1
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Fan TJ, Cui J. Human Endogenous Retroviruses in Diseases. Subcell Biochem 2023; 106:403-439. [PMID: 38159236 DOI: 10.1007/978-3-031-40086-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Human endogenous retroviruses (HERVs), which are conserved sequences of ancient retroviruses, are widely distributed in the human genome. Although most HERVs have been rendered inactive by evolution, some have continued to exhibit important cytological functions. HERVs in the human genome perform dual functions: on the one hand, they are involved in important physiological processes such as placental development and immune regulation; on the other hand, their aberrant expression is closely associated with the pathological processes of several diseases, such as cancers, autoimmune diseases, and viral infections. HERVs can also regulate a variety of host cellular functions, including the expression of protein-coding genes and regulatory elements that have evolved from HERVs. Here, we present recent research on the roles of HERVs in viral infections and cancers, including the dysregulation of HERVs in various viral infections, HERV-induced epigenetic modifications of histones (such as methylation and acetylation), and the potential mechanisms of HERV-mediated antiviral immunity. We also describe therapies to improve the efficacy of vaccines and medications either by directly or indirectly targeting HERVs, depending on the HERV.
Collapse
Affiliation(s)
- Tian-Jiao Fan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
4
|
Casanova EL, Konkel MK. The Developmental Gene Hypothesis for Punctuated Equilibrium: Combined Roles of Developmental Regulatory Genes and Transposable Elements. Bioessays 2020; 42:e1900173. [PMID: 31943266 PMCID: PMC7029956 DOI: 10.1002/bies.201900173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Theories of the genetics underlying punctuated equilibrium (PE) have been vague to date. Here the developmental gene hypothesis is proposed, which states that: 1) developmental regulatory (DevReg) genes are responsible for the orchestration of metazoan morphogenesis and their extreme conservation and mutation intolerance generates the equilibrium or stasis present throughout much of the fossil record and 2) the accumulation of regulatory elements and recombination within these same genes-often derived from transposable elements-drives punctuated bursts of morphological divergence and speciation across metazoa. This two-part hypothesis helps to explain the features that characterize PE, providing a theoretical genetic basis for the once-controversial theory. Also see the video abstract here https://youtu.be/C-fu-ks5yDs.
Collapse
Affiliation(s)
- Emily L. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine at Greenville, Greenville, South Carolina, USA
| | - Miriam K. Konkel
- Department of Genetics and Biochemistry, Clemson Center for Human Genetics, Biomedical Data Science and Informatics Program, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
5
|
|
6
|
Nicklas JA, Vacek PM, Carter EW, McDiarmid M, Albertini RJ. Molecular analysis of glycosylphosphatidylinositol anchor deficient aerolysin resistant isolates in gulf war i veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:470-493. [PMID: 30848503 DOI: 10.1002/em.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
During the First Gulf War (1991) over 100 servicemen sustained depleted uranium (DU) exposure through wound contamination, inhalation, and shrapnel. The Department of Veterans Affairs has a surveillance program for these Veterans which has included genotoxicity assays. The frequencies of glycosylphosphatidylinositol anchor (GPIa) negative (aerolysin resistant) cells determined by cloning assays for these Veterans are reported in Albertini RJ et al. (2019: Environ Mol Mutagen). Molecular analyses of the GPIa biosynthesis class A (PIGA) gene was performed on 862 aerolysin-resistant T-lymphocyte recovered isolates. The frequencies of different types of PIGA mutations were compared between high and low DU exposure groups. Additional molecular studies were performed on mutants that produced no PIGA mRNA or with deletions of all or part of the PIGA gene to determine deletion size and breakpoint sequence. One mutant appeared to be the result of a chromothriptic event. A significant percentage (>30%) of the aerolysin resistant isolates, which varied by sample year and Veteran, had wild-type PIGA cDNA (no mutation). As described in Albertini RJ et al. (2019: Environ Mol Mutagen), TCR gene rearrangement analysis of these isolates indicated most arose from multiple T-cell progenitors (hence the inability to find a mutation). It is likely that these isolates were the result of failure of complete selection against nonmutant cells in the cloning assays. Real-time studies of GPIa resistant isolates with no PIGA mutation but with a single TCR gene rearrangement found one clone with a PIGV deletion and several others with decreased levels of GPIa pathway gene mRNAs implying mutation in other GPIa pathway genes. Environ. Mol. Mutagen. 60:470-493, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, District of Columbia
| | - Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
7
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res 2018; 26:93-111. [PMID: 29460123 PMCID: PMC5857278 DOI: 10.1007/s10577-018-9573-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA.
