1
|
Singh SP, Tewari M, Singh AK, Mishra RR, Shukla HS. Epigenetic Silencing of p16INK4a gene in Sporadic Breast Cancer. Indian J Surg Oncol 2023; 14:822-828. [PMID: 38187858 PMCID: PMC10766924 DOI: 10.1007/s13193-023-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/06/2023] [Indexed: 01/09/2024] Open
Abstract
Epigenetic alterations of tumor suppressor genes (TSG) involved in the onset and progression of Breast Cancer (BC) may serve as biomarkers for early detection and prediction of disease prognosis. We have herein tried to determine the methylation status of TSG, p16INK4a, in our 50 BC patients and their association with clinicopathological parameters. The methylation status of the p16INK4a gene in fresh tissue samples from 50 patients with BC was assessed by methylation-specific polymerase chain reaction (MS-PCR). The mean age of BC patients was 49.30 ± 9.75 years. Of 50 BC samples tested, 21 (42%) had methylated p16INK4a gene. p16INK4a gene hypermethylation was significantly associated with age ≤ 50 years, premenopausal status and advanced BC stage. Multivariate analysis revealed a strong association between advanced BC stage (Stage III and Stage IV) and p16INK4a hypermethylation (P = 0.008, RR = 5.996, 95% CI = 1.581-22.739). p16INK4a methylation was significantly associated with Triple Negative BC (TNBC) (P = 0.045, OR = 4.181, 95% CI = 1.030-16.981). These findings indicate that p16INK4a hypermethylation frequently occurs in BC. Hypermethylation of p16INK4a in young, premenopausal, TNBC and with advance stage in BC patients suggests its association with aggressive BC.
Collapse
Affiliation(s)
- Satya P. Singh
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Mallika Tewari
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Alok K. Singh
- Department of Geriatric Medicine, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Raghvendra R. Mishra
- Medical Lab Technology, DDU Kaushal Kendra, Banaras Hindu University, Varanasi, India
| | - Hari S. Shukla
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| |
Collapse
|
2
|
Habiburrahman M, Sutopo S, Wardoyo MP. Role of DEK in carcinogenesis, diagnosis, prognosis, and therapeutic outcome of breast cancer: An evidence-based clinical review. Crit Rev Oncol Hematol 2023; 181:103897. [PMID: 36535490 DOI: 10.1016/j.critrevonc.2022.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a significantly burdening women's cancer with limited diagnostic modalities. DEK is a novel biomarker overexpressed in breast cancers, currently exhaustively researched for its diagnosis and prognosis. Search for relevant meta-analyses, cohorts, and experimental studies in the last fifteen years was done in five large scientific databases. Non-English, non-full text articles or unrelated studies were excluded. Thirteen articles discussed the potential of DEK to estimate breast cancer characteristics, treatment outcomes, and prognosis. This proto-oncogene plays a role in breast carcinogenesis, increasing tumour proliferation and invasion, preventing apoptosis, and creating an immunodeficient tumour milieu with M2 tumour-associated macrophages. DEK is also associated with worse clinicopathological features and survival in breast cancer patients. Using a Kaplan-Meier plotter data analysis, DEK expression predicts worse overall survival (HR 1.24, 95%CI: 1.01-1.52, p = 0.039), comparable to other biomarkers. DEK is a promising novel biomarker requiring further research to determine its bedside applications.
Collapse
Affiliation(s)
- Muhammad Habiburrahman
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia; Dr. Cipto Mangunkusumo Hospital, Central Jakarta, DKI Jakarta, Indonesia.
| | - Stefanus Sutopo
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia
| | - Muhammad Prasetio Wardoyo
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia; Dr. Cipto Mangunkusumo Hospital, Central Jakarta, DKI Jakarta, Indonesia
| |
Collapse
|
3
|
Farooq U, Notani D. Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms. Front Cell Dev Biol 2022; 10:948351. [PMID: 36158211 PMCID: PMC9500187 DOI: 10.3389/fcell.2022.948351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
9p21 locus is one of the most reproducible regions in genome-wide association studies (GWAS). The region harbors CDKN2A/B genes that code for p16INK4a, p15INK4b, and p14ARF proteins, and it also harbors a long gene desert adjacent to these genes. The polymorphisms that are associated with several diseases and cancers are present in these genes and the gene desert region. These proteins are critical cell cycle regulators whose transcriptional dysregulation is strongly linked with cellular regeneration, stemness, aging, and cancers. Given the importance of this locus, intense scientific efforts on understanding the regulation of these genes via promoter-driven mechanisms and recently, via the distal regulatory mechanism have provided major insights. In this review, we describe these mechanisms and propose the ways by which this locus can be targeted in pathologies and aging.
Collapse
Affiliation(s)
- Umer Farooq
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Dimple Notani
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
5
|
Combined analysis of KARS mutation and p16INK4a and p14ARF methylation status in locally advanced rectal carcinoma treated with preoperative chemoradiotherapy. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220222011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Current management of locally advanced rectal carcinoma (LARC) involves
preoperative chemoradiotherapy (preCRT) before surgery. Despite improved
local control rate, the response to preCRT of individual patients is
variable and may reflect heterogeneous biological properties among tumors of
the same clinical stage. Identifying novel molecular parameters with
predictive and/or prognostic value is of great clinical importance for a
personalized therapeutic approach. In this study, KRAS mutation status was
analyzed by direct sequencing, while methylation-specific polymerase chain
reaction (MSP) was used to examine p16INK4a and p14ARF gene methylation
status in pretreatment tumor biopsies of 60 patients with LARC. The examined
molecular changes of KRAS, p16INK4a and p14ARF genes were mutually
independent (p16INK4a/KRAS, P=0.272; p14ARF/KRAS, P=0.923; p16INK4a/p14ARF,
P=0.715). However, the simultaneous presence of p14ARF methylation and KRAS
mutation was associated with a more frequent appearance of local recurrences
and distant metastasis (P=0.027). Moreover, patients with the simultaneous
presence of p16INK4a and p14ARF methylation and KRAS mutation had
significantly shorter overall survival (P=0.011). The obtained results
strongly suggest that combined analyses of examined genetic and epigenetic
molecular alterations could contribute to the identification of LARC patient
subgroups with more aggressive tumor behavior and worse disease outcome.
Collapse
|
6
|
Sanaei M, Kavoosi F. Effect of vorinostat on INK4 family and HDACs 1, 2, and 3 in pancreatic cancer and hepatocellular carcinoma. Res Pharm Sci 2021; 16:260-268. [PMID: 34221059 PMCID: PMC8216159 DOI: 10.4103/1735-5362.314824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 03/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: In mammalian cells, several distinct surveillance systems, named cell cycle checkpoints, can interrupt normal cell-cycle progression. The cyclin-dependent kinases are negatively regulated by proteins of cyclin-dependent kinases inhibitors comprising INK4 and Cip/Kip families. Histone deacetylation induced by histone deacetylases (HDACs) inactivates the INK4 and Cip/Kip families lead to cancer induction. HDAC inhibitors (HDACIs) have been indicated to be potent inducers of differentiation, growth arrest, and apoptotic induction. Vorinostat (suberoylanilide hydroxamic acid, SAHA), as an HDACI, is reported to be useful in various cancers. Previously, we reported the effect of trichostatin A on hepatocellular carcinoma and also vorinostat on colon cancer cell lines. The current study was aimed to investigate the effect of vorinostat on p16INK4a, p14ARF, p15INK4b, and class I HDACs 1, 2, and 3 gene expression, cell growth inhibition, and apoptosis induction in pancreatic cancer AsPC-1 and hepatocellular carcinoma LCL-PI 11 cell lines. Experimental approach: The AsPC-1 and LCL-PI 11 cell lines were cultured and treated with vorinostat. To determine, viability, apoptosis, and the relative expression level of p16INK4a, p14ARF, p15INK4b, class I HDACs 1, 2, and 3 genes, MTT assay, cell apoptosis assay, and RT-qPCR were performed, respectively. Findings/Results: Vorinostat significantly inhibited cell growth, induced apoptosis, increased p16INK4a, p14ARF, p15INK4b, and decreased class I HDACs 1, 2, and 3 gene expression. Conclusion and implications: Vorinostat can reactivate the INK4 family through inhibition of class I HDACs 1, 2, and 3 genes activity.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| |
Collapse
|
7
|
Post-Translational Regulation of ARF: Perspective in Cancer. Biomolecules 2020; 10:biom10081143. [PMID: 32759846 PMCID: PMC7465197 DOI: 10.3390/biom10081143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Tumorigenesis can be induced by various stresses that cause aberrant DNA mutations and unhindered cell proliferation. Under such conditions, normal cells autonomously induce defense mechanisms, thereby stimulating tumor suppressor activation. ARF, encoded by the CDKN2a locus, is one of the most frequently mutated or deleted tumor suppressors in human cancer. The safeguard roles of ARF in tumorigenesis are mainly mediated via the MDM2-p53 axis, which plays a prominent role in tumor suppression. Under normal conditions, low p53 expression is stringently regulated by its target gene, MDM2 E3 ligase, which induces p53 degradation in a ubiquitin-proteasome-dependent manner. Oncogenic signals induced by MYC, RAS, and E2Fs trap MDM2 in the inhibited state by inducing ARF expression as a safeguard measure, thereby activating the tumor-suppressive function of p53. In addition to the MDM2-p53 axis, ARF can also interact with diverse proteins and regulate various cellular functions, such as cellular senescence, apoptosis, and anoikis, in a p53-independent manner. As the evidence indicating ARF as a key tumor suppressor has been accumulated, there is growing evidence that ARF is sophisticatedly fine-tuned by the diverse factors through transcriptional and post-translational regulatory mechanisms. In this review, we mainly focused on how cancer cells employ transcriptional and post-translational regulatory mechanisms to manipulate ARF activities to circumvent the tumor-suppressive function of ARF. We further discussed the clinical implications of ARF in human cancer.
