1
|
Marshall AH, Hanson MA, Boyle DJ, Nagarajan D, Bibi N, Fitzgerald J, Gaitten E, Kokiko-Cochran ON, Gu B, Wester JC. Arid1b haploinsufficiency in pyramidal neurons causes cellular and circuit changes in neocortex but is not sufficient to produce behavioral or seizure phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597344. [PMID: 38895205 PMCID: PMC11185765 DOI: 10.1101/2024.06.04.597344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Arid1b is a high confidence risk gene for autism spectrum disorder that encodes a subunit of a chromatin remodeling complex expressed in neuronal progenitors. Haploinsufficiency causes a broad range of social, behavioral, and intellectual disability phenotypes, including Coffin-Siris syndrome. Recent work using transgenic mouse models suggests pathology is due to deficits in proliferation, survival, and synaptic development of cortical neurons. However, there is conflicting evidence regarding the relative roles of excitatory projection neurons and inhibitory interneurons in generating abnormal cognitive and behavioral phenotypes. Here, we conditionally knocked out either one or both copies of Arid1b from excitatory projection neuron progenitors and systematically investigated the effects on intrinsic membrane properties, synaptic physiology, social behavior, and seizure susceptibility. We found that disrupting Arid1b expression in excitatory neurons alters their membrane properties, including hyperpolarizing action potential threshold; however, these changes depend on neuronal subtype. Using paired whole-cell recordings, we found increased synaptic connectivity rate between projection neurons. Furthermore, we found reduced strength of excitatory synapses to parvalbumin (PV)-expression inhibitory interneurons. These data suggest an increase in the ratio of excitation to inhibition. However, the strength of inhibitory synapses from PV interneurons to excitatory neurons was enhanced, which may rebalance this ratio. Indeed, Arid1b haploinsufficiency in projection neurons was insufficient to cause social deficits and seizure phenotypes observed in a preclinical germline haploinsufficient mouse model. Our data suggest that while excitatory projection neurons likely contribute to autistic phenotypes, pathology in these cells is not the primary cause.
Collapse
|
2
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum S, Razak KA, Gibson JR, Huber KM. Female specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and Estrogen Receptor α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.10.552857. [PMID: 37609208 PMCID: PMC10441407 DOI: 10.1101/2023.08.10.552857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.
Collapse
|
4
|
Friedman L, Kahen B, Velíšek L, Velíšková J. Sex differences in behavioral pathology induced by subconvulsive stimulation during early postnatal life are overcome by epileptic activity in the pre-juvenile weanling period. Brain Res 2022; 1783:147849. [DOI: 10.1016/j.brainres.2022.147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
|
5
|
Judson MC, Shyng C, Simon JM, Davis CR, Punt AM, Salmon MT, Miller NW, Ritola KD, Elgersma Y, Amaral DG, Gray SJ, Philpot BD. Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice. JCI Insight 2021; 6:144712. [PMID: 34676830 PMCID: PMC8564914 DOI: 10.1172/jci.insight.144712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Loss of the maternal UBE3A allele causes Angelman syndrome (AS), a debilitating neurodevelopmental disorder. Here, we devised an AS treatment strategy based on reinstating dual-isoform expression of human UBE3A (hUBE3A) in the developing brain. Kozak sequence engineering of our codon-optimized vector (hUBE3Aopt) enabled translation of both short and long hUBE3A protein isoforms at a near-endogenous 3:1 (short/long) ratio, a feature that could help to support optimal therapeutic outcomes. To model widespread brain delivery and early postnatal onset of hUBE3A expression, we packaged the hUBE3Aopt vector into PHP.B capsids and performed intracerebroventricular injections in neonates. This treatment significantly improved motor learning and innate behaviors in AS mice, and it rendered them resilient to epileptogenesis and associated hippocampal neuropathologies induced by seizure kindling. hUBE3A overexpression occurred frequently in the hippocampus but was uncommon in the neocortex and other major brain structures; furthermore, it did not correlate with behavioral performance. Our results demonstrate the feasibility, tolerability, and therapeutic potential for dual-isoform hUBE3A gene transfer in the treatment of AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Neuroscience Center.,Department of Cell Biology and Physiology.,Carolina Institute for Developmental Disabilities
| | - Charles Shyng
- Carolina Institute for Developmental Disabilities.,Gene Therapy Center, and
| | - Jeremy M Simon