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC, 27708, USA.
| | | | - Roxanne J Larsen
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA
| | - Ann M Saunders
- Zinfandel Pharmaceuticals Inc, Chapel Hill, NC, 27709, USA
| |
Collapse
|
9
|
Gu S, Yuan B, Campbell IM, Beck CR, Carvalho CMB, Nagamani SCS, Erez A, Patel A, Bacino CA, Shaw CA, Stankiewicz P, Cheung SW, Bi W, Lupski JR. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 2015; 24:4061-77. [PMID: 25908615 DOI: 10.1093/hmg/ddv146] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023] Open
Abstract
Alu repetitive elements are known to be major contributors to genome instability by generating Alu-mediated copy-number variants (CNVs). Most of the reported Alu-mediated CNVs are simple deletions and duplications, and the mechanism underlying Alu-Alu-mediated rearrangement has been attributed to non-allelic homologous recombination (NAHR). Chromosome 17 at the p13.3 genomic region lacks extensive low-copy repeat architecture; however, it is highly enriched for Alu repetitive elements, with a fraction of 30% of total sequence annotated in the human reference genome, compared with the 10% genome-wide and 18% on chromosome 17. We conducted mechanistic studies of the 17p13.3 CNVs by performing high-density oligonucleotide array comparative genomic hybridization, specifically interrogating the 17p13.3 region with ∼150 bp per probe density; CNV breakpoint junctions were mapped to nucleotide resolution by polymerase chain reaction and Sanger sequencing. Studied rearrangements include 5 interstitial deletions, 14 tandem duplications, 7 terminal deletions and 13 complex genomic rearrangements (CGRs). Within the 17p13.3 region, Alu-Alu-mediated rearrangements were identified in 80% of the interstitial deletions, 46% of the tandem duplications and 50% of the CGRs, indicating that this mechanism was a major contributor for formation of breakpoint junctions. Our studies suggest that Alu repetitive elements facilitate formation of non-recurrent CNVs, CGRs and other structural aberrations of chromosome 17 at p13.3. The common observation of Alu-mediated rearrangement in CGRs and breakpoint junction sequences analysis further demonstrates that this type of mechanism is unlikely attributed to NAHR, but rather may be due to a recombination-coupled DNA replicative repair process.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics
| | - Bo Yuan
- Department of Molecular & Human Genetics
| | | | | | | | - Sandesh C S Nagamani
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | - Ayelet Erez
- Department of Molecular & Human Genetics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Carlos A Bacino
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | | | | | | | - Weimin Bi
- Department of Molecular & Human Genetics
| | - James R Lupski
- Department of Molecular & Human Genetics, Department of Pediatrics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA and
| |
Collapse
|
10
|
Gucev Z, Koceva S, Marinaki A, Fairbanks L, Kirovski I, Tasic V. Lesch-Nyhan syndrome: a novel complex mutation with severe phenotype. Clin Genet 2010; 78:296-7. [PMID: 20695874 DOI: 10.1111/j.1399-0004.2010.01428.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Friedman J, Adam S, Arbour L, Armstrong L, Baross A, Birch P, Boerkoel C, Chan S, Chai D, Delaney AD, Flibotte S, Gibson WT, Langlois S, Lemyre E, Li HI, MacLeod P, Mathers J, Michaud JL, McGillivray BC, Patel MS, Qian H, Rouleau GA, Van Allen MI, Yong SL, Zahir FR, Eydoux P, Marra MA. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization. BMC Genomics 2009; 10:526. [PMID: 19917086 PMCID: PMC2781027 DOI: 10.1186/1471-2164-10-526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 11/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. RESULTS We performed 500 K Affymetrix GeneChip array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. CONCLUSION Affymetrix GeneChip 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience.