Collapse
|
8
|
Qi M, Xiong X. Promoter hypermethylation of RARβ2, DAPK, hMLH1, p14, and p15 is associated with progression of breast cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e13666. [PMID: 30572486 PMCID: PMC6320171 DOI: 10.1097/md.0000000000013666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Numerous studies have investigated the associations between RARβ2, DAPK, hMLH1, p14, and p15 promoter hypermethylation and clinical progression of patients with breast cancer, however the results remained uncertain due to the small sample size. Therefore, we performed a meta-analysis to explore the role of RARβ2, DAPK, hMLH1, p14, and p15 promoter hypermethylation in the susceptibility and clinical progression of breast cancer. METHODS Eligible studies were obtained by searching Medicine, Embase, Web of knowledge, and Chinese National Knowledge Infrastructure (CNKI) databases. The odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the associations of RARβ2, DAPK, hMLH1, p14, and p15 promoter hypermethylation with breast cancer pathogenesis. Trial sequential analysis (TSA) was applied to observe the reliability of pooled results of RARβ2 gene, and obtain a conservative required information size (RIS). RESULTS In primary screened 445 articles, 39 literatures with 4492 breast cancer patients were finally enrolled in the final meta-analysis. The results indicated that the frequency of RARβ2 promoter hypermethylation in case group was significantly higher than the frequency of control group (OR = 7.21, 95% CI = 1.54-33.80, P < .05). The RARβ2 promoter hypermethylation had a significant association with lymph node metastasis of breast cancer (OR = 2.13, 95% CI = 1.04-4.47, P < .05). And, the RARβ2 promoter hypermethylation was more common in the breast cancer patients of TNM III-IV stage than those patients of TNM I-II stage (OR = 1.85, 95% CI = 1.33-2.57, P < .05). In addition, the promoter hypermethylation of DAPK, hMLH1, and p14 genes were significantly associated with the susceptibility of breast cancer (for DAPK, OR = 4.93, 95% CI = 3.17-7.65; for hMLH1, OR = 1.84, 95% CI = 1.26-1.29; for p14, OR = 22.52, 95% CI = 7.00-72.41; for p15, OR = 2.13, 95% CI = 0.30-15.07). CONCLUSIONS Our findings revealed that the RARβ2 promoter hypermethylation significantly increased the risk of breast cancer. In the meantime, the meta-analysis demonstrated that there were significant associations of RARβ2 promoter hypermethylation with lymph node metastasis and TNM-stage of breast cancer patients. In addition, DAPK, hMLH1, and p14 genes promoter hypermethylation were significantly associated with the susceptibility of breast cancer.
Collapse
Affiliation(s)
- Ming Qi
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Xiang Xiong
- Department of Burn and Plastic Surgery, the Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P. R. China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Epigenetics refers to processes that alter gene expression without altering primary DNA. Over that past decade, there is a growing focus on epigenetic mechanisms in cancer research and its importance in cancer biology. This review summarizes epigenetic dysregulation in bladder cancer. RECENT FINDINGS Epigenetic alterations are overall shared across various grades and stages of bladder cancer. High grade invasive tumors demonstrate a greater degree and intensity of methylation and may have a unique methylation pattern. Environmental exposures may influence epigenetic alterations directly independent of genomic change. Non-coding RNAs play an important role in cancer phenotype, especially in the context of integrative genomic analyses. DNA hypermethylation and non-coding RNAs have potential as robust bladder cancer biomarkers; however, they require further study and validation. Changes in chromatin and histone modification are attractive targets for therapy and are currently in clinical trials. Epigenetic dysregulation may be an important key in improving the understanding of bladder cancer pathogenesis, especially through integrative genomic analyses. Deeper understanding of these pathways can help identify clinically relevant biomarkers and therapeutic targets to validate for diagnosis, monitoring, prognosis, and treatment for bladder cancer.
Collapse
Affiliation(s)
- Sima P Porten
- Department of Urology, University of California San Francisco (UCSF), Mailbox Code 1695, 550 16th Street, 6th Floor, San Francisco, CA, 94143, USA.
| |
Collapse
|
10
|
Bayramov B, Gunes S, Buyukalpelli R, Aydın O, Henkel R. Promoter methylation analysis of CDH1 and p14ARF genes in patients with urothelial bladder cancer. Onco Targets Ther 2018; 11:4189-4196. [PMID: 30050310 PMCID: PMC6056157 DOI: 10.2147/ott.s158259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/AIM Urothelial bladder cancer arises from the accumulation of multiple epigenetic and genetic changes. We aimed to investigate the specificity and sensitivity of gene-specific promoter methylation of CDH1 and p14ARF genes in the early diagnosis of bladder cancer and compare those with other diagnostic tests in our population. PATIENTS AND METHODS In the current study, 65 patients with urothelial bladder cancer and 35 controls without any history of cancer were recruited. Methylation profiles of CDH1 and p14ARF genes from tumor and urine samples were determined by methylation-specific polymerase chain reaction method. RESULTS Methylation of CDH1 and p14ARF genes in tumor samples was 95.4% and 78.5%, respectively. The methylation frequencies were found to be 68.8% for CDH1 gene and 72.9% for p14ARF gene in urine samples. Sensitivities of CDH1, p14ARF and urine cytology were found to be 67.4%, 72.1% and 34.9%, respectively, while their specificities were 93.9%, 63.6% and 93.9%, respectively. CONCLUSION Aberrant promoter methylation of CDH1 and p14ARF genes can be used to detect urothelial bladder cancer. In low-grade tumors, when compared with urine cytology, combined methylation analysis of CDH1 and p14ARF genes may not increase the sensitivity to identify malignant cells in urine samples.
Collapse
Affiliation(s)
- Bayram Bayramov
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
| | - Sezgin Gunes
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
| | - Recep Buyukalpelli
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
- Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Oğuz Aydın
- Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
11
|
Ko A, Han SY, Song J. Regulatory Network of ARF in Cancer Development. Mol Cells 2018; 41:381-389. [PMID: 29665672 PMCID: PMC5974615 DOI: 10.14348/molcells.2018.0100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.
Collapse
Affiliation(s)
- Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| |
Collapse
|
12
|
Lafaurie GI, Perdomo SJ, Buenahora MR, Amaya S, Díaz-Báez D. Human papilloma virus: An etiological and prognostic factor for oral cancer? ACTA ACUST UNITED AC 2018; 9:e12313. [DOI: 10.1111/jicd.12313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Gloria I. Lafaurie
- Unit of Basic Oral Investigation, School of Dentistry, El Bosque University; Bogotá Colombia
| | - Sandra J. Perdomo
- Unit of Basic Oral Investigation, School of Dentistry, El Bosque University; Bogotá Colombia
| | - María R. Buenahora
- Unit of Oral Clinical Epidemiology; School of Dentistry, El Bosque University; Bogotá Colombia
| | - Sandra Amaya
- School of Dentistry, University of Valle; Cali Colombia
| | - David Díaz-Báez
- Unit of Basic Oral Investigation, School of Dentistry, El Bosque University; Bogotá Colombia
| |
Collapse
|
13
|
Casadevall D, Kilian AY, Bellmunt J. The prognostic role of epigenetic dysregulation in bladder cancer: A systematic review. Cancer Treat Rev 2017; 61:82-93. [PMID: 29121502 DOI: 10.1016/j.ctrv.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite adequate treatment and follow-up, around one fifth of patients with localized bladder cancer will present with disease progression. Adequate prognostic biomarkers are lacking to define patients who are at risk. Mutations in chromatin remodeling genes are more frequently found in bladder cancer than in any other solid tumor. However, the prognostic relevance of epigenetic dysregulation has not been established and may offer an opportunity for biomarker discovery. METHODS Looking for prognostic epigenetic factors, we performed a comprehensive PubMed search using keywords such as "bladder cancer", "chromatin remodeling", "gene methylation" and "epigenetics". We only included studies reporting on the association of epigenetic markers with prognostic outcomes such as recurrence, progression or survival. RESULTS Of 1113 results, 87 studies met the inclusion criteria, which represented a total of 85 epigenetic markers with potential prognostic relevance. No prospective studies were identified. Seventy-three percent (64/87) of the studies involved mixed cohorts of muscle invasive and non-muscle invasive bladder cancer. Promoter methylation of genes with putative prognostic value affected cellular processes such as cell cycle, apoptosis, cell-adhesion or migration, as well as critical pathways such as MAP-kinase or Wnt. Alteration of chromatin regulatory elements suggest a prognostic relevance alterations leading to a predominantly silenced chromatin state. CONCLUSIONS The prognostic impact of epigenetic alterations in bladder cancer is still unclear. Prospective evaluation of methylation marks and chromatin remodeling gene alterations using consistent methods and criteria is warranted.
