1
|
Lebedeva NA, Dyrkheeva NS, Rechkunova NI, Lavrik OI. Apurinic/apyrimidinic endonuclease 1 has major impact in prevention of suicidal covalent DNA-protein crosslink with apurinic/apyrimidinic site in cellular extracts. IUBMB Life 2024; 76:987-996. [PMID: 38963041 DOI: 10.1002/iub.2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.
Collapse
Affiliation(s)
- Natalia A Lebedeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Gonzalo-Hansen C, Steurer B, Janssens RC, Zhou D, van Sluis M, Lans H, Marteijn JA. Differential processing of RNA polymerase II at DNA damage correlates with transcription-coupled repair syndrome severity. Nucleic Acids Res 2024; 52:9596-9612. [PMID: 39021334 PMCID: PMC11381366 DOI: 10.1093/nar/gkae618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
DNA damage severely impedes gene transcription by RNA polymerase II (Pol II), causing cellular dysfunction. Transcription-Coupled Nucleotide Excision Repair (TC-NER) specifically removes such transcription-blocking damage. TC-NER initiation relies on the CSB, CSA and UVSSA proteins; loss of any results in complete TC-NER deficiency. Strikingly, UVSSA deficiency results in UV-Sensitive Syndrome (UVSS), with mild cutaneous symptoms, while loss of CSA or CSB activity results in the severe Cockayne Syndrome (CS), characterized by neurodegeneration and premature aging. Thus far the underlying mechanism for these contrasting phenotypes remains unclear. Live-cell imaging approaches reveal that in TC-NER proficient cells, lesion-stalled Pol II is swiftly resolved, while in CSA and CSB knockout (KO) cells, elongating Pol II remains damage-bound, likely obstructing other DNA transacting processes and shielding the damage from alternative repair pathways. In contrast, in UVSSA KO cells, Pol II is cleared from the damage via VCP-mediated proteasomal degradation which is fully dependent on the CRL4CSA ubiquitin ligase activity. This Pol II degradation might provide access for alternative repair mechanisms, such as GG-NER, to remove the damage. Collectively, our data indicate that the inability to clear lesion-stalled Pol II from the chromatin, rather than TC-NER deficiency, causes the severe phenotypes observed in CS.
Collapse
Affiliation(s)
- Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara Steurer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Pan L, Boldogh I. The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases. Expert Opin Ther Targets 2024; 28:117-130. [PMID: 38344773 PMCID: PMC11111349 DOI: 10.1080/14728222.2024.2317900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Pulmonary diseases impose a daunting burden on healthcare systems and societies. Current treatment approaches primarily address symptoms, underscoring the urgency for the development of innovative pharmaceutical solutions. A noteworthy focus lies in targeting enzymes recognizing oxidatively modified DNA bases within gene regulatory elements, given their pivotal role in governing gene expression. AREAS COVERED This review delves into the intricate interplay between the substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) and epigenetic regulation, with a focal point on elucidating the molecular underpinnings and their biological implications. The absence of OGG1 distinctly attenuates the binding of transcription factors to cis elements, thereby modulating pro-inflammatory or pro-fibrotic transcriptional activity. Through a synergy of experimental insights gained from cell culture studies and murine models, utilizing prototype OGG1 inhibitors (O8, TH5487, and SU0268), a promising panorama emerges. These investigations underscore the absence of cytotoxicity and the establishment of a favorable tolerance profile for these OGG1 inhibitors. EXPERT OPINION Thus, the strategic targeting of the active site pocket of OGG1 through the application of small molecules introduces an innovative trajectory for advancing redox medicine. This approach holds particular significance in the context of pulmonary diseases, offering a refined avenue for their management.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
4
|
Kim DV, Kulishova LM, Torgasheva NA, Melentyev VS, Dianov GL, Medvedev SP, Zakian SM, Zharkov DO. Mild phenotype of knockouts of the major apurinic/apyrimidinic endonuclease APEX1 in a non-cancer human cell line. PLoS One 2021; 16:e0257473. [PMID: 34529719 PMCID: PMC8445474 DOI: 10.1371/journal.pone.0257473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
The major human apurinic/apyrimidinic (AP) site endonuclease, APEX1, is a central player in the base excision DNA repair (BER) pathway and has a role in the regulation of DNA binding by transcription factors. In vertebrates, APEX1 knockouts are embryonic lethal, and only a handful of knockout cell lines are known. To facilitate studies of multiple functions of this protein in human cells, we have used the CRISPR/Cas9 system to knock out the APEX1 gene in a widely used non-cancer hypotriploid HEK 293FT cell line. Two stable knockout lines were obtained, one carrying two single-base deletion alleles and one single-base insertion allele in exon 3, another homozygous in the single-base insertion allele. Both mutations cause a frameshift that leads to premature translation termination before the start of the protein's catalytic domain. Both cell lines totally lacked the APEX1 protein and AP site-cleaving activity, and showed significantly lower levels of the APEX1 transcript. The APEX1-null cells were unable to support BER on uracil- or AP site-containing substrates. Phenotypically, they showed a moderately increased sensitivity to methyl methanesulfonate (MMS; ~2-fold lower EC50 compared with wild-type cells), and their background level of natural AP sites detected by the aldehyde-reactive probe was elevated ~1.5-2-fold. However, the knockout lines retained a nearly wild-type sensitivity to oxidizing agents hydrogen peroxide and potassium bromate. Interestingly, despite the increased MMS cytotoxicity, we observed no additional increase in AP sites in knockout cells upon MMS treatment, which could indicate their conversion into more toxic products in the absence of repair. Overall, the relatively mild cell phenotype in the absence of APEX1-dependent BER suggests that mammalian cells possess mechanisms of tolerance or alternative repair of AP sites. The knockout derivatives of the extensively characterized HEK 293FT cell line may provide a valuable tool for studies of APEX1 in DNA repair and beyond.
Collapse
Affiliation(s)
- Daria V. Kim
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Liliya M. Kulishova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - Vasily S. Melentyev
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Grigory L. Dianov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Suren M. Zakian
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
5
|
Kajitani GS, Nascimento LLDS, Neves MRDC, Leandro GDS, Garcia CCM, Menck CFM. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin Cell Dev Biol 2021; 114:20-35. [DOI: 10.1016/j.semcdb.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
|
6
|
Owiti NA, Nagel ZD, Engelward BP. Fluorescence Sheds Light on DNA Damage, DNA Repair, and Mutations. Trends Cancer 2020; 7:240-248. [PMID: 33203608 DOI: 10.1016/j.trecan.2020.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
DNA damage can lead to carcinogenic mutations and toxicity that promotes diseases. Therefore, having rapid assays to quantify DNA damage, DNA repair, mutations, and cytotoxicity is broadly relevant to health. For example, DNA damage assays can be used to screen chemicals for genotoxicity, and knowledge about DNA repair capacity has applications in precision prevention and in personalized medicine. Furthermore, knowledge of mutation frequency has predictive power for downstream cancer, and assays for cytotoxicity can predict deleterious health effects. Tests for all of these purposes have been rendered faster and more effective via adoption of fluorescent readouts. Here, we provide an overview of established and emerging cell-based assays that exploit fluorescence for studies of DNA damage and its consequences.