- Neuroscience Center.,Carolina Institute for Developmental Disabilities.,Department of Genetics, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | | | - A Mattijs Punt
- Department of Clinical Genetics and.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Noah W Miller
- Neuroscience Center.,Department of Cell Biology and Physiology
| | - Kimberly D Ritola
- Neuroscience Center.,Department of Pharmacology, UNC, Chapel Hill, North Carolina, USA.,Scientific Operations Manager-Viral Tools, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Ype Elgersma
- Department of Clinical Genetics and.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, and.,California National Primate Research Center, University of California, Davis, California, USA
| | - Steven J Gray
- Gene Therapy Center, and.,Department of Pediatrics and.,Eugene McDermott Center for Human Growth and Development, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin D Philpot
- Neuroscience Center.,Department of Cell Biology and Physiology.,Carolina Institute for Developmental Disabilities
| |
Collapse
|
6
|
Rakotomamonjy J, Sabetfakhri NP, McDermott SL, Guemez-Gamboa A. Characterization of seizure susceptibility in Pcdh19 mice. Epilepsia 2020; 61:2313-2320. [PMID: 32944953 DOI: 10.1111/epi.16675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE PCDH19-related epilepsy is characterized by a distinctive pattern of X-linked inheritance, where heterozygous females exhibit seizures and hemizygous males are asymptomatic. A cellular interference mechanism resulting from the presence of both wild-type and mutant PCDH19 neurons in heterozygous patients or mosaic carriers of PCDH19 variants has been hypothesized. We aim to investigate seizure susceptibility and progression in the Pchd19 mouse model. METHODS We assessed seizure susceptibility and progression in the Pcdh19 mouse model using three acute seizure induction paradigms. We first induced focal, clonic seizures using the 6-Hz psychomotor test. Mice were stimulated with increasing current intensities and graded according to a modified Racine scale. We next induced generalized seizures using flurothyl or pentylenetetrazol (PTZ), both γ-aminobutyric acid type A receptor function inhibitors, and recorded latencies to myoclonic and generalized tonic-clonic seizures. RESULTS Pcdh19 knockout and heterozygous females displayed increased seizure susceptibility across all current intensities in the 6-Hz psychomotor test, and increased severity overall. They also exhibited shorter latencies to generalized seizures following flurothyl, but not PTZ, seizure induction. Hemizygous males showed comparable seizure incidence and severity to their wild-type male littermates across all paradigms tested. SIGNIFICANCE The heightened susceptibility observed in Pcdh19 knockout females suggests additional mechanisms other than cellular interference are at play in PCDH19-related epilepsy. Further experiments are needed to understand the variability in seizure susceptibility so that this model can be best utilized toward development of future therapeutic strategies for PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Jennifer Rakotomamonjy
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Niki P Sabetfakhri
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sean L McDermott
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Guemez-Gamboa
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Abstract
The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing. These modulators are important for the study of receptor activation and regulation and have found clinical interest as potential analgesics and anticonvulsants. High-resolution structures of the receptor have become available recently, adding to our understanding of structure-function relationships and revealing agonistic, inhibitory, and modulatory sites on the receptor protein. This Review presents an overview of compounds that activate, inhibit, or modulate glycine receptor function in vitro and in vivo.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|
8
|
Uezu A, Hisey E, Kobayashi Y, Gao Y, Bradshaw TWA, Devlin P, Rodriguiz R, Tata PR, Soderling S. Essential role for InSyn1 in dystroglycan complex integrity and cognitive behaviors in mice. eLife 2019; 8:e50712. [PMID: 31829939 PMCID: PMC6944460 DOI: 10.7554/elife.50712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior. Association of InSyn1 with DGC subunits is required for InSyn1 synaptic localization. InSyn1 null neurons also show a significant reduction in DGC and GABA receptor distribution as well as abnormal neuronal network activity. Moreover, InSyn1 null mice exhibit elevated neuronal firing patterns in the hippocampus and deficits in fear conditioning memory. Our results support the dysregulation of the DGC at inhibitory synapses and altered neuronal network activity and specific cognitive tasks via loss of a novel component, InSyn1.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Erin Hisey
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | | | - Yudong Gao