Collapse
Affiliation(s)
- David Casadevall
- Cancer Research Program, PSMAR-IMIM (Hospital del Mar Medical Research Institute), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain.
| | | | - Joaquim Bellmunt
- Cancer Research Program, PSMAR-IMIM (Hospital del Mar Medical Research Institute), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain; Dana-Farber Cancer Institute, 450 Brookline Ave, DANA 1230, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Zhang J, Sun Z, Han Y, Yao R, Yue L, Xu Y, Zhang J. Rnf2 knockdown reduces cell viability and promotes cell cycle arrest in gastric cancer cells. Oncol Lett 2017; 13:3817-3822. [PMID: 28529595 DOI: 10.3892/ol.2017.5868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Rnf2 is a fundamental component of the polycomb repressive complex 1and acts as the really interesting new gene finger E3 ligase, which is responsible for histone 2A modification. Previous studies have shown that the ring finger protein 2 (Rnf2) is overexpressed in various types of tumor and has a close association with tumor development. However, few studies have been carried out into the expression and biological function of Rnf2 in gastric cancer cells. The present study measured the expression of Rnf2 in gastric cancer cells and normal epithelial gastric cells. The results demonstrate that Rnf2 is upregulated in gastric cancer cells. In addition, the knockdown of Rnf2 inhibited the cell viability and induced increased G1 phase followed by a substantial reduction of the G2/M phase. The expression levels of p21 and p27 were also significantly elevated by the knockdown of Rnf2. These results provide evidence of the oncogenic function of Rnf2 in gastric cancer, possibly through an inhibition of cellular proliferation and a delay of the G2/M phase. Therefore, Rnf2 may be a novel target for the prognosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Jingfang Zhang
- Department of Pathology, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yafei Han
- The Center of Medical Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ruyong Yao
- The Center of Medical Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jisheng Zhang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
15
|
Ko A, Han SY, Song J. Dynamics of ARF regulation that control senescence and cancer. BMB Rep 2017; 49:598-606. [PMID: 27470213 PMCID: PMC5346319 DOI: 10.5483/bmbrep.2016.49.11.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer.
Collapse
Affiliation(s)
- Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Stępiński D. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol 2016; 146:119-39. [PMID: 27142852 DOI: 10.1007/s00418-016-1443-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
17
|
Zhou Z, Zhang H, Lai J, Diao D, Li W, Dang C, Song Y. Relationships between p14ARF Gene Methylation and Clinicopathological Features of Colorectal Cancer: A Meta-Analysis. PLoS One 2016; 11:e0152050. [PMID: 26999279 PMCID: PMC4801177 DOI: 10.1371/journal.pone.0152050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
We conducted a meta-analysis to explore the relationships between p14ARF gene methylation and clinicopathological features of colorectal cancer (CRC). Databases, including Pubmed, Embase and Cochrane Library, were searched and, finally, a total of 18 eligible researches encompassing 1988 CRC patients were selected. Combined odds ratios (ORs) with 95% confidence intervals (95% CIs) were evaluated under a fixed effects model for absence of heterogeneity. Significant associations were observed between p14ARF gene methylation and tumor location (OR = 2.35, 95% CI: 1.55–3.55, P = 0.001), microsatellite instability (MSI) status (OR = 3.28, 95% CI: 2.12–5.07, P<0.0001). However, there were no significant associations between p14ARF gene methylation and tumor stage, tumor differentiation. We concluded that p14ARF gene methylation may be significantly associated with tumor location, and MSI status of CRC.
Collapse
Affiliation(s)
- Zhangjian Zhou
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Hao Zhang
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jianguo Lai
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Dongmei Diao
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wenhan Li
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Chengxue Dang
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yongchun Song
- Division of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 W, Yanta Road, Xi'an, 710061, Shaanxi, China
- * E-mail:
| |
Collapse
|
18
|
Serra RW, Fang M, Park SM, Hutchinson L, Green MR. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. eLife 2014; 3:e02313. [PMID: 24623306 PMCID: PMC3949416 DOI: 10.7554/elife.02313] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in, and the mechanistic basis of, CIMP is not understood. Among the CIMP genes are the tumor suppressors p14ARF, p15INK4B, and p16INK4A, encoded by the INK4-ARF locus. In this study, we perform an RNA interference screen and identify ZNF304, a zinc-finger DNA-binding protein, as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors, ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1, resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304, which drives DNA binding. Finally, we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI:http://dx.doi.org/10.7554/eLife.02313.001 Colorectal cancer, which affects the large intestine, is a leading cause of cancer deaths worldwide, ranking fourth after cancers of the lung, stomach, and liver. Like these other cancers, this disease is caused by mutations to genes that allow cells to multiply in an out of control manner. Mutations that change the gene encoding a protein called KRAS are found in many different types of cancer. Moreover, about 70% of colorectal cancers with a KRAS mutation also have an excess of small chemical marks on other genes, some of which are known to suppress the growth of tumors. These marks ‘switch off’ these genes, and although the identities of the enzymes that typically leave these marks on DNA are known, the link between these enzymes and the KRAS protein is unknown. Now Serra, Fang et al. have identified a protein, called ZNF304, that is required by KRAS to switch off a large number of genes, including multiple tumor suppressors. In the absence of ZNF304, these tumor suppressor genes remained switched on in cancer cells with the KRAS mutation, so the growth of the tumor was slowed down. ZNF304 is a protein that binds to stretches of DNA, including regions of DNA at the start of several tumor suppressor genes, and it recruits the enzymes that add the chemical marks that switch off these genes. Serra, Fang et al. found that the levels of ZNF304 protein were elevated in colorectal cancer cells with the mutated KRAS, and showed that this was due to the combined activities of two other proteins that prevented ZNF304 from being broken down in the cell. Mutant KRAS caused an increase in the levels of these two proteins, which in turn caused the elevated ZNF304 levels and the excessive marking of the DNA in the tumor suppressor genes. Furthermore, some of these same tumor suppressor genes are switched off in the earliest cells in a human embryo—which have the potential to become any of 200 or so cell types in the human body. In these embryonic stem cells, Serra, Fang et al. showed that ZNF304, but not KRAS, was also involved in keeping these genes switched off until the stem cells started changing into specific types of cells. Since they are a crucial part of the pathway linking a cancer-causing mutation to increased tumor growth, the proteins identified by Serra, Fang et al. could represent promising targets for the development of new anti-cancer drugs. DOI:http://dx.doi.org/10.7554/eLife.02313.002
Collapse
Affiliation(s)
- Ryan W Serra
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | | | | | | | | |
Collapse
|
19
|
Maggi LB, Winkeler CL, Miceli AP, Apicelli AJ, Brady SN, Kuchenreuther MJ, Weber JD. ARF tumor suppression in the nucleolus. Biochim Biophys Acta Mol Basis Dis 2014; 1842:831-9. [PMID: 24525025 DOI: 10.1016/j.bbadis.2014.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/06/2023]
Abstract
Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Leonard B Maggi
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Crystal L Winkeler
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alexander P Miceli
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anthony J Apicelli
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Suzanne N Brady
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Kuchenreuther
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jason D Weber
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
20
|
Liang PI, Li CF, Chen LT, Sun DP, Chen TJ, Hsing CH, Hsu HP, Lin CY. BCL6 overexpression is associated with decreased p19 ARF expression and confers an independent prognosticator in gallbladder carcinoma. Tumour Biol 2014; 35:1417-1426. [PMID: 24114011 DOI: 10.1007/s13277-013-1195-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
B cell lymphoma 6 (BCL6) is a protein that is vital for lymphogenesis. Its expression has been well established in lymphoma, especially in diffuse large B-cell lymphoma. Its role in carcinogenesis is less well understood. Previous study shows that BCL6 expression may regulate p19 functions, an important regulator for the p53 pathway. No prior study has attempted to evaluate the significance of BCL6 and p19(ARF) expression in a large cohort of patients with gallbladder carcinomas (GBCs). We selected 164 patients with GBC and performed immunostains for BCL6 and p19(ARF). BCL6 expression and p19(ARF) expression were evaluated using a histochemical score (H-score). We then correlated the results with various clinicopathological factors, disease-specific survival (DSS), and disease-free survival (DFS). BCL6 overexpression was significantly associated with high pT status, high TNM stage, higher histological grade (p = 0.029), vascular invasion, perineurial invasion, high Ki-67 labeling index, and low p19 expression. Importantly, BCL6 overexpression in GBC was strongly associated with worse DSS (p < 0.0001) and DFS (p < 0.0001) in the univariate analysis, and remained independently predictive of adverse outcomes (p = 0.001, hazard ratio (H.R.) = 3.098 for DSS; p = 0.002, H.R. = 2.255 for DFS). Low p19(ARF) expression was correlated with a poor DSS (p = 0.0144) and DFS (p = 0.0032) in the univariate analysis but was not prognosticatory in the multivariate analysis. In GBC, BCL6 overexpression correlated with adverse phenotypes and decreased p19(ARF) expression. BCL6 overexpression also independently predicts worse DSS and DFS, suggesting it has a role in tumorigenesis or carcinogenesis and could be a potential prognostic indicator in GBC.