Collapse
Affiliation(s)
- Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Liang S, Ezerskyte M, Wang J, Pelechano V, Dreij K. Transcriptional mutagenesis dramatically alters genome-wide p53 transactivation landscape. Sci Rep 2020; 10:13513. [PMID: 32782319 PMCID: PMC7419513 DOI: 10.1038/s41598-020-70412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
The transcriptional error rate can be significantly increased by the presence of DNA lesions that instruct mis-insertion during transcription; a process referred to as transcriptional mutagenesis (TM) that can result in altered protein function. Herein, we determined the effect of O6-methylguanine (O6-meG) on transcription and subsequent transactivation activity of p53 in human lung H1299 cells. Levels of TM and effects on transactivation were determined genome wide by RNA-seq. Results showed that 47% of all p53 transcripts contained an uridine misincorporation opposite the lesion at 6 h post transfection, which was decreased to 18% at 24 h. TM at these levels reduced DNA binding activity of p53 to 21% and 80% compared to wild type p53, respectively. Gene expression data were analysed to identify differentially expressed genes due to TM of p53. We show a temporal repression of transactivation of > 100 high confidence p53 target genes including regulators of the cell cycle, DNA damage response and apoptosis. In addition, TM repressed the transcriptional downregulation by p53 of several negative regulators of proliferation and differentiation. Our work demonstrates that TM, even when restricting its effect to an individual transcription factor, has the potential to alter gene expression programs and diversify cellular phenotypes.
Collapse
Affiliation(s)
- Shuo Liang
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Monika Ezerskyte
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jingwen Wang
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
8
|
Rodriguez-Alvarez M, Kim D, Khobta A. EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions. Biomolecules 2020; 10:biom10060902. [PMID: 32545792 PMCID: PMC7357151 DOI: 10.3390/biom10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The sustainment of replication and transcription of damaged DNA is essential for cell survival under genotoxic stress; however, the damage tolerance of these key cellular functions comes at the expense of fidelity. Thus, translesion DNA synthesis (TLS) over damaged nucleotides is a major source of point mutations found in cancers; whereas erroneous bypass of damage by RNA polymerases may contribute to cancer and other diseases by driving accumulation of proteins with aberrant structure and function in a process termed “transcriptional mutagenesis” (TM). Here, we aimed at the generation of reporters suited for direct detection of miscoding capacities of defined types of DNA modifications during translesion DNA or RNA synthesis in human cells. We performed a systematic phenotypic screen of 25 non-synonymous base substitutions in a DNA sequence encoding a functionally important region of the enhanced green fluorescent protein (EGFP). This led to the identification of four loss-of-fluorescence mutants, in which any ulterior base substitution at the nucleotide affected by the primary mutation leads to the reversal to a functional EGFP. Finally, we incorporated highly mutagenic abasic DNA lesions at the positions of primary mutations and demonstrated a high sensitivity of detection of the mutagenic DNA TLS and TM in this system.
Collapse
Affiliation(s)
- Marta Rodriguez-Alvarez
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
| | - Daria Kim
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andriy Khobta
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
- Correspondence:
| |
Collapse
|
9
|
Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. J Bacteriol 2020; 202:JB.00807-19. [PMID: 32041798 DOI: 10.1128/jb.00807-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilis IMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.
Collapse
|
10
|
Transcriptional Fidelity of Mitochondrial RNA Polymerase RpoTm from Arabidopsis thaliana. J Mol Biol 2019; 431:4767-4783. [PMID: 31626802 DOI: 10.1016/j.jmb.2019.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022]
Abstract
Fidelity of RNA synthesis is essential for the faithful transfer of information from DNA to RNA. A comprehensive analysis of the nucleotide selectivity by the mitochondrial RNA polymerase (RNAP) RpoTm, from Arabidopsis thaliana, has been carried out. The kinetic parameters for the incorporation of cognate, noncognate, and oxidized bases have been determined. The results establish high fidelity of mitochondrial transcription resembling those of replicative polymerases in the absence of repair. In addition, RpoTm incorporates oxidized nucleotides with similar efficiency compared with mismatches and is capable of extending the RNA beyond the insertion of the oxidized base. Furthermore, lesion bypass study on RpoTm demonstrates that the enzyme bypasses 8-oxo-guanine by insertion of adenine leading to C to A mutations in RNA. Homology modeling of RpoTm elongation complex allows delineation of the residues necessary for stabilizing the incoming NTP substrate and for posing the template nucleotide residue. Substitution of these residues leads to compromise in the activity of the enzyme corroborating their importance in RNA synthesis. Comparison of the data with T7 RNAPs indicates that low efficiency of misincorporation is a universal strategy used by single-subunit RNAPs for maintaining high fidelity in the absence of proofreading and repair activity in mitochondria.
Collapse
|
11
|
Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 2019; 20:766-784. [DOI: 10.1038/s41580-019-0169-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 12/30/2022]
|
12
|
Bradley CC, Gordon AJE, Halliday JA, Herman C. Transcription fidelity: New paradigms in epigenetic inheritance, genome instability and disease. DNA Repair (Amst) 2019; 81:102652. [PMID: 31326363 DOI: 10.1016/j.dnarep.2019.102652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts. Combining these powerful methods with forward and reverse genetic strategies has refined our understanding of transcription factors known to enhance RNA accuracy and will enable the discovery of new candidates. Furthermore, these approaches will shed additional light on the complex interplay between transcription fidelity and other DNA transactions, such as replication and repair, and explore a role for transcription errors in cellular evolution and disease.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Cui J, Gizzi A, Stivers JT. Deoxyuridine in DNA has an inhibitory and promutagenic effect on RNA transcription by diverse RNA polymerases. Nucleic Acids Res 2019; 47:4153-4168. [PMID: 30892639 PMCID: PMC6486633 DOI: 10.1093/nar/gkz183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022] Open
Abstract
dUTP is a close structural congener of dTTP and can be readily incorporated into DNA opposite to adenine during DNA replication leading to non-mutagenic dU/A base pairs ('uracilation'). We find that dU/A pairs located within DNA transcriptional templates optimized for either T7 RNA polymerase (T7 RNAP) or human RNA polymerase II (pol II) have inhibitory and mutagenic effects on transcription. The data for T7 RNAP establishes that even a single dU/A pair can inhibit promoter binding and transcription initiation up to 30-fold, and that inhibitory effects on transcription elongation are also possible. Sequencing of the mRNA transcribed from uniformly uracilated DNA templates by T7 RNAP indicated an increased frequency of transversion and insertion mutations compared to all T/A templates. Strong effects of dU/A pairs on cellular transcription activity and fidelity were also observed with RNA pol II using uracil base excision repair (UBER)-deficient human cells. At the highest levels of template uracilation, transcription by RNA pol II was completely blocked. We propose that these effects arise from the decreased thermodynamic stability and increased dynamics of dU/A pairs in DNA. The potential implications of these findings on gene regulation and disease are discussed.