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Patrick Devlin
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Ramona Rodriguiz
- Department of Psychiatry and Behavioral SciencesDuke University Medical SchoolDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core FacilityDuke University Medical SchoolDurhamUnited States
| | | | - Scott Soderling
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
- Department of NeurobiologyDuke University Medical SchoolDurhamUnited States
| |
Collapse
|
9
|
Eight Flurothyl-Induced Generalized Seizures Lead to the Rapid Evolution of Spontaneous Seizures in Mice: A Model of Epileptogenesis with Seizure Remission. J Neurosci 2017; 36:7485-96. [PMID: 27413158 DOI: 10.1523/jneurosci.3232-14.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 05/31/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The occurrence of recurrent, unprovoked seizures is the hallmark of human epilepsy. Currently, only two-thirds of this patient population has adequate seizure control. New epilepsy models provide the potential for not only understanding the development of spontaneous seizures, but also for testing new strategies to treat this disorder. Here, we characterize a primary generalized seizure model of epilepsy following repeated exposure to the GABAA receptor antagonist, flurothyl, in which mice develop spontaneous seizures that remit within 1 month. In this model, we expose C57BL/6J mice to flurothyl until they experience a generalized seizure. Each of these generalized seizures typically lasts <30 s. We induce one seizure per day for 8 d followed by 24 h video-electroencephalographic recordings. Within 1 d following the last of eight flurothyl-induced seizures, ∼50% of mice have spontaneous seizures. Ninety-five percent of mice tested have seizures within the first week of the recording period. Of the spontaneous seizures recorded, the majority are generalized clonic seizures, with the remaining 7-12% comprising generalized clonic seizures that transition into brainstem seizures. Over the course of an 8 week recording period, spontaneous seizure episodes remit after ∼4 weeks. Overall, the repeated flurothyl paradigm is a model of epileptogenesis with spontaneous seizures that remit. This model provides an additional tool in our armamentarium for understanding the mechanisms underlying epileptogenesis and may provide insights into why spontaneous seizures remit without anticonvulsant treatment. Elucidating these processes could lead to the development of new epilepsy therapeutics. SIGNIFICANCE STATEMENT Epilepsy is a chronic disorder characterized by the occurrence of recurrent, unprovoked seizures in which the individual seizure-ictal events are self-limiting. Remission of recurrent, unprovoked seizures can be achieved in two-thirds of cases by treatment with anticonvulsant medication, surgical resection, and/or nerve/brain electrode stimulation. However, there are examples in humans of epilepsy with recurrent, unprovoked seizures remitting without any intervention. While elucidating how recurrent, unprovoked seizures develop is critical for understanding epileptogenesis, an understanding of how and why recurrent, unprovoked seizures remit may further our understanding and treatment of epilepsy. Here, we describe a new model of recurrent, unprovoked spontaneous seizures in which the occurrence of spontaneous seizures naturally remits over time without any therapeutic intervention.
Collapse
|
10
|
Abstract
Development of spontaneous seizures is the hallmark of human epilepsy. There is a critical need for new epilepsy models in order to elucidate mechanisms responsible for leading to the development of spontaneous seizures and for testing new anti-epileptic compounds. Moreover, rodent models of epilepsy have clearly demonstrated that there are two independent seizure systems in the brain: 1) the forebrain seizure network required for the expression of clonic seizures mediated by forebrain neurocircuitry, and 2) the brainstem seizure network necessary for the expression of brainstem or tonic seizures mediated by brainstem neurocircuitry. In seizure naïve animals, these two systems are separate, but developing models that can explore the intersection of the forebrain and brainstem seizure systems or for elucidating mechanisms responsible for bringing these two seizure systems together may aid in our understanding of: 1) how seizures can become more complex overtime, and 2) sudden unexpected death in epilepsy (SUDEP) since propagation of seizure discharge from the forebrain seizure system to the brainstem seizure system may have an important role in SUDEP because many cardiorespiratory systems are localized in the brainstem. The repeated flurothyl seizure model of epileptogenesis, as described here, may aid in providing insight into these important epilepsy issues in addition to understanding how spontaneous seizures develop.
