1
|
Yang X, Yang X, Li B, Zhang J, Yan Z. Combined non-targeted and targeted metabolomics reveals the mechanism of delaying aging of Ginseng fibrous root. Front Pharmacol 2024; 15:1368776. [PMID: 39114359 PMCID: PMC11303238 DOI: 10.3389/fphar.2024.1368776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background: The fibrous root of ginseng (GFR) is the dried thin branch root or whisker root of Ginseng (Panax ginseng C. A. Mey). It is known for its properties such as tonifying qi, producing body fluid, and quenching thirst. Clinically, it is used to treat conditions such as cough, hemoptysis, thirst, stomach deficiency, and vomiting. While GFR and Ginseng share similar metabolites, they differ in their metabolites ratios and efficacy. Furthermore, the specific role of GFR in protecting the body remains unclear. Methods: We employed ultra-high performance liquid chromatography-triple quadrupole mass spectrometry to examine alterations in brain neurotransmitters and elucidate the impact of GFR on the central nervous system. Additionally, we analyzed the serum and brain metabolic profiles of rats using ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry to discern the effect and underlying mechanism of GFR in delaying aging in naturally aged rats. Results: The findings of the serum biochemical indicators indicate that the intervention of GFR can enhance cardiovascular, oxidative stress, and energy metabolism related indicators in naturally aging rats. Research on brain neurotransmitters suggests that GFR can augment physiological functions such as learning and memory, while also inhibiting central nervous system excitation to a certain degree by maintaining the equilibrium of central neurotransmitters in aged individuals. Twenty-four abnormal metabolites in serum and seventeen abnormal metabolites in brain could be used as potential biomarkers and were involved in multiple metabolic pathways. Among them, in the brain metabolic pathways, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, histidine metabolism, and tyrosine metabolism were closely related to central neurotransmitters. Butanoate metabolism improves energy supply for life activities in the aging body. Cysteine and methionine metabolism contributes to the production of glutathione and taurine and played an antioxidant role. In serum, the regulation of glycerophospholipid metabolism pathway and proline metabolism demonstrated the antioxidant capacity of GFR decoction. Conclution: In summary, GFR plays a role in delaying aging by regulating central neurotransmitters, cardiovascular function, oxidative stress, energy metabolism, and other aspects of the aging body, which lays a foundation for the application of GFR.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shijiazhuang Food and Drug Inspection Center, Shijiazhuang, China
| | - Xiang Yang
- Beijing Apex Pharmaceutical R&D Co., Ltd., Beijing, China
| | - Bo Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Jianyun Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Lian Y, Fu G, Liang X, He X, Xu J, Fan H, Wan Y. Combination of Artemisia selengensis Turcz leaves polysaccharides and dicaffeoylquinic acids could be a potential inhibitor for hyperuricemia. Int J Biol Macromol 2024; 271:132687. [PMID: 38806079 DOI: 10.1016/j.ijbiomac.2024.132687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Caffeioyl quinic acids and polysaccharides from Artemisia selengensis Turcz are considered potential bioactive substances for hyperuricemia (HUA) treatment. While the mechanism of multi-component combined intervention of polysaccharides and dicaffeoylquinic acids (diCQAs) is not yet clear. In this study, we investigated the effect of A. selengensis Turcz leaves polysaccharides (APS) on the HUA treatment with diCQAs in vitro by direct inhibition of XOD activities and in vivo by using animal model. The results showed that APS had almost no inhibitory effect on XOD activities in vitro, but the inhibitory activity of diCQAs on XOD was affected by changes in inhibition type and inhibition constant. Compared to APS and diCQAs alone, high-dose APS and diCQAs in combination (ADPSh) could significantly reduce the production of uric acid (16.38 % reduction compared to diCQAs group) and oxidative stress damage. Additionally, this combined therapy showed promise in restoring the gut microbiota balance and increasing the short-chain fatty acids levels. The results suggested that APS and diCQAs in combination could be a potential inhibitor for HUA treatment.