Collapse
Affiliation(s)
- Junru Cui
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Anthony Gizzi
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
14
|
Le TT, Wang MD. Molecular Highways—Navigating Collisions of DNA Motor Proteins. J Mol Biol 2018; 430:4513-4524. [DOI: 10.1016/j.jmb.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
15
|
What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. DNA Repair (Amst) 2018; 71:56-68. [PMID: 30195642 DOI: 10.1016/j.dnarep.2018.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Unperturbed transcription of eukaryotic genes by RNA polymerase II (Pol II) is crucial for proper cell function and tissue homeostasis. However, the DNA template of Pol II is continuously challenged by damaging agents that can result in transcription impediment. Stalling of Pol II on transcription-blocking lesions triggers a highly orchestrated cellular response to cope with these cytotoxic lesions. One of the first lines of defense is the transcription-coupled nucleotide excision repair (TC-NER) pathway that specifically removes transcription-blocking lesions thereby safeguarding unperturbed gene expression. In this perspective, we outline recent data on how lesion-stalled Pol II initiates TC-NER and we discuss new mechanistic insights in the TC-NER reaction, which have resulted in a better understanding of the causative-linked Cockayne syndrome and UV-sensitive syndrome. In addition to these direct effects on lesion-stalled Pol II (effects in cis), accumulating evidence shows that transcription, and particularly Pol II, is also affected in a genome-wide manner (effects in trans). We will summarize the diverse consequences of DNA damage on transcription, including transcription inhibition, induction of specific transcriptional programs and regulation of alternative splicing. Finally, we will discuss the function of these diverse cellular responses to transcription-blocking lesions and their consequences on the process of transcription restart. This resumption of transcription, which takes place either directly at the lesion or is reinitiated from the transcription start site, is crucial to maintain proper gene expression following removal of the DNA damage.
Collapse
|
16
|
Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair (Amst) 2018; 71:43-55. [PMID: 30174298 DOI: 10.1016/j.dnarep.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic transcription-coupled nucleotide excision repair (TC-NER) is a pathway that removes DNA lesions capable of blocking RNA polymerase II (Pol II) transcription from the template strand. This process is initiated by lesion-arrested Pol II and the recruitment of Cockayne Syndrome B protein (CSB). In this review, we will focus on the lesion recognition steps of eukaryotic TC-NER and summarize the recent research progress toward understanding the structural basis of Pol II-mediated lesion recognition and Pol II-CSB interactions. We will discuss the roles of CSB in both TC-NER initiation and transcription elongation. Finally, we propose an updated model of tripartite lesion recognition and verification for TC-NER in which CSB ensures Pol II-mediated recognition of DNA lesions for TC-NER.
Collapse
|
17
|
O6-methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc Natl Acad Sci U S A 2018; 115:4731-4736. [PMID: 29666243 PMCID: PMC5939098 DOI: 10.1073/pnas.1721764115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The impact of DNA lesions on replication and mutagenesis is of high relevance for human health; however, the role of lesion-induced transcriptional mutagenesis (TM) in disease development is unknown. Here, the impact of O6-methylguanine–induced TM on p53 function as a tumor suppressor was investigated in human cells. Results showed that TM in 15% of the transcripts resulted in a reduced ability of p53 protein to transactivate genes that regulate cell-cycle arrest and induction of apoptosis. This resulted in the loss of functional cell-cycle checkpoints and in impaired activation of apoptosis, both canonical p53 tumor-suppressor functions. This work provides evidence that TM can induce phenotypic changes in mammalian cells that have important implications for its role in tumorigenesis. Altered protein function due to mutagenesis plays an important role in disease development. This is perhaps most evident in tumorigenesis and the associated loss or gain of function of tumor-suppressor genes and oncogenes. The extent to which lesion-induced transcriptional mutagenesis (TM) influences protein function and its contribution to the development of disease is not well understood. In this study, the impact of O6-methylguanine on the transcription fidelity of p53 and the subsequent effects on the protein’s function as a regulator of cell death and cell-cycle arrest were examined in human cells. Levels of TM were determined by RNA-sequencing. In cells with active DNA repair, misincorporation of uridine opposite the lesion occurred in 0.14% of the transcripts and increased to 14.7% when repair by alkylguanine–DNA alkyltransferase was compromised. Expression of the dominant-negative p53 R248W mutant due to TM significantly reduced the transactivation of several established p53 target genes that mediate the tumor-suppressor function, including CDKN1A (p21) and BBC3 (PUMA). This resulted in deregulated signaling through the retinoblastoma protein and loss of G1/S cell-cycle checkpoint function. In addition, we observed impaired activation of apoptosis coupled to the reduction of the tumor-suppressor functions of p53. Taking these findings together, this work provides evidence that TM can induce phenotypic changes in mammalian cells that have important implications for the role of TM in tumorigenesis.
Collapse
|
18
|
Wang W, Walmacq C, Chong J, Kashlev M, Wang D. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Proc Natl Acad Sci U S A 2018; 115:E2538-E2545. [PMID: 29487211 PMCID: PMC5856558 DOI: 10.1073/pnas.1722050115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abasic sites are among the most abundant DNA lesions and interfere with DNA replication and transcription, but the mechanism of their action on transcription remains unknown. Here we applied a combined structural and biochemical approach for a comprehensive investigation of how RNA polymerase II (Pol II) processes an abasic site, leading to slow bypass of lesion. Encounter of Pol II with an abasic site involves two consecutive slow steps: insertion of adenine opposite a noninstructive abasic site (the A-rule), followed by extension of the 3'-rAMP with the next cognate nucleotide. Further studies provided structural insights into the A-rule: ATP is slowly incorporated into RNA in the absence of template guidance. Our structure revealed that ATP is bound to the Pol II active site, whereas the abasic site is located at an intermediate state above the Bridge Helix, a conserved structural motif that is cirtical for Pol II activity. The next extension step occurs in a template-dependent manner where a cognate substrate is incorporated, despite at a much slower rate compared with nondamaged template. During the extension step, neither the cognate substrate nor the template base is located at the canonical position, providing a structural explanation as to why this step is as slow as the insertion step. Taken together, our studies provide a comprehensive understanding of Pol II stalling and bypass of the abasic site in the DNA template.