Collapse
Affiliation(s)
- Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
11
|
Judson MC, Wallace ML, Sidorov MS, Burette AC, Gu B, van Woerden GM, King IF, Han JE, Zylka MJ, Elgersma Y, Weinberg RJ, Philpot BD. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 2016; 90:56-69. [PMID: 27021170 DOI: 10.1016/j.neuron.2016.02.040] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/17/2016] [Accepted: 02/24/2016] [Indexed: 11/19/2022]
Abstract
Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S Sidorov
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Ian F King
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ji Eun Han
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands; ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Jayakar SS, Zhou X, Savechenkov PY, Chiara DC, Desai R, Bruzik KS, Miller KW, Cohen JB. Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β- Interface. J Biol Chem 2015; 290:23432-46. [PMID: 26229099 PMCID: PMC4645599 DOI: 10.1074/jbc.m115.672006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 01/24/2023] Open
Abstract
In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343-19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ(+)-β(-) subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β(+)-α(-) subunit interfaces. GABA inhibits S-[(3)H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2-15') in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[(3)H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ(+)-β(-) site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators.
Collapse
Affiliation(s)
| | - Xiaojuan Zhou
- the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - Pavel Y Savechenkov
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Rooma Desai
- the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - Karol S Bruzik
- the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Keith W Miller
- the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
13
|
Tolnai GL, Székely A, Makó Z, Gáti T, Daru J, Bihari T, Stirling A, Novák Z. Efficient direct 2,2,2-trifluoroethylation of indoles via C–H functionalization. Chem Commun (Camb) 2015; 51:4488-91. [DOI: 10.1039/c5cc00519a] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metal free direct trifluoroethylation of unprotected indoles at position 3 via C–H functionalization is presented: straightforward synthesis and DFT studies.
Collapse
Affiliation(s)
- Gergely L. Tolnai
- MTA-ELTE “Lendület” Catalysis and Organic Synthesis Research Group
- Institute of Chemistry
- Eötvös University
- Faculty of Science
- Budapest
| | - Anna Székely
- MTA-ELTE “Lendület” Catalysis and Organic Synthesis Research Group
- Institute of Chemistry
- Eötvös University
- Faculty of Science
- Budapest
| | - Zita Makó
- MTA-ELTE “Lendület” Catalysis and Organic Synthesis Research Group
- Institute of Chemistry
- Eötvös University
- Faculty of Science
- Budapest
| | - Tamás Gáti
- Servier Research Institute of Medicinal Chemistry
- H-1031 Budapest
- Hungary
| | - János Daru
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences
- Department of Theoretical Chemistry
- 1117 Budapest
- Hungary
| | - Tamás Bihari
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences
- Department of Theoretical Chemistry
- 1117 Budapest
- Hungary
| | - András Stirling
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences
- Department of Theoretical Chemistry
- 1117 Budapest
- Hungary
| | - Zoltán Novák
- MTA-ELTE “Lendület” Catalysis and Organic Synthesis Research Group
- Institute of Chemistry
- Eötvös University
- Faculty of Science
- Budapest
| |
Collapse
|
14
|
Akman O, Moshé SL, Galanopoulou AS. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital. CNS Neurosci Ther 2014; 21:181-92. [PMID: 25311088 DOI: 10.1111/cns.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
AIMS Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid-induced SE (3KA-SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event. METHODS 3KA-SE or maternal separation was induced on postnatal days (PN) 4-6 or 14-16. Rats were tested on Barnes maze (PN16-19), or lithium-pilocarpine SE (PN19) or flurothyl seizures (PN32). The anticonvulsant effects of phenobarbital (20 or 40 mg/kg/rat, intraperitoneally) pretreatment were tested on flurothyl seizures. FluoroJadeB staining assessed hippocampal injury. RESULTS 3KA-SE or separation on PN4-6 caused more transient learning delays in males and did not alter lithium-pilocarpine SE latencies, but aggravated its outcomes in females. Anticonvulsant effects of phenobarbital were preserved and potentiated in specific groups depending on sex, type, and age at EL event. CONCLUSIONS Early life 3KA-SE and maternal separation cause more but transient cognitive deficits in males but aggravate the consequences of subsequent lithium-pilocarpine SE in females. In contrast, on flurothyl seizures, EL events showed either beneficial or no effect, depending on gender, type, and age at EL events.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | | | | |
Collapse
|
15
|
Mareš J, Stopka P, Nohejlová K, Rokyta R. Oxidative stress induced by epileptic seizure and its attenuation by melatonin. Physiol Res 2014; 62:S67-74. [PMID: 24329705 DOI: 10.33549/physiolres.932576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An epileptic seizure and postictal period in addition to well-known features are also characterized by massive consumption of energy. This is thought to lead to oxidative stress and increased generation of free radicals, which is reflected by increased levels of oxidative products. Our previous work described the neuroprotective effects of melatonin in preventing cognitive worsening after a single epileptic seizure. This work was aimed on direct measurement of free radicals in brain tissue using the EPR method 1, 15 and 60 minutes after seizure. The measurement was performed in adult male Wistar rats at the mentioned intervals after a single tonic-clonic seizure induced by flurothyl. In comparison to control animals there was a significant increase in hydroxyl and nitroxyl radicals 60 minutes after the seizure. The levels of hydroxyl radicals were significantly lower in animals that received melatonin 60 minutes before seizure induction compared to animals without preventive treatment. Therefore, melatonin affected the generation of the measured free radicals differently. An important finding was the delayed increase in free radicals after a single seizure in the later phases of recovery.
Collapse
Affiliation(s)
- J Mareš
- Department of Normal Pathological and Clinical Physiology, Prague, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, Ghestem A, Nesa MP, Bassot E, Szabó E, Baqi Y, Müller CE, Tomé AR, Ivanov A, Isbrandt D, Zilberter Y, Cunha RA, Esclapez M, Bernard C. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl Med 2014; 5:197ra104. [PMID: 23926202 DOI: 10.1126/scitranslmed.3006258] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of certain substances during pregnancy can interfere with brain development, leading to deleterious long-term neurological and cognitive impairments in offspring. To test whether modulators of adenosine receptors affect neural development, we exposed mouse dams to a subtype-selective adenosine type 2A receptor (A2AR) antagonist or to caffeine, a naturally occurring adenosine receptor antagonist, during pregnancy and lactation. We observed delayed migration and insertion of γ-aminobutyric acid (GABA) neurons into the hippocampal circuitry during the first postnatal week in offspring of dams treated with the A2AR antagonist or caffeine. This was associated with increased neuronal network excitability and increased susceptibility to seizures in response to a seizure-inducing agent. Adult offspring of mouse dams exposed to A2AR antagonists during pregnancy and lactation displayed loss of hippocampal GABA neurons and some cognitive deficits. These results demonstrate that exposure to A2AR antagonists including caffeine during pregnancy and lactation in rodents may have adverse effects on the neural development of their offspring.
Collapse
Affiliation(s)
- Carla G Silva
- Aix Marseille Université, INS, 13005 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Repetitive convulsant-induced seizures reduce the number but not precision of hippocampal place cells. J Neurosci 2012; 32:4163-78. [PMID: 22442080 DOI: 10.1523/jneurosci.4900-11.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive one-per-day seizures induced in otherwise normal rats by the volatile convulsant flurothyl decrease the accuracy of locating a hidden goal without changing the mean location of goal selection. We now show that an 8-d series of such seizures degrades the spatial signal carried by the firing of hippocampal pyramidal cells and specifically reduces the information conveyed by the place cell subset of pyramidal cells. This degradation and a concomitant slowing of the hippocampal theta rhythm occur over time courses parallel to the development of the behavioral deficit and plausibly account for the impairment. The details of how pyramidal cell discharge weakens are, however, unexpected. Rather than a reduction in the precision of location-specific firing distributed evenly over all place cells, the number of place cells decreases with seizure number, although the remaining place cells remain quite intact. Thus, with serial seizures there is a cell-specific conversion of robust place cells to sporadically firing (<0.1 spike/s) "low-rate" cells as opposed to gradual loss of place cell resolution. This transformation occurs in the absence of significant changes in the discharge rate of hippocampal interneurons, suggesting that the decline in the number of place cells is not a simple matter of increased inhibitory tone. The cumulative transformation of place cells to low-rate cells by repetitive seizures may reflect a homeostatic, negative-feedback process.