Collapse
Affiliation(s)
- Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100, Tzyou 1st Rd, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chaar I, Amara S, Elamine OE, Khiari M, Ounissi D, Khalfallah T, Ben Hmida A, Mzabi S, Bouraoui S. Biological significance of promoter hypermethylation of p14/ARF gene: relationships to p53 mutational status in Tunisian population with colorectal carcinoma. Tumour Biol 2013; 35:1439-49. [PMID: 24065196 PMCID: PMC3932170 DOI: 10.1007/s13277-013-1198-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022] Open
Abstract
One of the most important pathways which are frequently affected in colorectal cancer is p53/ (MDM2)/p14ARF pathway. We aim to determine the methylation pattern of p14/ARF in relation to mutation of p53. This correlation was studied to investigate whether their alterations could be considered as a predictor factor of prognosis in colorectal cancer and whether it can be useful in early-stage diagnosis. Statistical analyses show that p14/ARF hypermethylation was correlated with rectum location (p = 0.004), primary TNM stage (p = 0.016), and advanced Astler–Coller stage (p = 0.024). The RT-PCR that revel 31 % of patients did not express p14/ARF mRNA or at very low level. A high concordance between CpG hypermethylation and the low levels (p < 0.005) was shown. In addition, our analyses demonstrate that patients with mutation in the p53 gene have a lack of the protein expression (p < 0.005). This category with negative expression of p53 had a shorter survival rate (p < 0.005). On the one hand, MSP pattern of p14/ARF were correlated with a lack of p53 expression (p = 0.007). We found that p53/p14ARF pathway was frequently deregulated among our patients. In our study, we demonstrate that hypermethylation of p14/ARF occurs early during CRC tumorogenesis. However, we did not find correlation between p14/ARF and survival. These results suggest that p14/ARF methylation pattern may constitute a predictor factor of CRC in early stage but it could not be considered as a prognostic factor. On the other hand and because of the reversibility of the methylation mechanism, it may be appropriate to target the demethylation of p14/ARF to develop new drogues for CRC.
Collapse
Affiliation(s)
- Ines Chaar
- Laboratory of Colorectal Cancer Research UR03ES04, Science University Tunis, Tunis, Tunisia,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Promoter hypermethylation of tumour suppressor genes (p14/ARF and p16/INK4a): case-control study in North Indian population. Mol Biol Rep 2013; 40:4921-8. [PMID: 23712779 DOI: 10.1007/s11033-013-2592-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
Abstract
The epigenetic modifications have been reported to be key factors in breast carcinogenesis. In the current study, it has been tried to determine the methylation status of two tumour suppressor genes p14/ARF and p16/INK4a in 150 breast cancer patients as well as 150 controls by using MSP-PCR. There was, highly significant difference in methylation of p14/ARF and p16/INK4a (P=0.000) between patients and controls. Methylation of both the genes together significantly increased the risk of breast cancer by 12.31 folds. The present study concludes that hypermethylation of p14/ARF and p16/INK4a promoters demonstrate significant association with the risk of breast cancer, hence indicating these as important tumour suppressor genes involved in the pathogenesis of breast cancer in North Indian population (i.e. Punjab, Haryana, Uttar Pradesh, Himachal Pradesh as well as Union Territory of Chandigarh).
Collapse
|
23
|
Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer 2013; 133:2013-23. [PMID: 23417723 DOI: 10.1002/ijc.28112] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
The 20th century saw great advances in anatomy-based (surgery and radiotherapy) and chemotherapy approaches for treating head and neck squamous cell carcinoma (HNSCC) and improving quality of life (QoL). However, despite these advances, the survival rate in HNSCC remains at ∼50%. Front-line treatments often cause severe toxicity and debilitating long-term impacts on QoL. In recent decades, dramatic advances have been made in our knowledge of fundamental tumor biology and signaling pathways that contribute to oncogenesis and cancer progression. These insights are presenting unprecedented opportunities to develop more effective and less toxic treatments that are specific to particular molecular targets. This review discusses some of the major, potentially targetable, molecular pathways associated with head and neck carcinogenesis. We present the general mechanism underlying the functional components for each signaling pathway, discuss how these components are aberrantly regulated in HNSCC and describe their potential as therapeutic targets. We have restricted our discussion to "drug-able targets" such as oncogenes including those associated with HPV, tumor hypoxia and microRNAs and present these changes in the context of HNSCC patient care. The specific targeting of these pathways to achieve cancer control/remission and reduce toxicity is now challenging conventional treatment paradigms in HNSCC. This new "biologic era" is transforming our ability to target causal pathways and improve survival outcomes in HNSCC.
Collapse
Affiliation(s)
- Pinaki Bose
- Department of Oncology, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
24
|
Kim H, Jekarl DW, Kim M, Kim Y, Lim J, Han K, Min CK. Prevalence of p16 methylation and prognostic factors in plasma cell myeloma at a single institution in Korea. Ann Lab Med 2012; 33:28-33. [PMID: 23301219 PMCID: PMC3535193 DOI: 10.3343/alm.2013.33.1.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/30/2012] [Accepted: 11/16/2012] [Indexed: 11/24/2022] Open
Abstract
Background The primary purpose of this study was to investigate the prevalence and characteristics of p16 methylation and determine the prognostic implications of the clinical data, hematologic data, and p16 methylation changes in plasma cell myeloma (PCM). Methods We reviewed clinical characteristics and results of laboratory tests and investigated the response to combination chemotherapy and survival time. DNA methylation of the p16 gene was tested by methylation-specific PCR. Clinical significance was evaluated. Results A total of 103 patients were enrolled in this study. The median patient age was 59.0 yr at diagnosis and the male to female ratio was 1.15:1. According to the International Staging System (ISS), patients were diagnosed as stage: I (N=17, 16.5%), II (N=41, 39.8%), III (N=39, 37.9%), or not classified (N=6). Forty-five (43.7%) patients and 36 (35.0%) patients showed abnormal karyotype and complex karyotype, respectively, on the chromosome study. The p16 methylation was observed in 39 (37.9%) of 103 patients, but there was no significant association between p16 methylation status and other clinical or laboratory factors and survival outcome. Male gender, albumin, and complex karyotype were independent prognostic factors for overall survival according to multivariate analysis (P<0.05). Conclusions The male gender, low serum albumin level, and complex karyotype were independent poor prognostic factors for PCM. p16 methylation was relatively common in PCM, but did not influence the survival outcome.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The determination of prognosis in bladder cancer is currently based on staging methods that rely primarily on the pathological stage of a tumor with limited objective correlates. The development and progression of bladder cancer involve alterations in several cellular pathways. Dysregulation in markers associated with cell-cycle regulation has been the most extensively examined molecular aberration in this cancer. Individual alterations of these markers have been associated with disease outcome, with several observations suggesting that their prognostic potential is independent of pathological stage. While many individual molecules in the cell growth receptor signaling, p53, and retinoblastoma (Rb) pathways have been identified, there is a general lack of consensus on which markers can be adopted in the clinical setting. More recent studies have suggested that the combination of markers as concise panels may be more beneficial in determining the degree of aggressiveness of a given tumor and its impending outcome than individual markers alone. This review will discuss alterations in molecules within pathways controlling cell-cycle regulation in the context of bladder cancer, and their impact on patient outcome when examined individually and in combination.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology and Center for Personalized Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | |
Collapse
|
26
|
Nilsson TK, Löf-Öhlin ZM, Sun XF. DNA methylation of the p14ARF, RASSF1A and APC1A genes as an independent prognostic factor in colorectal cancer patients. Int J Oncol 2012; 42:127-33. [PMID: 23128528 PMCID: PMC3583697 DOI: 10.3892/ijo.2012.1682] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/28/2012] [Indexed: 01/05/2023] Open
Abstract
We quantitated the methylated fraction of CpG sites in the promoter regions of O6-MGMT, p14ARF, p16INK4a, RASSF1A and APC1A in tumor tissue from patients with colorectal cancer (CRC) in order to determine if promoter hypermethylation of any of these genes predicts survival. DNA was isolated from 111 primary CRC and 46 matched normal colorectal mucosa samples from the same patients, obtained at primary surgery and DNA methylation was examined by Pyrosequencing®. Follow-up time was up to 20 years. Patients showed partial promoter methylation in the following frequencies: O6-MGMT, 34%; p14ARF, 29%; p16INK4a, 28%; RASSF1A, 14%; and APC1A, 27%. Normal mucosa was always unmethylated. CRC patients with methylated p14ARF gene promoter had significantly worse prognosis (p=0.036), whereas those with methylated O6-MGMT had significantly better prognosis through the first 60 months post-treatment (RR 0.36; p=0.023). Methylation of one or more of the genes from the set p14ARF, RASSF1A and APC1A, was significantly (p= 0.021) associated with worse prognosis even adjusting for tumor stage and differentiation (RR 2.2, p=0.037). Thus, DNA methylation of the p14ARF, RASSF1A and APC1A genes, diagnosed by Pyrosequencing, defines a poor prognosis subset of CRC patients independently of both tumor stage and differentiation. O6-MGMT methylation may play a protective role.
