; 172:2341-51. [PMID: 14764703 DOI: 10.4049/jimmunol.172.4.2341] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Endogenous N-acyl dopamines such as N-arachidonoyldopamine (NADA) and N-oleoyldopamine have been recently identified as a new class of brain neurotransmitters sharing endocannabinoid and endovanilloid biological activities. As endocannabinoids show immunomodulatory activity, and T cells play a key role in the onset of several diseases that affect the CNS, we have evaluated the immunosuppressive activity of NADA and N-oleoyldopamine in human T cells, discovering that both compounds are potent inhibitors of early and late events in TCR-mediated T cell activation. Moreover, we found that NADA specifically inhibited both IL-2 and TNF-alpha gene transcription in stimulated Jurkat T cells. To further characterize the inhibitory mechanisms of NADA at the transcriptional level, we examined the DNA binding and transcriptional activities of NF-kappaB, NF-AT, and AP-1 transcription factors in Jurkat cells. We found that NADA inhibited NF-kappaB-dependent transcriptional activity without affecting either degradation of the cytoplasmic NF-kappaB inhibitory protein, IkappaBalpha, or DNA binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by NADA in stimulated cells. In addition, NADA inhibited both binding to DNA and the transcriptional activity of NF-AT and AP-1, as expected from the inhibition of NF-AT1 dephosphorylation and c-Jun N-terminal kinase activation in stimulated T cells. Finally, overexpression of a constitutively active form of calcineurin demonstrated that this phosphatase may represent one of the main targets of NADA. These findings provide new mechanistic insights into the anti-inflammatory activities of NADA and highlight their potential to design novel therapeutic strategies to manage inflammatory diseases.
Collapse
Affiliation(s)
- Rocío Sancho
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Facultad de Medicina, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Szolcsányi J, Sándor Z, Petho G, Varga A, Bölcskei K, Almási R, Riedl Z, Hajos G, Czéh G. Direct evidence for activation and desensitization of the capsaicin receptor by N-oleoyldopamine on TRPV1-transfected cell, line in gene deleted mice and in the rat. Neurosci Lett 2004; 361:155-8. [PMID: 15135917 DOI: 10.1016/j.neulet.2003.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Effects of the endogenous lipid N-oleoyldopamine (OLDA) were analyzed on the rTRPV1-expressing HT1080 human fibrosarcoma cell line (HT5-1), on cultured rat trigeminal neurons, on the noxious heat threshold of rats and on nocifensive behavior of TRPV1 knockout mice. The EC(50) of capsaicin and OLDA on (45)Ca accumulation of rTRPV1-expressing HT5-1 cells was 36 nM and 1.8 microM, respectively. The efficacy of OLDA was 60% as compared to the maximum response of capsaicin. OLDA (330 nM to 3.3 microM) caused a transient increase in fluorescence of fura-2 loaded cultured small trigeminal neurons of the rat and rTRPV1-transfected HT5-1 cells measured with a ratiometric technique. Repeated application of OLDA and capsaicin caused similar desensitization in the Ca(2+) transients both in cultured neurons and rTRPV1-transfected HT5-1 cells. In the rat intraplantar injection of OLDA (5 nmol) decreased the noxious heat threshold by 6-9 degrees C and this response was strongly inhibited by the TRPV1 antagonist iodoresiniferatoxin (0.05 nmol intraplantarly (i.pl.)). In wild-type mice OLDA (50 nmol i.pl.) evoked paw lifting/licking which was significantly less sustained in TRPV1 knockout mice. It is concluded that on TRPV1 capsaicin receptors OLDA is 50 times less potent than capsaicin and it might serve as an endogenous ligand for TRPV1 in the rat, but more likely in humans.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Capsaicin/pharmacology
- Cell Line, Tumor
- Dopamine/analogs & derivatives
- Dopamine/pharmacology
- Dose-Response Relationship, Drug
- Hot Temperature/adverse effects
- Humans
- Ligands
- Mice
- Mice, Knockout
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/chemically induced
- Pain/genetics
- Pain/metabolism
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Rats
- Receptors, Drug/deficiency
- Receptors, Drug/drug effects
- Receptors, Drug/genetics
- Transfection
Collapse
Affiliation(s)
- J Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Neuropharmacology Research Group of the Hungarian Academy of Sciences, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Evans RM, Scott RH, Ross RA. Multiple actions of anandamide on neonatal rat cultured sensory neurones. Br J Pharmacol 2004; 141:1223-33. [PMID: 15023857 PMCID: PMC1574891 DOI: 10.1038/sj.bjp.0705723] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We have investigated the effects of the endocannabinoid anandamide (AEA) on neuronal excitability and vanilloid TRPV1 receptors in neonatal rat cultured dorsal root ganglion neurones. 2. Using whole-cell patch-clamp electrophysiology, we found that AEA inhibits high-voltage-activated Ca(2+) currents by 33+/-9% (five out of eight neurones) in the absence of the CB(1) receptor antagonist SR141716A (100 nM) and by 32+/-6% (seven out of 10 neurones) in the presence of SR141716A. 3. Fura-2 fluorescence Ca(2+) imaging revealed that AEA produced distinct effects on Ca(2+) transients produced by depolarisation evoked by 30 mM KCl. In a population of neurones of larger somal area (372+/-20 microM(2)), it significantly enhanced Ca(2+) transients (80.26+/-13.12% at 1 microM), an effect that persists after pertussis toxin pretreatment. In a population of neurones of smaller somal area (279+/-18 microM(2)), AEA significantly inhibits Ca(2+) transients (30.75+/-3.54% at 1 microM), an effect that is abolished by PTX pretreatment. 4. Extracellular application of 100 nM AEA failed to evoke TRPV1 receptor inward currents in seven out of eight neurones that responded to capsaicin (1 microM), with a mean inward current of -0.94+/-0.21 nA. In contrast, intracellular application of 100 nM AEA elicited robust inward currents in approximately 62% of neurones, the mean population response was -0.85+/-0.21 nA. When AEA was applied to the intracellular environment with capsazepine (1 microM), the mean population inward current was -0.01+/-0.01 nA. Under control conditions, mean population current fluctuations of -0.09+/-0.05 nA were observed.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acids/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Cells, Cultured
- Drug Synergism
- Endocannabinoids
- Fura-2/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Neurons, Afferent/drug effects
- Pertussis Toxin/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Potassium Chloride/pharmacology
- Pyrazoles/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/drug effects
- Rimonabant
- TRPV Cation Channels
Collapse
Affiliation(s)
- Rhian M Evans
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland
| | - Roderick H Scott
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland
| | - Ruth A Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland
- Author for correspondence:
| |
Collapse
|
42
|
Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 2004; 286:C195-205. [PMID: 14707014 DOI: 10.1152/ajpcell.00365.2003] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vanilloid receptor-1 (VR1, now TRPV1) was the founding member of a subgroup of cation channels within the TRP family. The TRPV subgroup contains six mammalian members, which all function as Ca2+ entry channels gated by a variety of physical and chemical stimuli. TRPV4, which displays 45% sequence identity with TRPV1, is characterized by a surprising gating promiscuity: it is activated by hypotonic cell swelling, heat, synthetic 4alpha-phorbols, and several endogenous substances including arachidonic acid (AA), the endocannabinoids anandamide and 2-AG, and cytochrome P-450 metabolites of AA, such as epoxyeicosatrienoic acids. This review summarizes data on TRPV4 as a paradigm of gating diversity in this subfamily of Ca2+ entry channels.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratorium voor Fysiologie, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|