Collapse
Affiliation(s)
- Jm Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Friedman JM. High-resolution array genomic hybridization in prenatal diagnosis. Prenat Diagn 2008; 29:20-8. [DOI: 10.1002/pd.2129] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Aissi-Ben Moussa S, Moussa A, Lovecchio T, Kourda N, Najjar T, Ben Jilani S, El Gaaied A, Porchet N, Manai M, Buisine MP. Identification and characterization of a novel MLH1 genomic rearrangement as the cause of HNPCC in a Tunisian family: evidence for a homologous Alu-mediated recombination. Fam Cancer 2008; 8:119-26. [PMID: 18792805 DOI: 10.1007/s10689-008-9215-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 09/02/2008] [Indexed: 12/15/2022]
Abstract
High rates of early colorectal cancers are observed in Tunisia suggesting high genetic susceptibility. Nevertheless, up to now no molecular studies have been performed. Hereditary nonpolyposis colorectal cancer (HNPCC) is the most frequent cause of inherited colorectal cancer. It is caused by constitutional mutations in the DNA mismatch repair (MMR) genes. Here, we investigated a Tunisian family highly suspected of hereditary nonpolyposis colorectal cancer (HNPCC). Six patients were diagnosed with a colorectal or an endometrial cancer at an early age, including one young female who developed a colorectal cancer at 22 years and we tested for germline mutations in MMR genes. MMR genes were tested for rearrangements by MLPA (MLH1, MSH2) and the presence of point mutations by sequencing (MLH1, MSH2, MSH6). Moreover, tumors were analyzed for microsatellite instability and expression of MMR proteins, as well as for somatic rearrangements in MLH1 and MSH2 by MLPA. MMR gene analysis by MLPA revealed the presence of a large deletion in MLH1 removing exon 6. Sequence analysis of the breakpoint region showed that this rearrangement resulted from a homologous unequal recombination mediated by a repetitive Alu sequence. Moreover, tumors harbored biallelic deletion of MLH1 exon 6 and loss of heterozygosity at MLH1 intragenic markers, suggesting duplication of the rearranged allele in the tumor. This germline MLH1 rearrangement was associated to a severe phenotype in this family. This is the first report of a molecular analysis in a Tunisian family with HNPCC.
Collapse
Affiliation(s)
- Sana Aissi-Ben Moussa
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, Armstrong L, Asano J, Bailey DK, Barber S, Birch P, Brown-John M, Cao M, Chan S, Charest DL, Farnoud N, Fernandes N, Flibotte S, Go A, Gibson WT, Holt RA, Jones SJM, Kennedy GC, Krzywinski M, Langlois S, Li HI, McGillivray BC, Nayar T, Pugh TJ, Rajcan-Separovic E, Schein JE, Schnerch A, Siddiqui A, Van Allen MI, Wilson G, Yong SL, Zahir F, Eydoux P, Marra MA. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 2006; 79:500-13. [PMID: 16909388 PMCID: PMC1559542 DOI: 10.1086/507471] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/06/2006] [Indexed: 11/03/2022] Open
Abstract
The cause of mental retardation in one-third to one-half of all affected individuals is unknown. Microscopically detectable chromosomal abnormalities are the most frequently recognized cause, but gain or loss of chromosomal segments that are too small to be seen by conventional cytogenetic analysis has been found to be another important cause. Array-based methods offer a practical means of performing a high-resolution survey of the entire genome for submicroscopic copy-number variants. We studied 100 children with idiopathic mental retardation and normal results of standard chromosomal analysis, by use of whole-genome sampling analysis with Affymetrix GeneChip Human Mapping 100K arrays. We found de novo deletions as small as 178 kb in eight cases, de novo duplications as small as 1.1 Mb in two cases, and unsuspected mosaic trisomy 9 in another case. This technology can detect at least twice as many potentially pathogenic de novo copy-number variants as conventional cytogenetic analysis can in people with mental retardation.