Collapse
Affiliation(s)
- Yingzhu Lian
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinchao He
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Xu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
3
|
Hameed M, Siddiqui F, Khan MK, Tadisetty S, Gangishetti PK. Treatment of Pantothenate-Kinase Neurodegeneration With Baclofen, Botulinum Toxin, and Deferiprone: A Case Report. BRAIN & NEUROREHABILITATION 2023; 16:e25. [PMID: 38047104 PMCID: PMC10689866 DOI: 10.12786/bn.2023.16.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 12/05/2023] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive disorder characterized by progressive motor symptoms, such as dystonia and spasticity. Classical PKAN is the most common subtype of neurodegeneration with brain iron accumulation (NBIA). Currently, there is no established treatment for PKAN. However, baclofen and botulinum toxin have been reported to improve motor symptoms and ease care in these patients. Additionally, Deferiprone is a well-tolerated iron chelator that has been shown to be effective in reducing brain iron accumulation. In this case report, we present the case of a seven-year-old boy who presented to our ward with spastic gait and extrapyramidal signs. Brain magnetic resonance imaging was performed, which showed features of neurodegeneration secondary to brain iron accumulation with a specific appearance of the eye-of-the-tiger sign. Genetic testing was positive for a homozygous mutation in PANK2, and the diagnosis of early-stage classical PKAN was made. This case report highlights the potent efficacy of baclofen, botulinum toxin, and deferiprone in slowing down the disease progression at an early stage and improving the severity of symptoms.
Collapse
Affiliation(s)
- Marya Hameed
- National Institute of Child Health, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
4
|
Mehmood A, Zhao L, Wang C, Hossen I, Raka RN, Zhang H. Stevia residue extract increases intestinal uric acid excretion via interactions with intestinal urate transporters in hyperuricemic mice. Food Funct 2019; 10:7900-7912. [DOI: 10.1039/c9fo02032b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The supplementation of STVRE significantly attenuated hyperuricemia and oxidative stress, upregulated ABCG2 and downregulated GLUT9 (protein and mRNA) expression in hyperuricemic mice.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Imam Hossen
- Beijing Advance Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Rifat Nowshin Raka
- Beijing Advance Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Huimin Zhang
- Beijing Advance Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
- Beijing Engineering and Technology Research Center of Food Additives
| |
Collapse
|
5
|
Alvarez-Cordoba M, Villanueva-Paz M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Talaverón-Rey M, Abril-Jaramillo J, Vintimilla-Tosi AB, Sánchez-Alcázar JA. Precision medicine in pantothenate kinase-associated neurodegeneration. Neural Regen Res 2019; 14:1177-1185. [PMID: 30804242 PMCID: PMC6425824 DOI: 10.4103/1673-5374.251203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas, mainly the basal ganglia. The predominant clinical symptoms include spasticity, progressive dystonia, Parkinson’s disease-like symptoms, neuropsychiatric alterations, and retinal degeneration. Among the neurodegeneration with brain iron accumulation disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2 (PANK2) which catalyzed the first reaction of the coenzyme A biosynthesis pathway. Currently there is no effective treatment to prevent the inexorable course of these disorders. The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN. Recently, we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules, mitochondrial dysfunction and a pronounced increase of markers of oxidative stress. In addition, PKAN fibroblasts showed a morphological senescence-like phenotype. Interestingly, pantothenate supplementation, the substrate of the PANK2 enzyme, corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression. However, pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein. The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts. Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations. Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment. The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate. The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available, and monitoring its effect on the pathophysiological changes, can help for a better therapeutic strategy. In addition, these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.
Collapse
Affiliation(s)
- Mónica Alvarez-Cordoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | | | | | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
6
|
|
7
|
Kurian MA, Hayflick SJ. Pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN): review of two major neurodegeneration with brain iron accumulation (NBIA) phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:49-71. [PMID: 24209433 PMCID: PMC6059649 DOI: 10.1016/b978-0-12-410502-7.00003-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of disorders characterized by the presence of radiologically discernible high brain iron, particularly within the basal ganglia. A number of childhood NBIA syndromes are described, of which two of the major subtypes are pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN). PKAN and PLAN are autosomal recessive NBIA disorders due to mutations in PANK2 and PLA2G6, respectively. Presentation is usually in childhood, with features of neurological regression and motor dysfunction. In both PKAN and PLAN, a number of classical and atypical phenotypes are reported. In this chapter, we describe the clinical, radiological, and genetic features of these two disorders and also discuss the pathophysiological mechanisms postulated to play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Manju A Kurian
- Neurosciences Unit, UCL-Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom.