Collapse
Affiliation(s)
- Wei Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Celine Walmacq
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
19
|
Suzuki H, Taketani T, Kobayashi J, Ohshiro T. Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles. J Antibiot (Tokyo) 2018; 71:382-389. [PMID: 29348523 DOI: 10.1038/s41429-017-0003-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Abstract
Stress-induced mutagenesis can assist pathogens in generating drug-resistant cells during antibiotic therapy; however, if and how antibiotics induce mutagenesis in microbes remains poorly understood. A non-pathogenic thermophile, Geobacillus kaustophilus HTA426, efficiently produces derivative cells resistant to rifampicin and streptomycin via rpoB and rpsL mutations, respectively. Here, we examined this phenomenon to suggest a novel mutagenic mode induced by antibiotics. Fluctuation analysis indicated that mutations occurred via spontaneous mutations during culture. However, mutations were much more frequent in growing cells than stationary cells, and mutation sites were varied through cell growth. These observations suggested that growing cells induced mutagenesis in response to antibiotics. An in-frame deletion of mfd, which governs transcription-coupled repair to correct DNA lesions on the transcribed strand, caused mutations that were comparable between growing and stationary cells; therefore, the mutagenic mechanism was attributable to DNA repair defects where growing cells depressed mfd function. Mutations occurred more frequently at optimal growth temperatures for G. kaustophilus than at a higher growth temperature, suggesting that the mutagenesis relies on active cellular activities rather than high temperature-associated DNA damage. In addition, the mutagenesis may involve a mutagenic factor targeting these sites, in addition to mfd depression, because rpoB and rpsL mutations were dominant at thymine and guanine sites on the transcribed strand. A similar mutagenic profile was observed for other Geobacillus and thermophilic Bacillus species. This suggests that Bacillus-related thermophiles commonly induce mutagenesis in response to rifampicin and streptomycin to produce resistant cells.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Functional Genomics of Extremophiles, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan. .,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan.
| | - Tatsunari Taketani
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan
| | - Jyumpei Kobayashi
- Functional Genomics of Extremophiles, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan
| |
Collapse
|
20
|
Majumdar C, Nuñez NN, Raetz AG, Khuu C, David SS. Cellular Assays for Studying the Fe-S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs. Methods Enzymol 2018; 599:69-99. [PMID: 29746250 DOI: 10.1016/bs.mie.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many DNA repair enzymes, including the human adenine glycosylase MUTYH, require iron-sulfur (Fe-S) cluster cofactors for DNA damage recognition and subsequent repair. MUTYH prokaryotic and eukaryotic homologs are a family of adenine (A) glycosylases that cleave A when mispaired with the oxidatively damaged guanine lesion, 8-oxo-7,8-dihydroguanine (OG). Faulty OG:A repair has been linked to the inheritance of missense mutations in the MUTYH gene. These inherited mutations can result in the onset of a familial colorectal cancer disorder known as MUTYH-associated polyposis (MAP). While in vitro studies can be exceptional at unraveling how MutY interacts with its OG:A substrate, cell-based assays are needed to provide a cellular context to these studies. In addition, strategic comparison of in vitro and in vivo studies can provide exquisite insight into the search, selection, excision process, and the coordination with protein partners, required to mediate full repair of the lesion. A commonly used assay is the rifampicin resistance assay that provides an indirect evaluation of the intrinsic mutation rate in Escherichia coli (E. coli or Ec), read out as antibiotic-resistant cell growth. Our laboratory has also developed a bacterial plasmid-based assay that allows for direct evaluation of repair of a defined OG:A mispair. This assay provides a means to assess the impact of catalytic defects in affinity and excision on overall repair. Finally, a mammalian GFP-based reporter assay has been developed that more accurately models features of mammalian cells. Taken together, these assays provide a cellular context to the repair activity of MUTYH and its homologs that illuminates the role these enzymes play in preventing mutations and disease.
Collapse
Affiliation(s)
| | - Nicole N Nuñez
- University of California, Davis, Davis, CA, United States
| | - Alan G Raetz
- University of California, Davis, Davis, CA, United States
| | - Cindy Khuu
- University of California, Davis, Davis, CA, United States
| | - Sheila S David
- University of California, Davis, Davis, CA, United States.
| |
Collapse
|
21
|
Gali VK, Balint E, Serbyn N, Frittmann O, Stutz F, Unk I. Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function. Sci Rep 2017; 7:13055. [PMID: 29026143 PMCID: PMC5638924 DOI: 10.1038/s41598-017-12915-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Polymerase eta (Polη) is a low fidelity translesion synthesis DNA polymerase that rescues damage-stalled replication by inserting deoxy-ribonucleotides opposite DNA damage sites resulting in error-free or mutagenic damage bypass. In this study we identify a new specific RNA extension activity of Polη of Saccharomyces cerevisiae. We show that Polη is able to extend RNA primers in the presence of ribonucleotides (rNTPs), and that these reactions are an order of magnitude more efficient than the misinsertion of rNTPs into DNA. Moreover, during RNA extension Polη performs error-free bypass of the 8-oxoguanine and thymine dimer DNA lesions, though with a 103 and 102-fold lower efficiency, respectively, than it synthesizes opposite undamaged nucleotides. Furthermore, in vivo experiments demonstrate that the transcription of several genes is affected by the lack of Polη, and that Polη is enriched over actively transcribed regions. Moreover, inactivation of its polymerase activity causes similar transcription inhibition as the absence of Polη. In summary, these results suggest that the new RNA synthetic activity of Polη can have in vivo relevance.