Collapse
|
18
|
Mareš J, Pometlová M, Deykun K, Krýsl D, Rokyta R. An isolated epileptic seizure elicits learning impairment which could be prevented by melatonin. Epilepsy Behav 2012; 23:199-204. [PMID: 22341963 DOI: 10.1016/j.yebeh.2011.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/19/2011] [Accepted: 11/25/2011] [Indexed: 10/28/2022]
Abstract
We tested the relation between a single short tonic-clonic seizure elicited by flurothyl vapors and changes of learning in Morris water maze (MWM) in Wistar rats. Oxidative stress usually accompanies seizures. Large melatonin doses were applied immediately before and after seizures to test consequences on learning impairment. One hour of hypobaric hypoxia (8000 m) three days prior to the seizure served as an activator of intrinsic antioxidant systems. Learning in MWM (7 days) started 24 h after seizures. Following seizures, latencies in MWM were longer than in controls and were shortened by hypoxia and preventive melatonin application. Melatonin was also applied before hypoxia to influence free radical (FR) production and intrinsic antioxidant activation. Some behavioral characteristics were changed and preconditioning effect of hypoxia was reduced. Melatonin after seizure (150 s and 6 h) had negligible effect. Results allow us to hypothesize about the role of FR and the beneficial effect of melatonin on the behavioral consequences of seizures.
Collapse
Affiliation(s)
- Jan Mareš
- Charles University in Prague, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Czech Republic.
| | | | | | | | | |
Collapse
|
19
|
Experimental models of seizures and epilepsies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:57-82. [PMID: 22137429 DOI: 10.1016/b978-0-12-394596-9.00003-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epilepsy is one of the most common neurological conditions that affect people of all ages. Epilepsy is characterized by occurrence of spontaneous recurrent seizures. Currently available drugs are ineffective in controlling seizures in approximately one-third of patients with epilepsy. Moreover, these drugs are associated with adverse effects, and none of them are effective in preventing development of epilepsy following an insult or injury. To develop an effective therapeutic strategy that can interfere with the process of development of epilepsy (epileptogenesis), it is crucial to study the changes that occur in the brain after an injury and before epilepsy develops. It is not possible to determine these changes in human tissue for obvious ethical reasons. Over the years, experimental models of epilepsies have contributed immensely in improving our understanding of mechanism of epileptogenesis as well as of seizure generation. There are many models that replicate at least some of the characteristics of human epilepsy. Each model has its advantages and disadvantages, and the investigator should be aware of this before selecting a specific model for his/her studies. Availability of a good animal model is a key to the development of an effective treatment. Unfortunately, there are many epilepsy syndromes, specifically pediatric, which still lack a valid animal model. It is vital that more research is done to develop animal models for such syndromes.
Collapse
|
20
|
Krasowski MD, Hopfinger AJ. The discovery of new anesthetics by targeting GABAAreceptors. Expert Opin Drug Discov 2011; 6:1187-201. [DOI: 10.1517/17460441.2011.627324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Cruz SL. The latest evidence in the neuroscience of solvent misuse: an article written for service providers. Subst Use Misuse 2011; 46 Suppl 1:62-7. [PMID: 21609148 DOI: 10.3109/10826084.2011.580215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work reviews preclinical and clinical studies published during the past two decades on the cellular and behavioral effects of commonly misused solvents. In animals, acute solvent exposure produces motor impairment and antidepressant- and anxiolytic-like effects. Human intoxication from misusing solvents is similar to that of ethanol; however, hallucinations and sudden sniffing death may occur at high solvent concentrations. Among chronic misusers, there is evidence of impaired memory, increased prevalence of psychiatric disorders, and neurological damage. Solvents facilitate inhibitory neurotransmission and block excitatory mechanisms. Toluene, in particular, increases brain dopamine levels and its effects occur at concentrations that do not dissolve cell membranes; therefore, neuronal damage is not an immediate, unavoidable consequence of solvent misuse.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, Mexico DF, Mexico.