| | | |
Collapse
|
8
|
Gu C, Qu H, Han L, Song X, Zhao L, Lu W. The effect of raw soybean on oxidative status of digestive organs in mice. Int J Mol Sci 2011; 12:8836-45. [PMID: 22272106 PMCID: PMC3257103 DOI: 10.3390/ijms12128836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/10/2011] [Accepted: 11/21/2011] [Indexed: 11/16/2022] Open
Abstract
The present study was undertaken to specify the effect of raw soybean on oxidative status of digestive organs in mice. For this purpose, thirty male (C57BL/6J) mice were randomly divided into three groups and fed on different diets as follows: Group 1 was fed on control diet, Group 2 was fed on raw soybean diet and Group 3 was fed on raw soybean diet supplemented with 30 mg/kg cysteamine. After two weeks of feeding, duodenum, liver and pancreas samples were collected to measure oxidative and antioxidative parameters. The results show that ingestion of raw soybean markedly increased contents of superoxide anion and malondialdehyde (MDA) and activity of inducible nitric oxide synthase (iNOS), decreased activity of superoxide dismutase (SOD), T-AOC and content of reduced glutathione (GSH) in digestive organs of mice (P < 0.05). In the group fed with raw soybean diet supplemented with cysteamine, oxidative stress was mitigated. However, oxidative parameter levels were still higher than those of control diet-fed group. The present study indicates that ingestion of raw soybean could result in an imbalance between oxidant and antioxidant, and thus induce oxidative stress in digestive organs of mice.
Collapse
Affiliation(s)
- Chunmei Gu
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Hongsheng Qu
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Lingling Han
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Xinxiu Song
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Linlin Zhao
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; E-Mails: (C.G.); (H.Q.); (L.H.); (X.S.); (L.Z.)
| | - Wenfa Lu
- Institute of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
9
|
Schipper HM. Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta Mol Basis Dis 2011; 1822:350-60. [PMID: 21782937 DOI: 10.1016/j.bbadis.2011.06.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/14/2022]
Abstract
Iron participates in a wide array of cellular functions and is essential for normal neural development and physiology. However, if inappropriately managed, the transition metal is capable of generating neurotoxic reactive oxygen species. A number of hereditary conditions perturb body iron homeostasis and some, collectively referred to as neurodegeneration with brain iron accumulation (NBIA), promote pathological deposition of the metal predominantly or exclusively within the central nervous system (CNS). In this article, we discuss seven NBIA disorders with emphasis on the clinical syndromes and neuroimaging. The latter primarily entails magnetic resonance scanning using iron-sensitive sequences. The conditions considered are Friedreich ataxia (FA), pantothenate kinase 2-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), FA2H-associated neurodegeneration (FAHN), Kufor-Rakeb disease (KRD), aceruloplasminemia, and neuroferritinopathy. An approach to differential diagnosis and the status of iron chelation therapy for several of these entities are presented. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- Hyman M Schipper
- Centre for Neurotranslational Research, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
10
|
Zorzi G, Zibordi F, Chiapparini L, Bertini E, Russo L, Piga A, Longo F, Garavaglia B, Aquino D, Savoiardo M, Solari A, Nardocci N. Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: Results of a phase II pilot trial. Mov Disord 2011; 26:1756-9. [DOI: 10.1002/mds.23751] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 03/01/2011] [Accepted: 03/15/2011] [Indexed: 02/05/2023] Open
|
11
|