Collapse
Affiliation(s)
- Vamsi K Gali
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary.,Institute of Medical Sciences Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Eva Balint
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Nataliia Serbyn
- Department of Cell Biology, iGE3, University of Geneva, 1211, Geneva, Switzerland
| | - Orsolya Frittmann
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Francoise Stutz
- Department of Cell Biology, iGE3, University of Geneva, 1211, Geneva, Switzerland
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
| |
Collapse
|
22
|
Sultana S, Solotchi M, Ramachandran A, Patel SS. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases. J Biol Chem 2017; 292:18145-18160. [PMID: 28882896 DOI: 10.1074/jbc.m117.797480] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Single-subunit RNA polymerases (RNAPs) are present in phage T7 and in mitochondria of all eukaryotes. This RNAP class plays important roles in biotechnology and cellular energy production, but we know little about its fidelity and error rates. Herein, we report the error rates of three single-subunit RNAPs measured from the catalytic efficiencies of correct and all possible incorrect nucleotides. The average error rates of T7 RNAP (2 × 10-6), yeast mitochondrial Rpo41 (6 × 10-6), and human mitochondrial POLRMT (RNA polymerase mitochondrial) (2 × 10-5) indicate high accuracy/fidelity of RNA synthesis resembling those of replicative DNA polymerases. All three RNAPs exhibit a distinctly high propensity for GTP misincorporation opposite dT, predicting frequent A→G errors in RNA with rates of ∼10-4 The A→C, G→A, A→U, C→U, G→U, U→C, and U→G errors mostly due to pyrimidine-purine mismatches were relatively frequent (10-5-10-6), whereas C→G, U→A, G→C, and C→A errors from purine-purine and pyrimidine-pyrimidine mismatches were rare (10-7-10-10). POLRMT also shows a high C→A error rate on 8-oxo-dG templates (∼10-4). Strikingly, POLRMT shows a high mutagenic bypass rate, which is exacerbated by TEFM (transcription elongation factor mitochondrial). The lifetime of POLRMT on terminally mismatched elongation substrate is increased in the presence of TEFM, which allows POLRMT to efficiently bypass the error and continue with transcription. This investigation of nucleotide selectivity on normal and oxidatively damaged DNA by three single-subunit RNAPs provides the basic information to understand the error rates in mitochondria and, in the case of T7 RNAP, to assess the quality of in vitro transcribed RNAs.
Collapse
Affiliation(s)
- Shemaila Sultana
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and
| | - Mihai Solotchi
- School of Arts and Sciences, Rutgers University, Piscataway, New Jersey 08854
| | - Aparna Ramachandran
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and
| | - Smita S Patel
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and
| |
Collapse
|
23
|
Reid-Bayliss KS, Loeb LA. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations. Proc Natl Acad Sci U S A 2017; 114:9415-9420. [PMID: 28798064 PMCID: PMC5584456 DOI: 10.1073/pnas.1709166114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.
Collapse
Affiliation(s)
- Kate S Reid-Bayliss
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195
| | - Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195;
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
24
|
Towards precision prevention: Technologies for identifying healthy individuals with high risk of disease. Mutat Res 2017; 800-802:14-28. [PMID: 28458064 DOI: 10.1016/j.mrfmmm.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications.
Collapse
|
25
|
Sekowska A, Wendel S, Fischer EC, Nørholm MHH, Danchin A. Generation of mutation hotspots in ageing bacterial colonies. Sci Rep 2016; 6:2. [PMID: 28442761 PMCID: PMC5431349 DOI: 10.1038/s41598-016-0005-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/24/2016] [Indexed: 02/08/2023] Open
Abstract
How do ageing bacterial colonies generate adaptive mutants? Over a period of two months, we isolated on ageing colonies outgrowing mutants able to use a new carbon source, and sequenced their genomes. This allowed us to uncover exquisite details on the molecular mechanism behind their adaptation: most mutations were located in just a few hotspots in the genome, and over time, mutations increasingly were consistent with the involvement of 8-oxo-guanosine, formed exclusively on the transcribed strand. This work provides strong support for retromutagenesis as a general process creating adaptive mutations during ageing.
Collapse
|
26
|
Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-Ampornpan P, Koonpaew S, Jongkaewwattana A. Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 2016; 226:152-171. [PMID: 27212685 PMCID: PMC7114553 DOI: 10.1016/j.virusres.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
Abstract
Emergence of the porcine epidemic diarrhea virus (PEDV) as a global threat to the swine industry underlies the urgent need for deeper understanding of this virus. To date, we have yet to identify functions for all the major gene products, much less grasp their implications for the viral life cycle and pathogenic mechanisms. A major reason is the lack of genetic tools for studying PEDV. In this review, we discuss the reverse genetics approaches that have been successfully used to engineer infectious clones of PEDV as well as other potential and complementary methods that have yet to be applied to PEDV. The importance of proper cell culture for successful PEDV propagation and maintenance of disease phenotype are addressed in our survey of permissive cell lines. We also highlight areas of particular relevance to PEDV pathogenesis and disease that have benefited from reverse genetics studies and pressing questions that await resolution by such studies. In particular, we examine the spike protein as a determinant of viral tropism, entry and virulence, ORF3 and its association with cell culture adaptation, and the nucleocapsid protein and its potential role in modulating PEDV pathogenicity. Finally, we conclude with an exploration of how reverse genetics can help mitigate the global impact of PEDV by addressing the challenges of vaccine development.
Collapse
Affiliation(s)
- Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phonphimon Wongthida
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand.
| |
Collapse
|
27
|
Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes (Basel) 2016; 7:genes7070033. [PMID: 27399782 PMCID: PMC4962003 DOI: 10.3390/genes7070033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu+ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu+ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.
Collapse
|
28
|
Nadkarni A, Burns JA, Gandolfi A, Chowdhury MA, Cartularo L, Berens C, Geacintov NE, Scicchitano DA. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription. J Biol Chem 2016; 291:848-61. [PMID: 26559971 PMCID: PMC4705403 DOI: 10.1074/jbc.m115.685271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER.