| |
Collapse
|
22
|
Ganaxolone suppression of behavioral and electrographic seizures in the mouse amygdala kindling model. Epilepsy Res 2010; 89:254-60. [PMID: 20172694 DOI: 10.1016/j.eplepsyres.2010.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/05/2010] [Accepted: 01/16/2010] [Indexed: 11/23/2022]
Abstract
Ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a synthetic analog of the endogenous neurosteroid allopregnanolone and a positive allosteric modulator of GABAA receptors, may represent a new treatment approach for epilepsy. Here we demonstrate that pretreatment with ganaxolone (1.25-20 mg/kg, s.c.) causes a dose-dependent suppression of behavioral and electrographic seizures in fully amygdala-kindled female mice, with nearly complete seizure protection at the highest dose tested. The ED50 for suppression of behavioral seizures was 6.6 mg/kg. The seizure suppression produced by ganaxolone was comparable to that of clonazepam (ED50, 0.1 mg/kg, s.c.). To the extent that amygdala kindling represents a model of mesial temporal lobe epilepsy, this study supports the utility of ganaxolone in the treatment of patients with temporal lobe seizures.
Collapse
|
23
|
Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABA(A) receptors. J Neurosci 2008; 28:1557-67. [PMID: 18272677 DOI: 10.1523/jneurosci.5180-07.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Early in development, the depolarizing GABA(A)ergic signaling is needed for normal neuronal differentiation. It is shown here that hyperpolarizing reversal potentials of GABA(A)ergic postsynaptic currents (E(GABA)) appear earlier in female than in male rat CA1 pyramidal neurons because of increased potassium chloride cotransporter 2 (KCC2) expression and decreased bumetanide-sensitive chloride transport in females. Three episodes of neonatal kainic acid-induced status epilepticus (3KA-SE), each elicited at postnatal days 4 (P4)-P6, reverse the direction of GABA(A)ergic responses in both sexes. In males, 3KA-SE trigger a premature appearance of hyperpolarizing GABA(A)ergic signaling at P9, instead of P14. This is driven by an increase in KCC2 expression and decrease in bumetanide-sensitive chloride cotransport. In 3KA-SE females, E(GABA) transiently becomes depolarizing at P8-P13 because of increase in the activity of a bumetanide-sensitive NKCC1 (sodium potassium chloride cotransporter 1)-like chloride cotransporter. However, females regain their hyperpolarizing GABA(A)ergic signaling at P14 and do not manifest spontaneous seizures in adulthood. In maternally separated stressed controls, a hyperpolarizing shift in E(GABA) was observed in both sexes, associated with decreased bumetanide-sensitive chloride cotransport, whereas KCC2 immunoreactivity was increased in males only. GABA(A) receptor blockade at the time of 3KA-SE or maternal separation reversed their effects on E(GABA). These data suggest that the direction of GABA(A)-receptor signaling may be a determining factor for the age and sex-specific effects of prolonged seizures in the hippocampus, because they relate to normal brain development and possibly epileptogenesis. These effects differ from the consequences of severe stress.
Collapse
|
24
|
Bowen SE, Batis JC, Paez-Martinez N, Cruz SL. The last decade of solvent research in animal models of abuse: mechanistic and behavioral studies. Neurotoxicol Teratol 2006; 28:636-47. [PMID: 17064879 DOI: 10.1016/j.ntt.2006.09.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/08/2006] [Accepted: 09/09/2006] [Indexed: 11/20/2022]
Abstract
The abuse of volatile organic solvents (inhalants) leads to diverse sequelae at levels ranging from the cell to the whole organism. This paper reviews findings from the last 10 years of animal models investigating the behavioral and mechanistic effects of solvent abuse. In research with animal models of inhalant abuse, NMDA, GABA(A), glycine, nicotine, and 5HT(3) receptors appear to be important targets of action for several abused solvents with emerging evidence suggesting that other receptor subtypes and nerve membrane ion channels may be involved as well. The behavioral effects vary in magnitude and duration among the solvents investigated. The behavioral effects of acute and chronic inhalant abuse include motor impairment, alterations in spontaneous motor activity, anticonvulsant effects, anxiolytic effects, sensory effects, and effects on learning, memory and operant behavior (e.g., response rates and discriminative stimulus effects). In addition, repeated exposure to these solvents may produce tolerance, dependence and/or sensitization to these effects.