Awasthi R, Gupta RK, Trivedi R, Singh JK, Paliwal VK, Rathore RKS. Diffusion tensor MR imaging in children with pantothenate kinase-associated neurodegeneration with brain iron accumulation and their siblings. AJNR Am J Neuroradiol 2009; 31:442-7. [PMID: 19850762 DOI: 10.3174/ajnr.a1849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE It has been reported that iron concentration influences DTI metrics in deep gray matter nuclei. We hypothesized that increased FA in the deep gray nuclei may indicate abnormal iron accumulation in patients with PKAN and their siblings. MATERIALS AND METHODS Seven patients with the characteristic "eye-of-the-tiger sign," their 5 siblings, and 5 age-matched controls were prospectively studied. One-way ANOVA with Bonferroni post hoc multiple comparisons was used to compare DTI metrics (FA and MD) among subject groups in the putamen, CN, GP, SN, and ALIC. In addition, hypointense and hyperintense regions of the eye-of-the-tiger sign were segmented, and their DTI metrics were compared. In the patient group, the values of DTI metrics in hypointense regions were also compared with those of the ALIC. RESULTS A significant increase in FA values of the GP and SN from controls to the patient group to siblings was observed. In the GP, MD values were significantly higher in patients compared with controls and siblings. The patients showed significantly increased FA with decreased MD in hypointense compared with hyperintense regions of the eye-of-the-tiger sign. No difference in FA values were observed between the ALIC and hypointense regions of the eye-of-the-tiger sign in patients. CONCLUSIONS High FA values in siblings of patients with PKAN suggest the presence of abnormal iron in deep gray matter nuclei, even in the absence of its demonstration on T2*-weighted GRE.
Collapse
Affiliation(s)
- R Awasthi
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | | | |
Collapse
|
12
|
Barbosa LF, Garcia CCM, Di Mascio P, de Medeiros MHG. DNA oxidation, strand-breaks and etheno-adducts formation promoted by Cu, Zn-superoxide dismutase–H2O2 in the presence and absence of bicarbonate. Dalton Trans 2009:1450-9. [PMID: 19462668 DOI: 10.1039/b813235f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lívea Fujita Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
13
|
Gandhi G, Kaur W. Micronucleus Frequencies in Exfoliated Urothelial Cells Among Individuals Residing Near a Waste Water Drain and Using Underground Water Resources. Toxicol Mech Methods 2008; 15:219-25. [DOI: 10.1080/15376520590945649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Winterbone MS, Sampson MJ, Saha S, Hughes JC, Hughes DA. Pro-oxidant effect of alpha-tocopherol in patients with type 2 diabetes after an oral glucose tolerance test--a randomised controlled trial. Cardiovasc Diabetol 2007; 6:8. [PMID: 17316429 PMCID: PMC1819366 DOI: 10.1186/1475-2840-6-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 02/22/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As a part of a larger study investigating the effects of alpha-tocopherol on gene expression in type 2 diabetics we observed a pro-oxidant effect of alpha-tocopherol which we believe may be useful in interpreting outcomes of large intervention trials of alpha-tocopherol. METHODS 19 type 2 diabetes subjects were randomised into two groups taking either 1200 IU/day of alpha-tocopherol or a matched placebo for 4 weeks. On day 0 and 29 of this study oxidative DNA damage was assessed in mononuclear cells from fasted blood samples and following a 2 h glucose tolerance test (GTT). RESULTS On day 0 there was no significant difference in oxidative DNA damage between the two groups or following a GTT. On day 29 there was no significant difference in oxidative DNA damage in fasted blood samples, however following a GTT there was a significant increase in oxidative DNA damage in the alpha-tocopherol treatment group. CONCLUSION High dose supplementation with alpha-tocopherol primes mononuclear cells from patients with type 2 diabetes for a potentially damaging response to acute hyperglycaemia.