Collapse
Affiliation(s)
- Aditi Nadkarni
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - John A Burns
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Alberto Gandolfi
- the Dipartimento di Matematica e Informatica "Ulisse Dini," Università di Firenze, 50134 Firenze, Italy, the Division of Science, New York University Abu Dhabi, Post Office Box 129188, Abu Dhabi, United Arab Emirates
| | - Moinuddin A Chowdhury
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Laura Cartularo
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - Christian Berens
- the Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany, 07743, and
| | - Nicholas E Geacintov
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003
| | - David A Scicchitano
- From the Departments of Biology and Chemistry, New York University, New York, New York 10003, the Division of Science, New York University Abu Dhabi, Post Office Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Francia S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015; 6:320. [PMID: 26617633 PMCID: PMC4643122 DOI: 10.3389/fgene.2015.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
Collapse
Affiliation(s)
- Sofia Francia
- IFOM - FIRC Institute of Molecular Oncology Milan, Italy ; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche Pavia, Italy
| |
Collapse
|
30
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
31
|
Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in Escherichia coli. PLoS Genet 2015; 11:e1005477. [PMID: 26305558 PMCID: PMC4548950 DOI: 10.1371/journal.pgen.1005477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive mutation refers to the continuous outgrowth of new mutants from a non-dividing cell population during selection, in apparent violation of the neo-Darwinian principle that mutation precedes selection. One explanation is that of retromutagenesis, in which a DNA lesion causes a transcriptional mutation that yields a mutant protein, allowing escape from selection. This enables a round of DNA replication that establishes heritability. Because the model requires that gene expression precedes DNA replication, it predicts that during selection, new mutants will arise from damage only to the transcribed DNA strand. As a test, we used a lacZ amber mutant of Escherichia coli that can revert by nitrous acid-induced deamination of adenine residues on either strand of the TAG stop codon, each causing different DNA mutations. When stationary-phase, mutagenized cells were grown in rich broth before being plated on lactose-selective media, only non-transcribed strand mutations appeared in the revertants. This result was consistent with the known high sensitivity to deamination of the single-stranded DNA in a transcription bubble, and it provided an important control because it demonstrated that the genetic system we would use to detect transcribed-strand mutations could also detect a bias toward the non-transcribed strand. When residual lacZ transcription was blocked beforehand by catabolite repression, both strands were mutated about equally, but if revertants were selected immediately after nitrous acid exposure, transcribed-strand mutations predominated among the revertants, implicating retromutagenesis as the mechanism. This result was not affected by gene orientation. Retromutagenesis is apt to be a universal method of evolutionary adaptation, which enables the emergence of new mutants from mutations acquired during counterselection rather than beforehand, and it may have roles in processes as diverse as the development of antibiotic resistance and neoplasia. The basic principle of neo-Darwinian genetics is that mutations occurring during growth enable the subsequent survival of the mutants under selective environmental conditions. However, new mutants can arise from a non-growing bacterial population during selection in an apparently Lamarckian way. The phenomenon is called adaptive mutation. In one suggested pathway, retromutagenesis, a damaged gene produces a mutant protein that enables enough growth for a mutant gene to be copied onto daughter chromosomes. This hypothesis is supported by evidence that, in several experimental systems, a damaged gene can produce a mutant protein rather than no protein at all, and that both RNA and DNA polymerase will pair the same base with a lesion. Because this model requires gene expression before DNA synthesis, a third feature is predicted: in a non-growing population, adaptive mutations will occur preferentially on the transcribed strand of a gene. In this paper, we describe a bacterial genetic system that can distinguish between mutations occurring on either DNA strand, and we use it to confirm this prediction. The findings enhance our general understanding of evolution in all organisms, the majority of which are in a non-growing state most of the time.
Collapse
|
32
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
33
|
Wons E, Furmanek-Blaszk B, Sektas M. RNA editing by T7 RNA polymerase bypasses InDel mutations causing unexpected phenotypic changes. Nucleic Acids Res 2015; 43:3950-63. [PMID: 25824942 PMCID: PMC4417176 DOI: 10.1093/nar/gkv269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
DNA-dependent T7 RNA polymerase (T7 RNAP) is the most powerful tool for both gene expression and in vitro transcription. By using a Next Generation Sequencing (NGS) approach we have analyzed the polymorphism of a T7 RNAP-generated mRNA pool of the mboIIM2 gene. We find that the enzyme displays a relatively high level of template-dependent transcriptional infidelity. The nucleotide misincorporations and multiple insertions in A/T-rich tracts of homopolymers in mRNA (0.20 and 0.089%, respectively) cause epigenetic effects with significant impact on gene expression that is disproportionally high to their frequency of appearance. The sequence-dependent rescue of single and even double InDel frameshifting mutants and wild-type phenotype recovery is observed as a result. As a consequence, a heterogeneous pool of functional and non-functional proteins of almost the same molecular mass is produced where the proteins are indistinguishable from each other upon ordinary analysis. We suggest that transcriptional infidelity as a general feature of the most effective RNAPs may serve to repair and/or modify a protein function, thus increasing the repertoire of phenotypic variants, which in turn has a high evolutionary potential.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, University of Gdansk, Gdansk 80-308, Poland
| | | | - Marian Sektas
- Department of Microbiology, University of Gdansk, Gdansk 80-308, Poland
| |
Collapse
|
34
|
Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proc Natl Acad Sci U S A 2015; 112:E410-9. [PMID: 25605892 DOI: 10.1073/pnas.1415186112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5'-templating base, indicating that it derives from nontemplated synthesis according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. Thus, the translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, translesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.
Collapse
|
35
|
Kametani Y, Iwai S, Kuraoka I. An RNA synthesis inhibition assay for detecting toxic substances using click chemistry. J Toxicol Sci 2014; 39:293-9. [PMID: 24646711 DOI: 10.2131/jts.39.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biological risk assessment studies of chemical substances that induce DNA lesions have been primarily based on the action of DNA polymerases during replication. However, DNA lesions interfere not only with replication, but also with transcription. There is no simple method for the detection of the DNA lesion-induced inhibition of transcription. Here, we report an assay for estimating the toxicity of chemical substances by visualizing transcription in mammalian cells using nucleotide analog 5-ethynyluridine (EU) and its click chemistry reaction. Ultraviolet light and representative chemical substances (camptothecin, 4-nitroquinoline-1-oxide, mitomycin C, and cisplatin, but not etoposide) of DNA- damaging agents show toxicity, as indicated by RNA synthesis inhibition in response to DNA damage in HeLa cells. Using titanium dioxide, we observed RNA synthesis inhibition in response to the rutile form, but not the anatase form, indicating that rutile titanium dioxide is a toxic substance. Because this method is based on the transcriptional response to DNA lesions, we can use terminally differentiated neuron-like PC12 cells, the differentiation of which can be induced by nerve growth factors, for evaluating chemical substances. Ultraviolet light and some chemicals (camptothecin, 4-nitroquinoline-1-oxide, mitomycin C, and cisplatin, but not etoposide) inhibited RNA synthesis in non-differentiated PC12 cells. Conversely, camptothecin and cisplatin did not inhibit RNA synthesis in differentiated PC12 cells, but 4-nitroquinoline-1-oxide, mitomycin C, and etoposide did. And using titanium dioxide, we did not observed any RNA synthesis inhibition. These data suggest that this method might be used to estimate the potential risk of chemical substances in differentiated mammalian cells, which are the most common cell type found in the human body.
