1
|
Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proc Natl Acad Sci U S A 2019; 116:11010-11019. [PMID: 31097598 DOI: 10.1073/pnas.1817347116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous waves of cortical spreading depolarization (CSD) are induced in the setting of acute focal ischemia. CSD is linked to a sharp increase of extracellular K+ that induces a long-lasting suppression of neural activity. Furthermore, CSD induces secondary irreversible damage in the ischemic brain, suggesting that K+ homeostasis might constitute a therapeutic strategy in ischemic stroke. Here we report that adrenergic receptor (AdR) antagonism accelerates normalization of extracellular K+, resulting in faster recovery of neural activity after photothrombotic stroke. Remarkably, systemic adrenergic blockade before or after stroke facilitated functional motor recovery and reduced infarct volume, paralleling the preservation of the water channel aquaporin-4 in astrocytes. Our observations suggest that AdR blockers promote cerebrospinal fluid exchange and rapid extracellular K+ clearance, representing a potent potential intervention for acute stroke.
Collapse
|
2
|
Nissinen J, Andrade P, Natunen T, Hiltunen M, Malm T, Kanninen K, Soares JI, Shatillo O, Sallinen J, Ndode-Ekane XE, Pitkänen A. Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Res 2017; 136:18-34. [DOI: 10.1016/j.eplepsyres.2017.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
|
3
|
Mering S, Jolkkonen J. Proper housing conditions in experimental stroke studies-special emphasis on environmental enrichment. Front Neurosci 2015; 9:106. [PMID: 25870536 PMCID: PMC4378295 DOI: 10.3389/fnins.2015.00106] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment provides laboratory animals with novelty and extra space, allowing different forms of multisensory stimulation ranging from social grouping to enhanced motor activity. At the extreme end of the spectrum, one can have a super-enriched environment. Environmental enrichment is believed to result in improved cognitive and sensorimotor functions both in naïve rodents and in animals with brain lesions such as those occurring after a stroke. Robust behavioral effects in animals which have suffered a stroke are probably related not only to neuronal plasticity in the perilesional cortex but also in remote brain areas. There is emerging evidence to suggest that testing restorative therapies in an enriched environment can maximize treatment effects, e.g., the perilesional milieu seems to be more receptive to concomitant pharmacotherapy and/or cell therapy. This review provides an updated overview on the effect of an enriched environment in stroke animals from the practical points to be considered when planning experiments to the mechanisms explaining why combined therapies can contribute to behavioral improvement in a synergistic manner.
Collapse
Affiliation(s)
- Satu Mering
- Lab Animal Centre, University of Eastern Finland Kuopio, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
4
|
Hayward NMEA, Yanev P, Haapasalo A, Miettinen R, Hiltunen M, Gröhn O, Jolkkonen J. Chronic hyperperfusion and angiogenesis follow subacute hypoperfusion in the thalamus of rats with focal cerebral ischemia. J Cereb Blood Flow Metab 2011; 31:1119-32. [PMID: 21081957 PMCID: PMC3070972 DOI: 10.1038/jcbfm.2010.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral blood flow (CBF) is disrupted after focal ischemia in rats. We examined long-term hemodynamic and cerebrovascular changes in the rat thalamus after focal cerebral ischemia. Cerebral blood flow quantified by arterial spin labeling magnetic resonance imaging was decreased in the ipsilateral and contralateral thalamus 2 days after cerebral ischemia. Partial thalamic CBF recovery occurred by day 7, then the ipsilateral thalamus was chronically hyperperfused at 30 days and 3 months compared with its contralateral side. This contrasted with permanent hypoperfusion in the ipsilateral cortex. Angiogenesis was indicated by endothelial cell (RECA-1) immunohistochemistry that showed increased blood vessel branching in the ipsilateral thalamus at the end of the 3-month follow-up. Only transient thalamic IgG extravasation was observed, indicating that the blood-brain barrier was intact after day 2. Angiogenesis was preceded by transiently altered expression levels of cadherin family adhesion molecules, cadherin-7, protocadherin-1, and protocadherin-17. In conclusion, thalamic pathology after focal cerebral ischemia involved long-term hemodynamic changes and angiogenesis preceded by altered expression of vascular adhesion factors. Postischemic angiogenesis in the thalamus represents a novel type of remote plasticity, which may support removal of necrotic brain tissue and aid functional recovery.