Collapse
Affiliation(s)
- Torbjörn K Nilsson
- Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden.
| | | | | |
Collapse
|
27
|
Rothenberg SM, Ellisen LW. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 2012; 122:1951-7. [PMID: 22833868 DOI: 10.1172/jci59889] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a relatively common human cancer characterized by high morbidity, high mortality, and few therapeutic options outside of surgery, standard cytotoxic chemotherapy, and radiation. Although the most important risk factors are tobacco use and alcohol consumption, the disease is also linked to infection with high-risk types of human papilloma viruses (HPVs). Recent genetic analyses have yielded new insights into the molecular pathogenesis of this disease. Overall, while somatic activating mutations within classical oncogenes including PIK3CA and RAS occur in HNSCC, they are relatively uncommon. Instead genetic data point to a contribution of multiple tumor suppressor pathways, including p53, Rb/INK4/ARF, and Notch, in tumor initiation, progression, and maintenance. The increasingly refined knowledge of HNSCC genetics, combined with ever-more-sophisticated animal models and newer drug targeting strategies, should promote novel therapeutic approaches and improved disease outcomes.
Collapse
Affiliation(s)
- S Michael Rothenberg
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
28
|
Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 2012; 33:347-61. [PMID: 22274923 DOI: 10.1007/s13277-011-0310-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022] Open
Abstract
A compelling body of evidences sustains the importance of epigenetic mechanisms in the development and progression of cancer. Assessing the epigenetic component of bladder tumors is strongly improving our understanding of their biology and clinical behavior. In terms of DNA methylation, cancer cells show genome-wide hypomethylation and site-specific CpG island promoter hypermethylation. In the context of other epigenetic alterations, this review will focus on the hypermethylation of CpG islands in promoter regions, as the most widely described epigenetic modification in bladder cancer. CpG islands hypermethylation is believed to be critical in the transcriptional silencing and regulation of tumor suppressor and crucial cancer genes involved in the major molecular pathways controlling bladder cancer development and progression. In particular, several biological pathways of frequently methylated genes include cell cycle, DNA repair, apoptosis, and invasion, among others. Furthermore, translational aspects of bladder cancer methylomes described to date will be discussed towards their potential application as bladder cancer biomarkers. Several tissue methylation signatures and individual candidates have been evidenced, that could potentially stratify tumors histopathologically, and discriminate patients in terms of their clinical outcome. Tumor methylation profiles could also be detected in urinary specimens showing a promising role as non-invasive markers for cancer diagnosis towards an early detection and potentially for the surveillance of bladder cancer patients in a near future. However, the epigenomic exploration of bladder cancer has only just begun. Genome-scale DNA methylation profiling studies will further highlight the relevance of the epigenetic component to gain knowledge of bladder cancer biology and identify those profiles and candidates better correlating with clinical behavior.
Collapse
|
29
|
Jabłonowski Z, Reszka E, Gromadzińska J, Wąsowicz W, Sosnowski M. Hypermethylation of p16 and DAPK promoter gene regions in patients with non-invasive urinary bladder cancer. Arch Med Sci 2011; 7:512-6. [PMID: 22295037 PMCID: PMC3258754 DOI: 10.5114/aoms.2011.23421] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The aim of the study was to examine the frequency of methylation status in promoter regions of p16 and DAPK genes in patients with non-invasive bladder cancer. MATERIAL AND METHODS Forty-two patients (92.9% men, 73.8% smokers, 71.4% T1G1, 19.1% T1G2, 9.5% T1G3) and 36 healthy controls were studied. Isolation of genomic DNA from blood serum and methylation-specific PCR (MSP) were applied. Methylation status - methylated and unmethylated promoter regions of p16 and DAPK genes were analysed. RESULTS Seventeen out of 42 patients (40.5%) had the methylated p16 gene, while methylation of the DAPK gene was seen in 27 of 42 cases (64.3%). In 12 patients (28.6%) both analysed genes were methylated. A statistically significant (p = 0.046) higher frequency of DAPK gene methylation (71.4%) was observed in patients with lower grade (G1) bladder cancer. CONCLUSIONS Detection of the aberrant hypermethylation of DAPK and p16 genes in blood DNA from non-invasive bladder cancer patients might offer an effective means for earlier auxiliary diagnosis of the malignancy.
Collapse
|
30
|
Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LGT, Shen R, Seshan V, Mo Q, Heguy A, Baylin SB, Ahuja N, Viale A, Massague J, Norton L, Vahdat LT, Moynahan ME, Chan TA. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 2011; 3:75ra25. [PMID: 21430268 PMCID: PMC3146366 DOI: 10.1126/scitranslmed.3001875] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer-specific alterations in DNA methylation are hallmarks of human malignancies; however, the nature of the breast cancer epigenome and its effects on metastatic behavior remain obscure. To address this issue, we used genome-wide analysis to characterize the methylomes of breast cancers with diverse metastatic behavior. Groups of breast tumors were characterized by the presence or absence of coordinate hypermethylation at a large number of genes, demonstrating a breast CpG island methylator phenotype (B-CIMP). The B-CIMP provided a distinct epigenomic profile and was a strong determinant of metastatic potential. Specifically, the presence of the B-CIMP in tumors was associated with low metastatic risk and survival, and the absence of the B-CIMP was associated with high metastatic risk and death. B-CIMP loci were highly enriched for genes that make up the metastasis transcriptome. Methylation at B-CIMP genes accounted for much of the transcriptomal diversity between breast cancers of varying prognosis, indicating a fundamental epigenomic contribution to metastasis. Comparison of the loci affected by the B-CIMP with those affected by the hypermethylator phenotype in glioma and colon cancer revealed that the CIMP signature was shared by multiple human malignancies. Our data provide a unifying epigenomic framework linking breast cancers with varying outcome and transcriptomic changes underlying metastasis. These findings significantly enhance our understanding of breast cancer oncogenesis and aid the development of new prognostic biomarkers for this common malignancy.