Collapse
Affiliation(s)
- Yukiko Kametani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University
| | | | | |
Collapse
|
36
|
Grebneva HA. Mechanisms of targeted frameshift mutations: Insertions arising during error-prone or SOS synthesis of DNA containing cis-syn cyclobutane thymine dimers. Mol Biol 2014. [DOI: 10.1134/s0026893314030066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19:71-83. [PMID: 24767259 DOI: 10.1016/j.dnarep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining high transcriptional fidelity is essential for life. Some DNA lesions lead to significant changes in transcriptional fidelity. In this review, we will summarize recent progress towards understanding the molecular basis of RNA polymerase II (Pol II) transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. In particular, we will focus on the three key checkpoint steps of controlling Pol II transcriptional fidelity: insertion (specific nucleotide selection and incorporation), extension (differentiation of RNA transcript extension of a matched over mismatched 3'-RNA terminus), and proofreading (preferential removal of misincorporated nucleotides from the 3'-RNA end). We will also discuss some novel insights into the molecular basis and chemical perspectives of controlling Pol II transcriptional fidelity through structural, computational, and chemical biology approaches.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Linati Da
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Steven W Plouffe
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Eric Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States.
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States.
| |
Collapse
|
38
|
Morreall JF, Petrova L, Doetsch PW. Transcriptional mutagenesis and its potential roles in the etiology of cancer and bacterial antibiotic resistance. J Cell Physiol 2014; 228:2257-61. [PMID: 23696333 PMCID: PMC3963475 DOI: 10.1002/jcp.24400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 02/04/2023]
Abstract
Most cells do not undergo continuous cell division and DNA replication, yet they can still acquire novel RNA mutations that can result in the production of mutant proteins and induce a phenotypic change. All cells are frequently subjected to genotoxic insults that give rise to damaged nucleotides which, similarly to DNA replication, can undergo base mispairing during transcription. This mutagenic lesion bypass by RNA polymerase, transcriptional mutagenesis (TM), has been studied in a variety of systems and organisms, and may be involved in diverse pathogenic processes, such as tumorigenesis and the acquisition of bacterial antibiotic resistance. Tumor cells and bacteria within the human body are subject to especially high levels of oxidative stress, which can damage DNA and consequently drive TM. Mutagenesis at the level of transcription may allow cells to escape growth arrest and undergo replication that could permanently establish mutations in DNA in a process called retromutagenesis (RM). Here, we review the broad range of DNA damages which may result in TM including a variety of non-bulky lesions and some bulky lesions, which recent studies indicate may not completely block transcription, and emerging evidence supporting the RM concept in the context of tumorigenesis and antibiotic resistance.
Collapse
Affiliation(s)
- Jordan F Morreall
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
39
|
Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat Commun 2014; 4:2273. [PMID: 23912718 PMCID: PMC3741642 DOI: 10.1038/ncomms3273] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/09/2013] [Indexed: 01/21/2023] Open
Abstract
Deamination of DNA bases can create missense mutations predisposing humans to cancer and also interfere with other basic molecular genetic processes; this deamination generates deoxyinosine from deoxyadenosine. In Escherichia coli, the highly conserved endonuclease V is involved in alternative excision repair that removes deoxyinosine from DNA. However, its exact activities and roles in humans are unknown. Here we characterize the FLJ35220 protein, the human homologue of E. coli endonuclease V, hEndoV as a ribonuclease specific for inosine-containing RNA. hEndoV preferentially binds to RNA and efficiently hydrolyses the second phosphodiester bond located 3′ to the inosine in unpaired inosine-containing ssRNA regions in dsRNA. It localizes to the cytoplasm in cells. The ribonuclease activity is promoted by Tudor staphylococcal nuclease and detected on inosine-containing dsRNA created by the action of adenosine deaminases acting on RNA. These results demonstrate that hEndoV controls the fate of inosine-containing RNA in humans. In Escherichia coli, the highly conserved enzyme endonuclease V has a role in DNA repair. Here the authors show that human endonuclease V is an inosine 3' endoribonuclease and that Tudor Staphylococcal nuclease enhances this activity, suggesting a role for human endonuclease V in RNA metabolism.
Collapse
|
40
|
Brovarets’ OO, Zhurakivsky RO, Hovorun DM. A QM/QTAIM microstructural analysis of the tautomerisationviathe DPT of the hypoxanthine·adenine nucleobase pair. Mol Phys 2014. [DOI: 10.1080/00268976.2013.877170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
42
|
Abstract
Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients' death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics and Netherlands Proteomics Centre, Centre for Biomedical Genetics, Erasmus Medical Centre, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
43
|
Oxidative damage and mutagenesis in Saccharomyces cerevisiae: genetic studies of pathways affecting replication fidelity of 8-oxoguanine. Genetics 2013; 195:359-67. [PMID: 23893481 PMCID: PMC3781965 DOI: 10.1534/genetics.113.153874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidative damage to DNA constitutes a major threat to the faithful replication of DNA in all organisms and it is therefore important to understand the various mechanisms that are responsible for repair of such damage and the consequences of unrepaired damage. In these experiments, we make use of a reporter system in Saccharomyces cerevisiae that can measure the specific increase of each type of base pair mutation by measuring reversion to a Trp+ phenotype. We demonstrate that increased oxidative damage due to the absence of the superoxide dismutase gene, SOD1, increases all types of base pair mutations and that mismatch repair (MMR) reduces some, but not all, types of mutations. By analyzing various strains that can revert only via a specific CG → AT transversion in backgrounds deficient in Ogg1 (encoding an 8-oxoG glycosylase), we can study mutagenesis due to a known 8-oxoG base. We show as expected that MMR helps prevent mutagenesis due to this damaged base and that Pol η is important for its accurate replication. In addition we find that its accurate replication is facilitated by template switching, as loss of either RAD5 or MMS2 leads to a significant decrease in accurate replication. We observe that these ogg1 strains accumulate revertants during prolonged incubation on plates, in a process most likely due to retromutagenesis.
Collapse
|
44
|
UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 2013; 122:275-84. [PMID: 23760561 PMCID: PMC3714559 DOI: 10.1007/s00412-013-0420-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/23/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.
Collapse
|
45
|
Nakanishi N, Fukuoh A, Kang D, Iwai S, Kuraoka I. Effects of DNA lesions on the transcription reaction of mitochondrial RNA polymerase: implications for bypass RNA synthesis on oxidative DNA lesions. Mutagenesis 2012; 28:117-23. [PMID: 23053822 DOI: 10.1093/mutage/ges060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oxidative DNA lesions inhibit the transcription of RNA polymerase II, but in the presence of transcription elongation factors, the transcription can bypass the lesions. Single-subunit mitochondrial RNA polymerase (mtRNAP) catalyses the synthesis of essential transcripts in mitochondria where reactive oxidative species (ROS) are generated as by-products. The occurrence of RNA synthesis by mtRNAP at oxidative DNA lesions remains unknown. Purified mtRNAP and a complex of RNA primer/DNA template containing a single DNA lesion, such as ROS-induced 8-oxoguanine (8-oxoG), two isomeric thymine glycols (5R-Tg or 5S-Tg), the UV-induced cis-syn cyclobutane pyrimidine dimer (CPD) and the pyrimidine(6-4)pyrimidone photoproduct (6-4pp), or a spontaneous common DNA lesion, a base-loss-induced apurinic/apyrimidinic (AP) site, were used for in vitro RNA synthesis assays. In this report, we show that mtRNAP bypassed the oxidative DNA lesions of non-bulky 8-oxoG and 5R-Tg and 5S-Tg with pausing sites but did not bypass the UV-induced DNA lesions and the AP site. The bacteriophage T7 phage RNA polymerase, which is homologous to mtRNAP, bypassed 8-oxoG but stalled at 5R-Tg and 5S-Tg. As expected, although translesion RNA synthesis in 8-oxoG on the DNA templates generated incorrect transcripts with a G:C to T:A transversion, the synthesis in Tg could lead to the correct transcripts with no transcriptional mutagenesis. Collectively, these data suggest that mtRNAP may tolerate the mitochondrial genome containing oxidative DNA lesions induced by ROS from the side effects of an ATP generation reaction.