Collapse
Affiliation(s)
- Nick M E A Hayward
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Prevention of epileptogenesis is an unmet need in medicine. During the last 3 years, however, several preclinical studies have demonstrated remarkable favorable effects of novel treatments on genetic and acquired epileptogenesis. These include the use of immunosuppressants and treatments that modify cellular adhesion, proliferation, and/or plasticity. In addition, the use of antiepileptic drugs in rats with genetic epilepsy or proconvulsants in acquired epilepsy models has provided somewhat unexpected favorable effects. This review summarizes these studies, and introduces some caveats when interpreting the data. In particular, the effect of genetic background, the severity of epileptogenic insult, the method and duration of seizure monitoring, and size of animal population are discussed. Furthermore, a novel scheme for defining epileptogenesis-related terms is presented.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Mäkinen S, van Groen T, Clarke J, Thornell A, Corbett D, Hiltunen M, Soininen H, Jolkkonen J. Coaccumulation of calcium and beta-amyloid in the thalamus after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2008; 28:263-8. [PMID: 17653130 DOI: 10.1038/sj.jcbfm.9600529] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient occlusion of the middle cerebral artery (MCAO) in rats leads to abnormal accumulation of beta-amyloid (Abeta) peptides in the thalamus. This study investigated the chemical composition of these deposits. Adult male human beta-amyloid precursor protein (APP) overexpressing (hAPP695) rats and their wild-type littermates were subjected to transient MCAO for 2 h or sham operation. After 26-week survival time, histological examination revealed an overlapping distribution pattern for rodent and human Abeta in the thalamus of hAPP695 rats subjected to MCAO. X-ray microanalysis showed that the deposits did not contain significant amount of iron, zinc, or copper typical to senile plaques. In contrast, the deposit both in hAPP695 and non-transgenic rats contained calcium and phosphorus in a ratio (1.28+/-0.15) characteristic to hydroxyapatites. Alizarin red staining confirmed that calcium coaccumulated in these Abeta deposits. It is suggested that APP expression is induced by ischemic insult in cortical neurons adjacent to infarct, which in turn is reflected as increased release of Abeta peptides by their corticothalamic axon endings. This together with insufficient clearance or atypical degradation of Abeta peptides lead to dysregulation of calcium homeostatis and coaccumulation in the thalamus.
Collapse
Affiliation(s)
- Susanna Mäkinen
- Department of Neurology, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pertovaara A, Haapalinna A, Sirviö J, Virtanen R. Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS DRUG REVIEWS 2006; 11:273-88. [PMID: 16389294 PMCID: PMC6741735 DOI: 10.1111/j.1527-3458.2005.tb00047.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atipamezole is an alpha2-adrenoceptor antagonist with an imidazole structure. Receptor binding studies indicate that its affinity for alpha2-adrenoceptors and its alpha2/alpha1 selectivity ratio are considerably higher than those of yohimbine, the prototype alpha2-adrenoceptor antagonist. Atipamezole is not selective for subtypes of alpha2-adrenoceptors. Unlike many other alpha2-adrenoceptor antagonists, it has negligible affinity for 5-HT1A and I2 binding sites. Atipamezole is rapidly absorbed and distributed from the periphery to the central nervous system. In humans, atipamezole at doses up to 30 mg/subject produced no cardiovascular or subjective side effects, while at a high dose (100 mg/subject) it produced subjective symptoms, such as motor restlessness, and an increase in blood pressure. Atipamezole rapidly reverses sedation/anesthesia induced by alpha2-adrenoceptor agonists. Due to this property, atipamezole is commonly used by veterinarians to awaken animals from sedation/anesthesia induced by alpha2-adrenoceptor agonists alone or in combination with various anesthetics. Atipamezole increased sexual activity in rats and monkeys. In animals with sustained nociception, atipamezole increased pain-related responses by blocking the noradrenergic feedback inhibition of pain. In tests assessing cognitive functions, atipamezole at low doses has beneficial effects on alertness, selective attention, planning, learning, and recall in experimental animals, but not necessarily on short-term working memory. At higher doses atipamezole impaired performance in tests of cognitive functions, probably due to noradrenergic overactivity. Recent experimental animal studies suggest that atipamezole might have beneficial effects in the recovery from brain damage and might potentiate the anti-Parkinsonian effects of dopaminergic drugs. In phase I studies atipamezole has been well tolerated by human subjects.