Collapse
Affiliation(s)
- Fang Fang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sevin Turcan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Kaufman
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dilip Giri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Luc G. T. Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ronglai Shen
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Venkatraman Seshan
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Qianxing Mo
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Heguy
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Stephen B. Baylin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Suite 544, Baltimore, MD 21231, USA
| | - Nita Ahuja
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Suite 544, Baltimore, MD 21231, USA
| | - Agnes Viale
- Genomics Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massague
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Linda T. Vahdat
- Department of Medicine, Weill Cornell Medical Center, 425 East 61st Street, New York, NY 10065, USA
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
31
|
Murphy TM, Sullivan L, Lane C, O'Connor L, Barrett C, Hollywood D, Lynch T, Lawler M, Perry AS. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate 2011; 71:1-17. [PMID: 20564325 DOI: 10.1002/pros.21212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC). METHODS Based on an in silico selection process, 13 genes were screened for methylation in CaP cell lines using DHPLC. Quantitative methylation specific PCR was employed to determine methylation levels in prostate tissue specimens (n = 135), representing tumor, histologically benign prostate, high-grade prostatic intraepithelial neoplasia and benign prostatic hyperplasia. Gene expression was measured by QRT-PCR in cell lines and tissue specimens. RESULTS The promoters of BIK, BNIP3, cFLIP, TMS1, DCR1, DCR2, and CDKN2A appeared fully or partially methylated in a number of malignant cell lines. This is the first report of aberrant methylation of BIK, BNIP3, and cFLIP in CaP. Quantitative methylation analysis in prostate tissues identified 5 genes (BNIP3, CDKN2A, DCR1, DCR2 and TMS1) which were frequently methylated in tumors but were unmethylated in 100% of benign tissues. Furthermore, 69% of tumors were methylated in at least one of the five-gene panel. In the case of all genes, except BNIP3, promoter hypermethylation was associated with concurrent downregulation of gene expression. CONCLUSION Future examination of this "CaP apoptotic methylation signature" in a larger cohort of patients is justified to further evaluate its value as a diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Therese M Murphy
- Prostate Molecular Oncology, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Al-Moundhri MS, Al-Nabhani M, Tarantini L, Baccarelli A, Rusiecki JA. The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma. PLoS One 2010; 5:e15585. [PMID: 21203466 PMCID: PMC3009731 DOI: 10.1371/journal.pone.0015585] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/16/2010] [Indexed: 12/11/2022] Open
Abstract
Background Epigenetics, particularly DNA methylation, has recently been elucidated as important in gastric cancer (GC) initiation and progression. We investigated the clinical and prognostic importance of whole blood global and site-specific DNA methylation in GC. Methods Genomic DNA was extracted from the peripheral blood of 105 Omani GC patients at diagnosis. DNA methylation was quantified by pyrosequencing of global DNA and specific gene promoter regions at 5 CpG sites for CDH1, 7 CpG sites for p16, 4 CpG sites for p53, and 3 CpG sites for RUNX3. DNA methylation levels in patients were categorized into low, medium, and high tertiles. Associations between methylation level category and clinicopathological features were evaluated using χ2 tests. Survival analyses were carried out using the Kaplan-Meier method and log rank test. A backward conditional Cox proportional hazards regression model was used to identify independent predictors of survival. Results Older GC patients had increased methylation levels at specific CpG sites within the CDH1, p53, and RUNX-3 promoters. Male gender was significantly associated with reduced global and increased site-specific DNA methylation levels in CDH1, p16, and p53 promoters. Global DNA low methylation level was associated with better survival on univariate analysis. Patients with high and medium methylation vs. low methylation levels across p16 promoter CpG sites, site 2 in particular, had better survival. Multivariate analysis showed that global DNA hypermethylation was a significant independent predictor of worse survival (hazard ratio (HR) = 2.0, 95% CI: 1.1–3.8; p = 0.02) and high methylation mean values across p16 promoter sites 1–7 were associated with better survival with HR of 0.3 (95% CI, 0.1–0.8; p = 0.02) respectively. Conclusions Analysis of global and site-specific DNA methylation in peripheral blood by pyrosequencing provides quantitative DNA methylation values that may serve as important prognostic indicators.
Collapse
Affiliation(s)
- Mansour S Al-Moundhri
- Medical Oncology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | | | | | |
Collapse
|
33
|
Huang YC, Hung WC, Chen WT, Jiang WH, Yu HS, Chai CY. Effects of MEK and DNMT inhibitors on arsenic-treated human uroepithelial cells in relation to Cyclin-D1 and p16. Toxicol Lett 2010; 200:59-66. [PMID: 21040761 DOI: 10.1016/j.toxlet.2010.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 11/28/2022]
Abstract
Arsenic compounds are well-known toxic and carcinogenic agents, and they are widely distributed throughout the earth's crust. These compounds are associated with various human malignancies. It has been reported that there is an elevated risk of bladder cancer in an area highly contaminated with arsenic on the southwest coast of Taiwan. However, the underlying mechanisms of arsenic-associated carcinogenesis are still unclear. The cell cycle regulatory proteins are important indicators in control of cell cycle progression. Moreover, the high expression of Cyclin-D1 and loss of p16 has been associated with a worse prognosis in a variety of human cancers. Therefore, we investigated the effect of arsenic on Cyclin-D1 and p16 expression and evaluated the role of the ERK signaling pathway and DNA methylation in arsenic carcinogenesis. Our study results showed that Cyclin-D1 high expression was found in 56.3% (9/16) of urothelial carcinomas (UC) from a blackfoot disease (BFD) area and 6.3% (1/16) of UC from a non-BFD area (p=0.002). The p16 low expression in 81.2% (13/16) of UC from BFD areas was significantly lower than in non-BFD areas (25.0%; 4/16) (p=0.001). In addition, the Cyclin-D1 increased expression but decreased p16 expression in arsenite-treated SV-HUC-1 cells. However, when cells were pretreated with inhibitors (5-aza-CdR or U0126), the effects of arsenite on Cyclin-D1 and p16 expression were suppressed. Finally, these results indicated that Cyclin-D1 and p16 both might play important roles in carcinogenesis as a result of arsenic.
Collapse
Affiliation(s)
- Ya-Chun Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Ozenne P, Eymin B, Brambilla E, Gazzeri S. The ARF tumor suppressor: Structure, functions and status in cancer. Int J Cancer 2010; 127:2239-47. [DOI: 10.1002/ijc.25511] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Abstract
Colorectal cancer (CRC) arises as a consequence of the accumulation of genetic and epigenetic alterations in colonic epithelial cells during neoplastic transformation. Epigenetic modifications, particularly DNA methylation in selected gene promoters, are recognized as common molecular alterations in human tumors. Substantial efforts have been made to determine the cause and role of aberrant DNA methylation ("epigenomic instability") in colon carcinogenesis. In the colon, aberrant DNA methylation arises in tumor-adjacent, normal-appearing mucosa. Aberrant methylation also contributes to later stages of colon carcinogenesis through simultaneous methylation in key specific genes that alter specific oncogenic pathways. Hypermethylation of several gene clusters has been termed CpG island methylator phenotype and appears to define a subgroup of colon cancer distinctly characterized by pathological, clinical, and molecular features. DNA methylation of multiple promoters may serve as a biomarker for early detection in stool and blood DNA and as a tool for monitoring patients with CRC. DNA methylation patterns may also be predictors of metastatic or aggressive CRC. Therefore, the aim of this review is to understand DNA methylation as a driving force in colorectal neoplasia and its emerging value as a molecular marker in the clinic.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II-5M, Baltimore, MD, 21231, USA
| | | | | |
Collapse
|
36
|
Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K. Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2010; 4:15-34. [PMID: 20567632 PMCID: PMC2883240 DOI: 10.4137/cmo.s4773] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endocrine therapy. HER2 is a strong predictor of response to trastuzumab. Recently, the roles of ER as a negative and HER2 as a positive indicator for chemotherapy have been established. Ki67 has traditionally been recognized as a poor prognostic factor, but recent studies suggest that measurement of Ki67-positive cells during treatment will more effectively predict treatment efficacy for both anti-hormonal and chemotherapy. p53 mutations are found in 20–35% of human breast cancers and are associated with aggressive disease with poor clinical outcome when the DNA-binding domain is mutated. The utility of cyclin D1 as a predictor of breast cancer prognosis is controversial, but cyclin D1b overexpression is associated with poor prognosis. Likewise, overexpression of the low molecular weight form of cyclin E1 protein predicts poor prognosis. Breast cancers from BRCA1/2 carriers often show high nuclear grades, negativity to ER/PR/HER2, and p53 mutations, and thus, are associated with poor prognosis. The prognostic values of other molecular markers, such as p14ARF, TBX2/3, VEGF in breast cancer are also discussed. Careful evaluation of these biomarkers with current treatment modality is required to determine whether their measurement or monitoring offer significant clinical benefits.
Collapse
|
37
|
Soler D, Pampalona J, Tusell L, Genescà A. Radiation sensitivity increases with proliferation-associated telomere dysfunction in nontransformed human epithelial cells. Aging Cell 2009; 8:414-25. [PMID: 19473118 DOI: 10.1111/j.1474-9726.2009.00488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epidemiological studies have demonstrated age differences among human adults in susceptibility to radiation, with cancer cases attributable to radiation being more frequent for older individuals at time of exposure. In addition to the notion that susceptibility increases because of progressive decline in DNA monitoring and immunosurveillance, telomere function is now emerging as a new and important factor in modulating cellular and organism sensitivity to ionizing radiation. The link between telomeres and radiosensitivity is well-documented in humans, but the causal events remain elusive. In this paper, it is shown that irradiated human epithelial cells with short dysfunctional telomeres derived from normal mammary gland display elevated DNA damage. An approach identifying the specific chromosomes with critically shortened telomeres in each donor has allowed us to conclude that short dysfunctional telomeres in human epithelial cells join radiation-induced DNA broken ends, thus interfering with their efficient repair. These findings argue against telomeres participating as sensors or transducers of DNA damage, as previously suggested. Rather, our current findings give support to the idea that dysfunctional telomeres, by acting as an additional joining option, reduce the repair fidelity of DNA broken-ends induced by radiation throughout the genome. In the mammary gland, age-dependent telomere attrition due to epithelial turnover, together with the accretion of checkpoint deficiencies, might render the accumulation of short dysfunctional telomeres. This implies that the risks associated with mammography screening could be higher than previously assumed. Our results have the possibility of imprinting a temporal dimension onto radiation sensitivity, namely, that shortened telomeres in aged cells may more easily compromise normal tissue function in the elderly.