Collapse
Affiliation(s)
- J M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Woodward KJ, Cundall M, Sperle K, Sistermans EA, Ross M, Howell G, Gribble SM, Burford DC, Carter NP, Hobson DL, Garbern JY, Kamholz J, Heng H, Hodes ME, Malcolm S, Hobson GM. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination. Am J Hum Genet 2005; 77:966-87. [PMID: 16380909 PMCID: PMC1285180 DOI: 10.1086/498048] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 09/12/2005] [Indexed: 11/04/2022] Open
Abstract
We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.6 Mb in size). Sequence analysis of the junctions revealed no large homologous regions between proximal and distal breakpoints. Most junctions had microhomology of 1-6 bases, and one had a 2-base insertion. Boundaries between single-copy and duplicated DNA were identical to the reference genomic sequence in all patients investigated. Taken together, these data suggest that the tandem duplications are formed by a coupled homologous and nonhomologous recombination mechanism. We suggest repair of a double-stranded break (DSB) by one-sided homologous strand invasion of a sister chromatid, followed by DNA synthesis and nonhomologous end joining with the other end of the break. This is in contrast to other genomic disorders that have recurrent rearrangements formed by nonallelic homologous recombination between LCRs. Interspersed repetitive elements (Alu elements, long interspersed nuclear elements, and long terminal repeats) were found at 18 of the 26 breakpoint sequences studied. No specific motif that may predispose to DSBs was revealed, but single or alternating tracts of purines and pyrimidines that may cause secondary structures were common. Analysis of the 2-Mb region susceptible to duplications identified proximal-specific repeats and distal LCRs in addition to the previously reported ones, suggesting that the unique genomic architecture may have a role in nonrecurrent rearrangements by promoting instability.
Collapse
Affiliation(s)
- Karen J. Woodward
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Maria Cundall
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Karen Sperle
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Erik A. Sistermans
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Mark Ross
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Gareth Howell
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Susan M. Gribble
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Deborah C. Burford
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Nigel P. Carter
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Donald L. Hobson
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - James Y. Garbern
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - John Kamholz
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Henry Heng
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - M. E. Hodes
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Sue Malcolm
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Grace M. Hobson
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| |
Collapse
|
16
|
Gregoric A, Rabelink GM, Kokalj Vokac N, Varda NM, Zagradisnik B. Eighteen-year follow-up of a patient with partial hypoxanthine phosphoribosyltransferase deficiency and a new mutation. Pediatr Nephrol 2005; 20:1346-8. [PMID: 15965771 DOI: 10.1007/s00467-005-1935-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/24/2005] [Accepted: 03/04/2005] [Indexed: 11/29/2022]
Abstract
Hypoxanthine phosphoribosyltransferase (HPRT) deficiency is an inherited disorder. Complete deficiency of HPRT activity is phenotypically expressed as the devastating Lesch-Nyhan syndrome. Partial HPRT deficiency usually causes hyperuricemia, precocious gout, and uric acid nephrolithiasis. We describe an 18-year follow-up of a 5-year old boy with partial HPRT deficiency and report a novel mutation in his HPRT gene. He presented with overproduction of uric acid and passage of uric acid renal stones, and without gout or neurological and behavioral abnormalities. Treatment with allopurinol, adequate hydration, urinary alkalization, and a low-purine diet was started. No subsequent nephrolithiasis has occurred. After 18-year of this therapy his physical and neuropsychological status were normal, merely his glomerular filtration rate (GFR, normal 97-137 mL min(-1)/1.73 m(2)) fell from normal to 65.1 mL min(-1). The most likely cause of initial renal impairment in our patient is uric and/or xanthine crystalluria. A missense and transition mutation 169A>G (57ATG>GTG, 57met>val) in exon 3 of the patient's HPRT gene was identified and the mother was the carrier of the mutation. As far as we are aware, the identified mutation has not previously been reported. We named the mutant HPRT Maribor.