Collapse
Affiliation(s)
- Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
8
|
Riek-Burchardt M, Henrich-Noack P, Metz GA, Reymann KG. Detection of chronic sensorimotor impairments in the ladder rung walking task in rats with endothelin-1-induced mild focal ischemia. J Neurosci Methods 2004; 137:227-33. [PMID: 15262065 DOI: 10.1016/j.jneumeth.2004.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/17/2004] [Accepted: 02/18/2004] [Indexed: 11/20/2022]
Abstract
A comprehensive evaluation of the effects of neuroprotection, neurogenesis, and compensatory mechanisms on the outcome of ischemic insults requires assessment of morphological and functional parameters. Behavioural tests are essential when recording performance throughout the time course of an experiment and the results bear predictive value in preclinical animal models. The goal of this study was to establish a behavioural test procedure for a model of transient focal ischemia induced by injection of endothelin-1 (eMCAO) that results in relatively mild behavioural deficits. The test protocol used in the present study allows evaluation of quantitative and qualitative impairments in skilled motor performance and is sensitive to detect chronic deficits at chronic post-ischemic time intervals. The ladder rung walking task [J. Neurosci. Methods 115 (2002) 169] is a motor test that assesses skilled walking and measures both forelimb and hindlimb placing, stepping and inter-limb co-ordination. In this study we tested the effect of two different technical variants of endothelin-1 application on infarct volume and motor skills (1) application via pre-implanted guiding cannula in awake animals and (2) via direct injection under halothane anaesthesia. We showed that the ladder rung walking task is sensitive in the assessment of loss of fine motor function after induction of relatively small lesions. In animals with implanted cannulas we found a smaller infarct area and an increase in placement errors prior to ischemia animals with eMCAO under anaesthesia showed a long lasting impairment of the contralateral forelimb up to 4 weeks post-eMCAO.
Collapse
Affiliation(s)
- Monika Riek-Burchardt
- Project Group Neuropharmacology, Leibniz-Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | | | | | | |
Collapse
|
9
|
Karhunen H, Pitkänen A, Virtanen T, Gureviciene I, Pussinen R, Ylinen A, Sivenius J, Nissinen J, Jolkkonen J. Long-term functional consequences of transient occlusion of the middle cerebral artery in rats: a 1-year follow-up of the development of epileptogenesis and memory impairment in relation to sensorimotor deficits. Epilepsy Res 2003; 54:1-10. [PMID: 12742590 DOI: 10.1016/s0920-1211(03)00034-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Post-stroke seizures occur in 5-20% of patients. Modeling of stroke-induced seizures in animals provides a useful tool for investigating the molecular basis of epileptogenesis and for developing therapies for stroke patients at increased risk for epileptogenesis. The questions addressed in the study were: (1) Do rats develop spontaneous seizures after transient occlusion of the middle cerebral artery (MCAO)? (2) Is epileptogenesis associated with impaired hippocampus-dependent spatial learning and memory? (3) Are the functional abnormalities linked to axonal plasticity in the dentate gyrus? (4) Does the sensorimotor impairment induced by MCAO predict the risk of epileptogenesis? Adult male Sprague-Dawley rats were subjected to MCAO for 120 min. Development of spontaneous seizures was monitored by 1 week of continuous video-electroencephalographic (EEG) recordings at 3, 7, and 12 months after MCAO. Spontaneous seizures were not detected during 1-year follow-up in ischemic rats. Animals were, however, impaired in the spatial memory task (P<0.001), which was not associated with altered hippocampal LTP or abnormal mossy fiber sprouting (Timm staining). Animals also had a long-lasting sensorimotor deficit (P<0.05). The present study indicates that MCAO causes long-lasting sensorimotor and spatial memory impairment, but does not induce epileptogenesis or spontaneous seizures.