Collapse
Affiliation(s)
- David Soler
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
38
|
Kashevarova AA, Tolmacheva EN, Sukhanova NN, Sazhenova EA, Lebedev IN. Estimation of the mehylation status of the promoter region of the cell cycle control gene P14ARF in placental tissues of spontaneous abortions with chromosomal mosaicism. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409060155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Mitra AP, Cote RJ. Molecular pathogenesis and diagnostics of bladder cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:251-85. [PMID: 18840072 DOI: 10.1146/annurev.pathol.4.110807.092230] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite elaborate characterization of the risk factors, bladder cancer is still a major epidemiological problem whose incidence continues to rise each year. Urothelial carcinoma is now recognized as a disease of alterations in several cellular processes. The more prevalent, less aggressive, recurrent, noninvasive tumors are characterized by constitutive activation of the Ras-MAPK pathway. The less common but more aggressive invasive tumors, which have a higher mortality rate, are characterized by alterations in the p53 and retinoblastoma pathways. Several diagnostic tests have attempted to identify these molecular alterations in tumor cells exfoliated in the urine, whereas prognostic tests have tried to identify aberrations so as to predict tumor behavior and identify therapeutic targets. The future of bladder cancer patient management will rely on the use of molecular tests to reliably diagnose the presence of disease, predict individual tumor behavior, and suggest potential targeted therapeutics.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
40
|
Vallian S, Sedaghat M, Nassiri I, Frazmand A. Methylation status of p16 INK4A tumor suppressor gene in Iranian patients with sporadic breast cancer. J Cancer Res Clin Oncol 2009; 135:991-6. [PMID: 19125298 DOI: 10.1007/s00432-008-0534-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 12/08/2008] [Indexed: 11/27/2022]
Abstract
INTRODUCTION p16(INK4A) is a tumor suppressor encoding the Cdk inhibitor protein, which acts to repress Cdk4/6 and pRb phosphorylation. p16(INK4A) gene can be inactivated by a variety of events, including promoter hypermethylation. MATERIALS AND METHODS To investigate the methylation status of the p16(INK4A) gene in Iranian patients with breast carcinoma, promoter methylation was studied by methylation-specific PCR (MSP) and restriction enzyme-related PCR (REP). In addition, p16(INK4A) promoter was analyzed by PCR-SSCP in order to detection of mutation and single nucleotide polymorphisms. RESULTS Analysis of 70 patients by MPS and REP showed hypermethylation of p16(INK4A) promoter in 35.7% (25/70) and 40% (28/70) of samples, respectively. Comparison of the molecular data and pathological information of the samples suggested that p16(INK4A) gene might be inactivated at the early stages in breast cancer. CONCLUSION Therefore, it could be suggested that hypermethylation of p16(INK4A) promoter is one of the epigenetic factors affecting the progress of sporadic breast carcinogenesis in Iranian patients.
Collapse
Affiliation(s)
- Sadeq Vallian
- Division of Genetics, Department of Biology, Faculty of Science, The University of Isfahan, Hezarjerib St., Isfahan, Islamic Republic of Iran.
| | | | | | | |
Collapse
|
41
|
Lee JY, Jang KS, Shin DH, Oh MY, Kim HJ, Kim Y, Kong G. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 2008; 68:4201-9. [PMID: 18519679 DOI: 10.1158/0008-5472.can-07-2570] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mel-18, a polycomb group (PcG) protein, has been suggested as a tumor suppressor in human breast cancer. Previously, we reported that Mel-18 has antiproliferative activity in breast cancer cells. However, its functional mechanism has not been fully elucidated. Here, we investigated the role of Mel-18 in human breast cancer. We saw an inverse correlation between Mel-18 and phospho-Akt, which were expressed at low and high levels, respectively, in primary breast tumor tissues from 40 breast cancer patients. The effect of Mel-18 on cell growth was examined in two breast cancer cell lines, SK-BR-3 and T-47D, which express relatively low and high levels of endogenous Mel-18, respectively. On Mel-18 overexpression in SK-BR-3 cells, cell growth was attenuated and G(1) arrest was observed. Likewise, suppression of Mel-18 by antisense expression in T-47D cells led to enhanced cell growth and accelerated G(1)-S phase transition. In these cells, cyclin-dependent kinase (Cdk)-4 and Cdk2 activities were affected by Mel-18, which were mediated by changes in cyclin D1 expression and p27(Kip1) phosphorylation at Thr(157), but not by INK4a/ARF genes. The changes were both dependent on the phosphatidylinositol 3-kinase/Akt signaling pathway. Akt phosphorylation at Ser(473) was reduced by Mel-18 overexpression in SK-BR-3 cells and enhanced by Mel-18 suppression in T-47D cells. Akt-mediated cytoplasmic localization of p27(Kip1) was inhibited by Mel-18 in SK-BR-3 cells. Moreover, Mel-18 overexpression showed reduced glycogen synthase kinase-3beta phosphorylation, beta-catenin nuclear localization, T-cell factor/lymphoid enhancer factor promoter activity, and cyclin D1 mRNA level. Taken together, we established a linear relationship between Mel-18-->Akt-->G(1) phase regulators.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomarkers Prev 2008; 17:414-20. [PMID: 18268126 DOI: 10.1158/1055-9965.epi-07-0284] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oral cancer patients are found to have poor clinical outcome and high disease recurrence rate, in spite of an aggressive treatment regimen. The inactivation of INK4A/ARF loci is reported to be second to p53 inactivation in human cancers. The purpose of this study was to assess the prognostic significance of the molecular aberrations in the INK4A locus for effective identification of aggressive oral carcinoma cases needing alternate therapy. MATERIALS AND METHODS The study composed of 116 patients freshly diagnosed with oral carcinoma. The genetic and epigenetic status of the p16(INK4A) and p14(ARF) genes was evaluated. The relation between these genic alterations and different treatment end points, such as residual disease (initial response), disease recurrence, and overall survival, along with the standard clinical markers, were analyzed. RESULTS 62% of the study cases had p16(INK4A) gene abnormalities, with deletion accounting for 33% and methylation for 29%. Alterations in p14(ARF) gene either by deletion (12%) and/or methylation (18%) were observed in 30% of the cases. p16(INK4A) deletion was associated with aggressive tumors, as evidenced by the nodal involvement of the disease. Low or absence of p16(INK4A) protein adversely affected the initial treatment response. Promoter methylation of p16(INK4A) was associated with increased disease recurrence and acts as an independent predictor for worse prognosis. Surprisingly, p14(ARF) methylation associated with lower recurrence rate in oral cancer patients with a good clinical outcome. Overall survival of these patients was associated with tumor size, nodal disease, and p16(INK4A) protein expression pattern. Our results indicate that p16(INK4A) and p14(ARF) alterations constitute a major molecular abnormality in oral cancer cases. CONCLUSION The molecular profile of INK4A/ARF locus, both at DNA and protein level, could be used as a prognostic biomarker for assessing the aggressiveness of disease in oral carcinoma patients. The study further shows the opposing clinical effect of these two genes, transcribed from the same locus, in oral cancer patients.
Collapse
Affiliation(s)
- R Sailasree
- Laboratory of Cell Cycle Regulation and Molecular Oncology, Division of Cancer Research, Regional Cancer Center, Thiruvananthapuram 695011, India
| | | | | | | | | | | |
Collapse
|
43
|
Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, Chodosh LA, Cardiff RD, Gunther EJ. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Invest 2008; 118:51-63. [PMID: 18060046 DOI: 10.1172/jci33320] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/26/2007] [Indexed: 12/20/2022] Open
Abstract
Breast cancers frequently progress or relapse during targeted therapy, but the molecular mechanisms that enable escape remain poorly understood. We elucidated genetic determinants underlying tumor escape in a transgenic mouse model of Wnt pathway-driven breast cancer, wherein targeted therapy is simulated by abrogating doxycycline-dependent Wnt1 transgene expression within established tumors. In mice with intact tumor suppressor pathways, tumors typically circumvented doxycycline withdrawal by reactivating Wnt signaling, either via aberrant (doxycycline-independent) Wnt1 transgene expression or via acquired somatic mutations in the gene encoding beta-catenin. Germline introduction of mutant tumor suppressor alleles into the model altered the timing and mode of tumor escape. Relapses occurring in the context of null Ink4a/Arf alleles (disrupting both the p16 Ink4a and p19 Arf tumor suppressors) arose quickly and rarely reactivated the Wnt pathway. In addition, Ink4a/Arf-deficient relapses resembled p53-deficient relapses in that both displayed morphologic and molecular hallmarks of an epithelial-to-mesenchymal transition (EMT). Notably, Ink4a/Arf deficiency promoted relapse in the absence of gross genomic instability. Moreover, Ink4a/Arf-encoded proteins differed in their capacity to suppress oncogene independence. Isolated p19 Arf deficiency mirrored p53 deficiency in that both promoted rapid, EMT-associated mammary tumor escape, whereas isolated p16 Ink4a deficiency failed to accelerate relapse. Thus, p19 Arf/p53 pathway lesions may promote mammary cancer relapse even when inhibition of a targeted oncogenic signaling pathway remains in force.