Collapse
Affiliation(s)
- Alojz Gregoric
- Department of Pediatrics, Maribor Teaching Hospital, Ljubljanska 5, 2000 Maribor, Slovenia.
| | | | | | | | | |
Collapse
|
17
|
O'Neill JP. Mutation Carrier Testing in Lesch-Nyhan Syndrome Families: HPRT Mutant Frequency and Mutation Analysis with Peripheral Blood T Lymphocytes. ACTA ACUST UNITED AC 2004; 8:51-64. [PMID: 15140374 DOI: 10.1089/109065704323016030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations in the X chromosome hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene are responsible for Lesch-Nyhan syndrome and related diseases in humans. Because the gene is on the X chromosome, males are affected and females in the families are at risk of being carriers of the mutation. Because there are so many different mutations that can cause the disease (218 different mutations in 271 families), genetic testing for carrier status of females requires detailed molecular analysis of the familial mutation. This analysis can be complicated by the unavailability of an affected male for study. In addition, when the mutation is a deletion (34 reported instances), molecular analysis in females is difficult because of the two X chromosomes. We have applied a peripheral blood T lymphocyte cloning assay that uses resistance to the purine analogue 6-thioguanine (TG) to measure the frequency of cells in females expressing a mutant HPRT allele to determine mutation carrier status in 123 females in 61 families. In families in which the HPRT mutation was determined and could be easily analyzed in samples from females, we found a mean (+/- SD) mutant frequency of 9.7 (+/- 8.7) x 10(-6) in noncarrier females and 2.9 (+/- 3.0) x 10(-2) in carrier females. The frequency in carrier females is less than the 0.5 expected for nonrandom X inactivation because of in vivo selection against HPRT mutation-expressing T lymphocytes or stem cells during prenatal development. The use of this cloning assay allows determination of the carrier status of females even when the HPRT mutation is not yet known or is difficult to determine in DNA samples from females. This approach provides a rapid assay that yields information on carrier status within 10 days of sample receipt.
Collapse
Affiliation(s)
- J Patrick O'Neill
- Genetics Laboratory, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
18
|
Buzdin A, Ustyugova S, Gogvadze E, Lebedev Y, Hunsmann G, Sverdlov E. Genome-wide targeted search for human specific and polymorphic L1 integrations. Hum Genet 2003; 112:527-33. [PMID: 12601470 DOI: 10.1007/s00439-002-0904-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 12/06/2002] [Indexed: 11/30/2022]
Abstract
Retroelements (REs) occupy up to 40% of the human genome. Newly integrated REs can change the pattern of expression of pre-existing host genes and therefore might play a significant role in evolution. In particular, human- and primate-specific REs could affect the divergence of the Hominoidea superfamily. A comparative genome-wide analysis of RE sites of integration, neighboring genes, and their regulatory interplay in human and ape genomes would be of help in understanding the impact of REs on evolution and genome regulation. We have developed a technique for the genome-wide comparison of the integrations of transposable elements in genomic DNAs of closely related species. The technique called targeted genome differences analysis (TGDA) is also useful for the detection of deletion/insertion polymorphisms of REs. The technique is based on an enhanced version of subtractive hybridization and does not require preliminary knowledge of the genome sequences under comparison. In this report, we describe its application to the detection and analysis of human specific L1 integrations and their polymorphisms. We obtained a library highly enriched in human-specific L1 insertions and identified 24 such new insertions. Many of these insertions are polymorphic in human populations. The total number of human-specific L1 inserts was estimated to be approximately 4000. The results suggest that TGDA is a universal method that can be successfully used for the detection of evolutionary and polymorphic markers in any closely related genomes.