Collapse
Affiliation(s)
- Mark S Winterbone
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Mike J Sampson
- Bertram Diabetes Research Unit, Norfolk & Norwich University Hospital NHS Trust, Norwich, NR4 7UY, UK
| | - Shikha Saha
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Jackie C Hughes
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - David A Hughes
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| |
Collapse
|
15
|
Flora SJS, Mehta A, Gautam P, Jatav PC, Pathak U. Essential metal status, prooxidant/antioxidant effects of MiADMSA in male rats: age-related effects. Biol Trace Elem Res 2007; 120:235-247. [PMID: 17916976 DOI: 10.1007/s12011-007-0064-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/24/2007] [Accepted: 05/06/2007] [Indexed: 10/23/2022]
Abstract
Thiols are known to act as protectants in the biological system for their involvement in a number of metabolic regulations. In this study, we investigated the effect of a new and potent thiol-chelating agent, monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA), an analog of meso 2,3-dimercaptosuccinic acid, to find out if it could act as a prooxidant (because of its lipophilic character) or antioxidant (because of thiol moiety) that could supplement its chelating properties in different age groups of male rats (young, adult, and old rats) and produce effective clinical recoveries in the treatment of metal intoxication. Animals were treated with 25, 50, and 100 mg/kg of MiADMSA, i.p, once daily for 1 week to assess the effect on the antioxidant system in major organs based on sensitive biochemical variables indicative of oxidative stress. Results suggested that MiADMSA administration increased the activity of d-aminolevulinic acid dehydratase in all the age groups and increased blood glutathione (GSH) levels in young rats. MiADMSA also potentiated the synthesis of metallothioneine in liver and kidneys and GSH levels in liver and brain. Apart from this it also significantly reduced the glutathione disulfide levels in tissues. However, administration of MiADMSA caused some concern over the copper loss. MiADMSA was found to be safe in rats of all ages.
Collapse
Affiliation(s)
- S J S Flora
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474 002, India.
| | | | | | | | | |
Collapse
|
16
|
Carter CD, Kitchen LE, Au WC, Babic CM, Basrai MA. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Mol Cell Biol 2005; 25:10273-85. [PMID: 16287844 PMCID: PMC1291217 DOI: 10.1128/mcb.25.23.10273-10285.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.
Collapse
Affiliation(s)
- Carole D Carter
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, National Naval Medical Center, Building 8, Room 5101, 8901 Wisconsin Ave., Bethesda, MD 20889-5105, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Abstract
Iron is essential for oxidation-reduction catalysis and bioenergetics; however, unless appropriately shielded, this metal plays a crucial role in the formation of toxic oxygen radicals that can attack all biological molecules. Organisms are equipped with specific proteins designed for iron acquisition, export and transport, and storage, as well as with sophisticated mechanisms that maintain the intracellular labile iron pool at an appropriate level. Despite these homeostatic mechanisms, organisms often face the threat of either iron deficiency or iron overload. This review describes several hereditary iron-overloading conditions that are confined to the brain. Recently, a mutation in the L-subunit of ferritin has been described that causes the formation of aberrant L-ferritin with an altered C-terminus. Individuals with this mutation in one allele of L-ferritin have abnormal aggregates of ferritin and iron in the brain, primarily in the globus pallidus. Patients with this dominantly inherited late-onset disease present with symptoms of extrapyramidal dysfunction. Mice with a targeted disruption of a gene for iron regulatory protein 2 (IRP2), a translational repressor of ferritin, misregulate iron metabolism in the intestinal mucosa and the central nervous system. Significant amounts of ferritin and iron accumulate in white matter tracts and nuclei, and adult IRP2-deficient mice develop a movement disorder consisting of ataxia, bradykinesia, and tremor. Mutations in the frataxin gene are responsible for Friedreich's ataxia, the most common of the inherited ataxias. Frataxin appears to regulate mitochondrial iron-sulfur cluster formation, and the neurologic and cardiac manifestations of Friedreich's ataxia are due to iron-mediated mitochondrial toxicity. Patients with Hallervorden-Spatz syndrome, an autosomal recessive, progressive neurodegenerative disorder, have mutations in a novel pantothenate kinase gene (PANK2). The cardinal feature of this extrapyramidal disease is pathologic iron accumulation in the globus pallidus. The defect in PANK2 is predicted to cause the accumulation of cysteine, which binds iron and causes oxidative stress in the iron-rich globus pallidus. Finally, aceruloplasminemia is an autosomal recessive disorder of iron metabolism caused by loss-of-function mutations in ceruloplasmin gene that leads to misregulation of both systemic and central nervous system iron trafficking. Affected individuals suffer from extrapyramidal signs, cerebellar ataxia, progressive neurodegeneration of retina, and diabetes mellitus. Excessive iron depositions are found in the brain, liver, pancreas, and other parenchymal cells, but plasma iron concentrations are decreased. These conditions are not common, but awareness about them is important for differential diagnosis of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Prem Ponka