Collapse
Affiliation(s)
- Michael T Debies
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Birkhahn M, Mitra AP, Cote RJ. Molecular markers for bladder cancer: the road to a multimarker approach. Expert Rev Anticancer Ther 2008; 7:1717-27. [PMID: 18062746 DOI: 10.1586/14737140.7.12.1717] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bladder cancer is the seventh most common malignancy worldwide, with almost 14,000 patients dying from this disease in the USA alone. Because of the need for long-term and frequent follow-up, as well as the paucity of sensitive and specific noninvasive tests, bladder cancer management has the highest cost per patient among all cancer types. Several molecular markers, especially members of the cell cycle regulation and apoptosis pathways, have been investigated. However, no individual marker has been prognostically powerful enough to change clinical management. The combined analysis of a panel of markers spanning different pathways is the most promising approach. We give an overview of the most important molecular markers functioning in crucial pathways and focus on their role in multimarker analysis.
Collapse
Affiliation(s)
- Marc Birkhahn
- Heilig Geist-Krankenhaus, Department of Urology, Cologne, Germany.
| | | | | |
Collapse
|
45
|
Aberrant gene promoter methylation in plasma cell dyscrasias. Exp Mol Pathol 2008; 84:256-61. [PMID: 18410922 DOI: 10.1016/j.yexmp.2008.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/18/2008] [Indexed: 12/31/2022]
Abstract
The aberrant methylation of promoter CpG island is known to be a major inactivation mechanism of tumour-related genes. To determine the clinicopathological significance of gene promoter methylation in monoclonal gammopathies, we analysed the methylation status of 6 tumour suppressor genes and their association with loss of gene function. Methylation status of the genes p14, p15, p16, hMLH1, MGMT, and DAPK was determined by methylation-specific PCR in 52 cases: 30 MM, 13 MGUS, and 9 plasmacytomas, comparing them with their protein expression by immunohistochemistry, and association between methylation status, protein expression, and clinical characteristics was assessed. The methylation frequencies were 50% for p16, 17% for p15, 10% for hMLH1, 23% for MGMT and 30% for DAPK in MM samples, and 38%, 15%, 8%, and 15% for p16, p15, MGMT and DAPK respectively in MGUS samples. In plasmacytomas samples we found methylation of p16 in 55%, p15 in 22%, MGMT in 67% and DAPK in 44%. hMLH1 was unmethylated in all cases of MGUS and plasmacytomas. Immunohistochemistry showed that gene methylation was closely associated with a loss of protein expression. Our study demonstrates that methylation-mediated silencing is a frequent event in monoclonal gammopathies: 83% of MM, 46% of MGUS and 77% of plasmacytomas have at least one gene methylated, affecting different molecular pathways involved in cell cycle, DNA repair and apoptosis. This high prevalence of aberrant promoter hypermethylation suggests that monoclonal gammopathies carry a CpG island methylator phenotype, therefore the development of new DNA demethylation agents may be a potential therapeutic use in this disease.
Collapse
|
46
|
Byun HM, Wong HL, Birnstein EA, Wolff EM, Liang G, Yang AS. Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res 2007; 67:10753-8. [PMID: 18006818 DOI: 10.1158/0008-5472.can-07-0329] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss of imprinting (LOI) is a common epigenetic event in cancer and may serve as an early biomarker in some cancers. To obtain a better understanding of LOI, we studied 41 bladder tumors and their adjacent normal bladder mucosa. We found 2/9 (22.2%) cases that displayed LOI of IGF2 and 2/16 (12.5%) that had LOI of H19, as determined by the evaluation of mRNA for biallelic expression. In addition, we examined allele-specific methylation of the differentially methylated regions (DMR) of IGF2 and H19 using a new allele-specific pyrosequencing assay. We found that DNA methylation changes were a common finding (21/30, 70%) in the DMR regions, but could not clearly link DNA methylation changes with LOI as measured by biallelic expression. LOI and allele-specific DNA methylation changes are present in bladder cancer; however, a better understanding of the biology of LOI and its relationship to DNA methylation changes is needed before its use as an epigenetic biomarker.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Division of Hematology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
47
|
Khouja MH, Baekelandt M, Nesland JM, Holm R. The clinical importance of Ki-67, p16, p14, and p57 expression in patients with advanced ovarian carcinoma. Int J Gynecol Pathol 2007; 26:418-25. [PMID: 17885492 DOI: 10.1097/pgp.0b013e31804216a0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study addressed the impact of p14, p16, p57, and Ki-67 in a large cohort of uniformly treated patients with stage III ovarian cancer in relation to other clinicopathologic variables and prognosis. We immunohistochemically studied 171 primary tumors from previously untreated patients with advanced ovarian carcinomas for expression of Ki-67, p16, p14, and p57. High protein levels of Ki-67 (>10% positive nuclei) were found in 144 cases (84%), p16 (>50% positive nuclei) in 53 cases (31%), p57 (>10% positive nuclei) in 41 cases (24%), and p14 (any positive nuclei) in 19 cases (11%). A correlation between high Ki-67 expression and presence of residual disease after primary surgery (P = 0.019), ascites (P = 0.006), higher International Federation of Gynecology and Obstetrics substage (P < 0.001), poor differentiation (P < 0.001), and higher Silverberg histopathologic grade (P < 0.0001) was seen. High expression of p16 correlated to poor differentiation (P = 0.033) and higher Silverberg histopathologic grade (P = 0.018). In univariate analysis, high expression of Ki-67 (P = 0.0001) and p16 (P = 0.005) was associated with poor survival. However, in multivariate analysis, only high expression of Ki-67 was significantly associated with shorter survival (P = 0.025). No correlations were seen between expression of p14 and p57 and clinicopathologic parameters. None of the factors studied was able to predict response to chemotherapy. Our results showed that Ki-67 represents an independent prognostic predictor in stage III ovarian cancer. We did not find p16, p14, and p57 to be useful as prognostic markers.
Collapse
Affiliation(s)
- M Haysam Khouja
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | | | | | | |
Collapse
|
48
|
Lee SM, Yim HW, Lee A, Park WC, Lee JS, Lee WC. Association between Promoter Hypermethylation of the p16INK4a and hTERT Genes and Their Protein Expressions in Human Breast Cancer. J Breast Cancer 2007. [DOI: 10.4048/jbc.2007.10.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Su Min Lee
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahwon Lee
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Chan Park
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Je Seung Lee
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Chul Lee
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
49
|
Zhang Z, Karam J, Frenkel E, Sagalowsky A, Hsieh JT. The application of epigenetic modifiers on the treatment of prostate and bladder cancer. Urol Oncol 2006; 24:152-60. [PMID: 16520279 DOI: 10.1016/j.urolonc.2005.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer and transitional cell carcinoma (TCC) of bladder are the 2 most common malignancies in the male adult urogenital system. Epigenetic gene silencing, particularly tumor suppressor genes, has become a new area of cancer research. Agents such as deoxyribonucleic acid methyltransferase inhibitors or histone deacetylase inhibitors are epigenetic modifiers that can restore gene expression and alter the malignant phenotype of cancer. They provide a new therapeutic avenue for prostate cancer and TCC. It is also likely that combination regimens using epigenetic modifiers with other classes of agents may have higher therapeutic efficacy for prostate cancer and TCC, especially metastatic and/or refractory cases. We review current knowledge of epigenetic event in prostate cancer and TCC, and discuss the possible clinical implications for these 2 diseases.
Collapse
Affiliation(s)
- Zhengwang Zhang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | | | | | | | | |
Collapse
|
50
|
Campan M, Weisenberger DJ, Laird PW. DNA Methylation Profiles of Female Steroid Hormone-Driven Human Malignancies. Curr Top Microbiol Immunol 2006; 310:141-78. [PMID: 16909910 DOI: 10.1007/3-540-31181-5_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor DNA contains valuable clues about the origin and pathogenesis of human cancers. Alterations in DNA methylation can lead to silencing of genes associated with distinct tumorigenic pathways. These pathway-specific DNA methylation changes help define tumor-specific DNA methylation profiles that can be used to further our understanding of tumor development, as well as provide tools for molecular diagnosis and early detection of cancer. Female sex hormones have been implicated in the etiology of several of the women's cancers including breast, endometrial, ovarian, and proximal colon cancers. We have reviewed the DNA methylation profiles of these cancers to determine whether the hormonal regulation of these cancers results in specific DNA methylation alterations. Although subsets of tumors in each of these four types of cancers were found to share some DNA methylation alterations, we did not find evidence for global hormone-specific DNA methylation alterations, suggesting that female sex hormones may participate in different tumorigenic pathways that are associated with distinct DNA methylation-based molecular signatures. One such pathway may include MLH1 methylation in the context of the CpG island methylator phenotype.
Collapse
Affiliation(s)
- M Campan
- Department of Surgery and Department of Biochemistry and Molecular Biology, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles 90089-9176, USA
| | | | | |
Collapse
|