Collapse
Affiliation(s)
- Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
19
|
Tayebi N, Stubblefield BK, Park JK, Orvisky E, Walker JM, LaMarca ME, Sidransky E. Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am J Hum Genet 2003; 72:519-34. [PMID: 12587096 PMCID: PMC1180228 DOI: 10.1086/367850] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/26/2002] [Indexed: 11/03/2022] Open
Abstract
Gaucher disease results from an autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase. The glucocerebrosidase gene is located in a gene-rich region of 1q21 that contains six genes and two pseudogenes within 75 kb. The presence of contiguous, highly homologous pseudogenes for both glucocerebrosidase and metaxin at the locus increases the likelihood of DNA rearrangements in this region. These recombinations can complicate genotyping in patients with Gaucher disease and contribute to the difficulty in interpreting genotype-phenotype correlations in this disorder. In the present study, DNA samples from 240 patients with Gaucher disease were examined using several complementary approaches to identify and characterize recombinant alleles, including direct sequencing, long-template polymerase chain reaction, polymorphic microsatellite repeats, and Southern blots. Among the 480 alleles studied, 59 recombinant alleles were identified, including 34 gene conversions, 18 fusions, and 7 downstream duplications. Twenty-two percent of the patients evaluated had at least one recombinant allele. Twenty-six recombinant alleles were found among 310 alleles from patients with type 1 disease, 18 among 74 alleles from patients with type 2 disease, and 15 among 96 alleles from patients with type 3 disease. Several patients carried two recombinations or mutations on the same allele. Generally, alleles resulting from nonreciprocal recombination (gene conversion) could be distinguished from those arising by reciprocal recombination (crossover and exchange), and the length of the converted sequence was determined. Homozygosity for a recombinant allele was associated with early lethality. Ten different sites of crossover and a shared pentamer motif sequence (CACCA) that could be a hotspot for recombination were identified. These findings contribute to a better understanding of genotype-phenotype relationships in Gaucher disease and may provide insights into the mechanisms of DNA rearrangement in other disorders.
Collapse
Affiliation(s)
- Nahid Tayebi
- Clinical Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Buzdin A, Ustyugova S, Khodosevich K, Mamedov I, Lebedev Y, Hunsmann G, Sverdlov E. Human-specific subfamilies of HERV-K (HML-2) long terminal repeats: three master genes were active simultaneously during branching of hominoid lineages. Genomics 2003; 81:149-56. [PMID: 12620392 DOI: 10.1016/s0888-7543(02)00027-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using 40 known human-specific LTR sequences, we have derived a consensus sequence for an evolutionary young HERV-K (HML-2) LTR family, which was named the HS family. In the human genome the HS family is represented by approximately 150-160 LTR sequences, 90% of them being human-specific (hs). The family can be subdivided into two subfamilies differing in five linked nucleotide substitutions: HS-a and HS-b of 5.8 and 10.3 Myr evolutionary ages, respectively. The HS-b subfamily members were transpositionally active both before the divergence of the human and chimpanzee ancestor lineages and after it in both lineages. The HS-a subfamily comprises only hs LTRs. These and other data strongly suggest that at least three "master genes" of HERV-K (HML-2) LTRs were active in the human ancestor lineage after the human-chimpanzee divergence. We also found hs HERV-K (HML-2) LTRs integrations in introns of 12 human genes and identified 13 new hs HERV-K (HML-2) LTRs.
Collapse
Affiliation(s)
- Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The eukaryotic genome has undergone a series of epidemics of amplification of mobile elements that have resulted in most eukaryotic genomes containing much more of this 'junk' DNA than actual coding DNA. The majority of these elements utilize an RNA intermediate and are termed retroelements. Most of these retroelements appear to amplify in evolutionary waves that insert in the genome and then gradually diverge. In humans, almost half of the genome is recognizably derived from retroelements, with the two elements that are currently actively amplifying, L1 and Alu, making up about 25% of the genome and contributing extensively to disease. The mechanisms of this amplification process are beginning to be understood, although there are still more questions than answers. Insertion of new retroelements may directly damage the genome, and the presence of multiple copies of these elements throughout the genome has longer-term influences on recombination events in the genome and more subtle influences on gene expression.
Collapse
Affiliation(s)
- Prescott L Deininger
- Tulane Cancer Center, Department of Environmental Health Sciences, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
22
|
Jaatinen T, Chung EK, Ruuskanen O, Lokki ML. An unequal crossover event in RCCX modules of the human MHC resulting in the formation of a TNXB/TNXA hybrid and deletion of the CYP21A. Hum Immunol 2002; 63:683-9. [PMID: 12121677 DOI: 10.1016/s0198-8859(02)00416-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The central region of the human major histocompatibility complex contains tandemly arranged genes of RP, C4, CYP21, and TNX. The C4 gene region is prone to rearrangements that generates duplications, conversions, and deletions. Diversity in gene number and size causes reorganization and may lead to genetic disorders. The RP, C4, CYP21, and TNX genes form a genetic unit called RCCX. We describe molecular studies on RCCX haplotypes revealing a unique recombination giving rise to a TNXB/TNXA hybrid gene, CYP21A deletion and CYP21B duplication on one chromosome of the propositus. His other chromosome carries a deletion of CYP21A-TNXA-RP2-C4B genes, resulting in the total absence of CYP21A genes and the presence of three CYP21B genes in the genome.