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Physiology and Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Hayflick SJ. Unraveling the Hallervorden-Spatz syndrome: pantothenate kinase-associated neurodegeneration is the name. Curr Opin Pediatr 2003; 15:572-7. [PMID: 14631201 DOI: 10.1097/00008480-200312000-00005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW After the recent discovery of the major genetic defect in neurodegeneration with brain iron accumulation (NBIA, formerly Hallervorden-Spatz syndrome), this heterogeneous group of disorders can now be differentiated by clinical, radiographic, and molecular features. RECENT FINDINGS Disease caused by mutations in the gene encoding pantothenate kinase 2 (PANK2) is characterized by dystonia and pigmentary retinopathy in children or speech and neuropsychiatric defects in adults, in concert with a specific pattern on MRI of the brain. This virtually pathognomonic radiographic abnormality, called the eye-of-the-tiger sign, comprises hyperintensities within a hypointense medial globus pallidus on T2-weighted images. This disorder is called pantothenate kinase-associated neurodegeneration (PKAN) and accounts for most patients diagnosed with NBIA. Pantothenate kinase is essential to coenzyme A biosynthesis, and PANK2 is targeted to mitochondria, a feature that distinguishes it from the three other human pantothenate kinase homologs. Hypotheses of PKAN pathogenesis are based on the predictions of tissue-specific coenzyme A deficiency and the accumulation of cysteine-containing enzyme substrates, which may chelate iron and lead to the cardinal disease feature of basal ganglia iron accumulation. SUMMARY Recent insight into the biochemical basis of PKAN has led to novel ideas for rational therapies. Investigations are under way to enable testing of promising compounds, first in animal models of disease and then in human patients. Identification of the genetic basis for the major form of NBIA has allowed more accurate clinical delineation of the specific diseases that compose this group, a new molecular diagnostic test for PKAN, and hypotheses for treatment of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Susan J Hayflick
- Molecular & Medical Genetics, Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon 97239,
| |
Collapse
|
20
|
Abstract
Increasing evidence implicates a role of iron in the pathogenesis of numerous neurodegenerative diseases due to its capacity to enhance production of toxic reactive radicals and to induce protein aggregation. The underlying mechanism of iron accumulation in areas of the brain specific for the respective disease, however, is still unknown. Recent molecular and biochemical studies provide new insights into the consequences of impairment of brain iron metabolism. This review summarizes our understanding of the regulation of iron in the brain and defines the current knowledge on the involvement of iron metabolism in neurodegenerative diseases with genetically determined iron accumulation in the brain.
Collapse
Affiliation(s)
- D. Berg
- Department of Neurology, Bayerische Julius-Maximilians-Universi.at Wdot;urzburg
| | | | | | | |
Collapse
|
21
|
Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 2001; 28:345-9. [PMID: 11479594 DOI: 10.1038/ng572] [Citation(s) in RCA: 508] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hallervorden-Spatz syndrome (HSS) is an autosomal recessive neurodegenerative disorder associated with iron accumulation in the brain. Clinical features include extrapyramidal dysfunction, onset in childhood, and a relentlessly progressive course. Histologic study reveals iron deposits in the basal ganglia. In this respect, HSS may serve as a model for complex neurodegenerative diseases, such as Parkinson disease, Alzheimer disease, Huntington disease and human immunodeficiency virus (HIV) encephalopathy, in which pathologic accumulation of iron in the brain is also observed. Thus, understanding the biochemical defect in HSS may provide key insights into the regulation of iron metabolism and its perturbation in this and other neurodegenerative diseases. Here we show that HSS is caused by a defect in a novel pantothenate kinase gene and propose a mechanism for oxidative stress in the pathophysiology of the disease.
Collapse
Affiliation(s)
- B Zhou
- Howard Hughes Medical Institute and Departments of Medicine and Pediatrics, University of California, Parnassus & Third Avenues, U-426, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|