Collapse
Affiliation(s)
- Nozomi Nakanishi
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
46
|
Gaillard H, Aguilera A. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:141-50. [PMID: 23046879 DOI: 10.1016/j.bbagrm.2012.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/13/2023]
Abstract
During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Throughout transcription elongation, RNA polymerases frequently deal with a number of obstacles that need to be removed for transcription resumption. One important type of hindrance consists of helix-distorting DNA lesions. Transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair, ensures a fast repair of such transcription-blocking lesions. While the nucleotide excision repair reaction is fairly well understood, its regulation and the way it deals with DNA transcription remains largely unknown. In this review, we update our current understanding of the factors involved in TC-NER and discuss their functional interplay with the processes of transcription elongation and mRNP biogenesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
47
|
Kellinger MW, Ulrich S, Chong J, Kool ET, Wang D. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. J Am Chem Soc 2012; 134:8231-40. [PMID: 22509745 DOI: 10.1021/ja302077d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of "hydrogen bond deficient" nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson-Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3'-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3'-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.
Collapse
Affiliation(s)
- Matthew W Kellinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, California 92093-0625, United States
| | | | | | | | | |
Collapse
|
48
|
Morita Y, Iwai S, Kuraoka I. A method for detecting genetic toxicity using the RNA synthesis response to DNA damage. J Toxicol Sci 2012; 36:515-21. [PMID: 22008527 DOI: 10.2131/jts.36.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To date, biological risk assessment studies of chemicals that induce DNA lesions have been primarily based on the action of DNA polymerases during replication. However, DNA lesions interfere not only with replication but also with transcription. Therefore, detecting the damaging effects of DNA lesions during transcription might be important for estimating the safety of chemical mutagens and carcinogens. However, methods to address these effects have not been developed. Here, we report a simple, non-isotopic method for determining the toxicity of chemical agents by visualizing transcription in a mammalian cell system. The method is based on the measurement of the incorporation of bromouridine (as the uridine analogue) into the nascent RNA during RNA synthesis inhibition (RSI) induced by the stalling of RNA polymerases at DNA lesions on the transcribed DNA strand, which triggers transcription-coupled nucleotide excision repair (TC-NER). When we tested chemical agents (camptothecin, etoposide, 4-nitroquinoline-1-oxide, mitomycin C, methyl methanesulfonate, and cisplatin) in HeLa cells by the method, RSI indicative of genomic toxicity was observed in the nucleoli of the tested cells. This procedure provides the following advantages: 1) it uses common, affordable mammalian cells (HeLa cells, WI38VA13 cells, human dermal fibroblasts, or Chinese hamster ovary cells) rather than genetically modified microorganisms; 2) it can be completed within approximately 8 hr after the cells are prepared because RNA polymerase responses during TC-NER are faster than other DNA damage responses (replication, recombination, and apoptosis); and 3) it is safe because it uses non-radioactive bromouridine and antibodies to detect RNA synthesis on undamaged transcribed DNA strands.
Collapse
Affiliation(s)
- Yoko Morita
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
49
|
Generation of reporter plasmids containing defined base modifications in the DNA strand of choice. Anal Biochem 2012; 425:47-53. [PMID: 22406247 DOI: 10.1016/j.ab.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
Physiological effects of DNA bases other than A, G, C, and T as well as ways of removal of such bases from genomes are studied intensely. Methods for targeted insertion of modified bases into DNA, therefore, are highly demanded in the fields of DNA repair and epigenetics. This article describes efficient procedures for incorporation of modified DNA bases into a plasmid-borne enhanced green fluorescent protein (EGFP) gene. The procedure exploits excision of a stretch of 18 nt from either the transcribed or nontranscribed DNA strand with the help of the sequence-specific nicking endonucleases Nb.Bpu10I and Nt.Bpu10I. The excised single-stranded oligonucleotide is then swapped for a synthetic DNA strand containing a desired base modification. Base modifications that form Watson-Crick-type base pairs were efficiently incorporated into plasmid DNA by a straightforward strand exchange, which was achieved by local melting in the presence of large excesses of the synthetic oligonucleotides and reannealing followed by ligation. Base modifications that cause significant distortions of the normal DNA structure, such as thymine glycol and uracil mispaired with guanine, failed to produce high yields of direct strand exchange but could still be incorporated very efficiently when the excised fragment was depleted in an intermediate step.
Collapse
|
50
|
Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA. Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 2012; 21:45-58. [PMID: 22248542 DOI: 10.1159/000332751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, it has been proposed that conflicts between transcription and active chromosomal replication engender genome instability events. Furthermore, transcription elongation factors have been reported to prevent conflicts between transcription and replication and avoid genome instability. Here, we examined transcriptional de-repression as a genetic diversity-producing agent and showed, through the use of physiological and genetic means, that transcriptional de-represssion of a leuC defective allele leads to accumulation of Leu(+) mutations. We also showed, by using riboswitches that activate transcription in conditions of tyrosine or methionine starvation, that the effect of transcriptional de-repression of the leuC construct on the accumulation of Leu(+) mutations was independent of selection. We examined the role of Mfd, a transcription elongation factor involved in DNA repair, in this process and showed that proficiency of this factor promotes mutagenic events. These results are in stark contrast to previous reports in Escherichia coli, which showed that Mfd prevents replication fork collapses. Because our assays place cells under non-growing conditions, by starving them for two amino acids, we surmised that the Mfd mutagenic process associated with transcriptional de-repression does not result from conflicts with chromosomal replication. These results raise the interesting concept that transcription elongation factors may serve two functions in cells. In growing conditions, these factors prevent the generation of mutations, while in stress or non-growing conditions they mediate the production of genetic diversity.
Collapse
|