Collapse
Affiliation(s)
- Taina Jaatinen
- Department of Tissue Typing, Finnish Red Cross Blood Transfusion Service, Helsinki, Finland
| | | | | | | |
Collapse
|
23
|
Mamedov I, Batrak A, Buzdin A, Arzumanyan E, Lebedev Y, Sverdlov ED. Genome-wide comparison of differences in the integration sites of interspersed repeats between closely related genomes. Nucleic Acids Res 2002; 30:e71. [PMID: 12136119 PMCID: PMC135772 DOI: 10.1093/nar/gnf071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2002] [Revised: 05/29/2002] [Accepted: 05/29/2002] [Indexed: 11/14/2022] Open
Abstract
A technique for genome-wide detection of differences in the integration site positions of interspersed repeats in related genomes (DiffIR) is described. The technique is based on a whole- genome selective PCR amplification of the repeats' flanking regions followed by a differential hybridization screening of the arrayed library of the selected amplicons. The technique was successfully applied to the comparison of the integration sites in the human and chimpanzee genomes, allowing us to discover 11 new human-specific integrations of human endogenous retrovirus, K family (HML-2) long terminal repeats.
Collapse
Affiliation(s)
- Ilgar Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
24
|
Buzdin A, Khodosevich K, Mamedov I, Vinogradova T, Lebedev Y, Hunsmann G, Sverdlov E. A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integrations of HERV-K LTRs. Genomics 2002; 79:413-22. [PMID: 11863371 DOI: 10.1006/geno.2002.6705] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a method of targeted genomic difference analysis (TGDA) for genomewide detection of interspersed repeat integration site differences between closely related genomes. The method includes a whole-genome amplification of the flanks adjacent to target interspersed repetitive elements in both genomic DNAs under comparison, and subtractive hybridization (SH) of the selected amplicons. The potential of TGDA was demonstrated by the detection of differences in the integration sites of human endogenous retroviruses K (HERV-K) and related solitary long terminal repeats (LTRs) between the human and chimpanzee genomes. Of 55 randomly sequenced clones from a library enriched with human-specific integration (HSI) sites, 33 (60%) represented HSIs. All the human-specific (Hs) LTRs belong to two related evolutionarily young groups, suggesting simultaneous activity of two master genes in the hominid lineage. No deletion/insertion polymorphism was detected for the LTR HSIs for 25 unrelated caucasoid individuals. We also discuss the possible research applications for TGDA research.
Collapse
Affiliation(s)
- Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Williams M, Rainville IR, Nicklas JA. Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:22-32. [PMID: 11813293 DOI: 10.1002/em.10040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Deletion and translocation mutations have been shown to play a significant role in the genesis of many cancers. The hprt gene located at Xq26 is a frequently used marker gene in human mutational studies. In an attempt to better understand potential mutational mechanisms involved in deletions and translocations, inverse PCR (IPCR) methods to amplify and sequence the breakpoints of hprt mutants classified as translocations and large deletions were developed. IPCR involves the digestion of DNA with a restriction enzyme, circularization of the fragments produced, and PCR amplification around the circle with primers oriented in a direction opposite to that of conventional PCR. The use of this technique allows amplification into an unknown region, in this case through the hprt breakpoint into the unknown joined sequence. Through the use of this procedure, two translocation, one inversion, and two external deletion hprt breakpoint sequences were isolated and sequenced. The isolated IPCR products range in size from 0.4 to 1.8 kb, and were amplified from circles ranging in size from 0.6 to 7.7 kb. We have shown that inverse PCR is useful to sequence translocation and large deletion mutant breakpoints in the hprt gene.
Collapse
Affiliation(s)
- M Williams
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|