Collapse
Affiliation(s)
- Heli Karhunen
- Department of Neuroscience and Neurology and Al Virtanen Institute, University of Kuopio, P.O. Box 1627, Kuopio 70211, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Karhunen H, Virtanen T, Schallert T, Sivenius J, Jolkkonen J. Forelimb use after focal cerebral ischemia in rats treated with an alpha 2-adrenoceptor antagonist. Pharmacol Biochem Behav 2003; 74:663-9. [PMID: 12543233 DOI: 10.1016/s0091-3057(02)01053-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atipamezole, a selective alpha(2)-adrenoceptor antagonist, enhances recovery of sensorimotor function after focal cerebral ischemia in rats. The aim of the present study was to further characterize the effects of atipamezole treatment combined with enriched-environment housing in ischemic rats by evaluating spontaneous exploratory activity in the cylinder test. The right middle cerebral artery (MCA) of rats was occluded for 120 min using the intraluminal filament method. Atipamezole (1.0 mg/kg) or 0.9% NaCl was administered on postoperative days 2 through 11 and 15, 19, and 23. Spontaneous behavior of rats in a transparent cylinder was videotaped before, and 6 and 23 days after surgery 20 min after drug administration. Constant asymmetry in forelimb use was observed in the cylinder test on postoperative days 6 and 23. Ischemic rats used the impaired forelimbs (contralateral to lesion) during lateral exploration less than did sham-operated rats (P<.001). Ischemic rats also preferred to turn contralateral to the lesion (P<.05). Atipamezole increased the simultaneous, but not independent, use of the forelimbs during lateral exploration (P<.05). The data suggest that noradrenergic manipulation does not significantly enhance recovery in a test that does not depend on practice following focal cerebral ischemia.
Collapse
Affiliation(s)
- Heli Karhunen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, Harjulante 1, 70211, Kuopio, Finland
| | | | | | | | | |
Collapse
|
11
|
Jolkkonen J, Gallagher NP, Zilles K, Sivenius J. Behavioral deficits and recovery following transient focal cerebral ischemia in rats: glutamatergic and GABAergic receptor densities. Behav Brain Res 2003; 138:187-200. [PMID: 12527449 DOI: 10.1016/s0166-4328(02)00241-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurobiologic mechanisms underlying the recovery process following stroke are poorly understood. The present study investigated glutamatergic and gamma-amino butyric acid (GABA)-ergic receptor densities following experimental stroke in rats exposed to different environmental housing or pharmacologic interventions. About 2 days after transient (120 min) middle cerebral artery (MCA) occlusion, the rats were singly housed in standard cages or were moved to an enriched environment and treated for 10 days with either 0.9% NaCl or with the alpha(2)-adrenoceptor antagonist, atipamezole (1.0 mg/kg, s.c.). The limb-placing, foot-slip, and water-maze tests were used to assess behavioral deficits and recovery following ischemia. The rats were decapitated on day 25 after the operation and their brains were processed for [3H]MK-801, [3H]D,L,-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), [3H]kainate, and [3H]muscimol autoradiography. Receptor binding site densities were different between sham-operated rats and ischemic rats only in the lesion core and lateral ventroposterior thalamic nucleus. Ischemic rats housed in an enriched environment and treated with atipamezole had better performance in the limb-placing test. The deficit in the water-maze test was most pronounced in ischemic rats housed in standard cages. There were a number of correlations between the behavioral data and receptor binding densities in ischemic rats. For example, recovery in the limb-placing test correlated with [3H]AMPA receptor binding sites in the contralateral frontal cortex (r=0.616, P<0.05), hindlimb cortex (r=0.649, P<0.05), and parietal cortex (r=0.674, P<0.05) in ischemic rats housed in an enriched environment. There were similar correlations between limb-placing recovery and [3H]kainate binding sites in the contralateral cortices in ischemic rats housed in standard cages. In addition, there were particularly strong clustered correlations between swimming speed in the water-maze test and [3H]AMPA receptor binding sites in the hippocampal subregions in the ischemic rats housed in an enriched environment. The present results suggest that transient focal cerebral ischemia does not induce significant long-term changes in glutamatergic and GABAergic receptors in areas remote from the infarct area. The correlational data, however, suggest an important role for the contralateral cortex in the behavioral outcome and maintenance of the recovered state of ischemic rats, depending on housing conditions. In addition, attenuation of spatial learning deficits observed in ischemic rats housed in an enriched environment might be due to an increase in the swimming speed through hippocampal AMPA receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Jukka Jolkkonen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, Harjulantie 1, 70211 Kuopio, Finland.
| | | | | | | |
Collapse
|