Collapse
Affiliation(s)
- Scott E Bowen
- Department of Psychology, Wayne State University, 5057 Woodward, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
25
|
Hashimoto Y, Araki H, Suemaru K, Gomita Y. Effects of drugs acting on the GABA-benzodiazepine receptor complex on flurothyl-induced seizures in Mongolian gerbils. Eur J Pharmacol 2006; 536:241-7. [PMID: 16581068 DOI: 10.1016/j.ejphar.2006.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/15/2006] [Accepted: 02/21/2006] [Indexed: 11/19/2022]
Abstract
In the present study, the mechanism behind flurothyl-induced seizures was examined using drugs acting on the GABA-benzodiazepine receptor complex in Mongolian gerbils. In addition, amino acid concentrations in the brain were also investigated. In behavioral experiments, the incidence of tonic extensor was 83.3% in both the control and picrotoxin (0.5 mg/kg)-treated groups, 0% in the valproate (200 mg/kg)-treated group, and 50% in the picrotoxin plus valproate-treated group. However, picrotoxin did not antagonize the effect of valproate on clonic seizure latency at all. Flumazenil, a benzodiazepine receptor antagonist, was found to have an inhibitory effect on the anticonvulsant action of diazepam (0.5 mg/kg). The incidence of tonic extensor was 83.3% in flumazenil (10 mg/kg)-treated group, 0% in the diazepam (0.5 mg/kg)-treated group, and 83% in the flumazenil plus diazepam-treated group as well as the control group. Flumazenil also completely reversed the effect of diazepam on clonic seizure latency. In biochemical experiments, the concentration of the inhibitory amino acid, GABA, was significantly increased in the hippocampus (P<0.05) and cerebellum (P<0.01) in diazepam-treated animals. The increase of GABA in the hippocampus and cerebellum was antagonized by the administration of flumazenil. These results suggested that the anticonvulsant action of diazepam may be linked to increase in hippocampus and cerebellum GABA concentrations. The findings suggest that the mechanism of flurothyl-induced seizures, in part, is related to the highly sensitive benzodiazepine site of the GABA-benzodiazepine receptor complex.
Collapse
Affiliation(s)
- Yasuhiko Hashimoto
- Department of Hospital Pharmacy, Okayama University Medical School, 2-5-1, Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | |
Collapse
|
26
|
Krasowski MD. Contradicting a unitary theory of general anesthetic action: a history of three compounds from 1901 to 2001. BULLETIN OF ANESTHESIA HISTORY 2003; 21:1, 4-8, 21 passim. [PMID: 17494361 PMCID: PMC2701367 DOI: 10.1016/s1522-8649(03)50031-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Raines DE, Claycomb RJ, Forman SA. Modulation of GABA(A) receptor function by nonhalogenated alkane anesthetics: the effects on agonist enhancement, direct activation, and inhibition. Anesth Analg 2003; 96:112-8, table of contents. [PMID: 12505935 DOI: 10.1097/00000539-200301000-00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED At clinically relevant concentrations, ethers, alcohols, and halogenated alkanes enhance agonist action on the gamma-aminobutyric acid(A) (GABA(A)) receptor, whereas nonhalogenated alkanes do not. Many anesthetics also directly activate and/or inhibit GABA(A) receptors, actions that may produce important behavioral effects; although, the effects of nonhalogenated alkane anesthetics on GABA(A) receptor direct activation and inhibition have not been studied. In this study, we assessed the abilities of two representative nonhalogenated alkanes, cyclopropane and butane, to enhance agonist action, directly activate, and inhibit currents mediated by expressed alpha(1)beta(2)gamma(2L) GABA(A) receptors using electrophysiological techniques. Our studies reveal that cyclopro- pane and butane enhance agonist action on the GABA(A) receptor at concentrations that exceed those required to produce anesthesia. Neither nonhalogenated alkane directly activated nor inhibited GABA(A) receptors, even at concentrations that approach their aqueous saturated solubilities. These results strongly suggest that the behavioral actions of nonhalogenated alkane anesthetics do not result from their abilities to enhance agonist actions, directly activate, or inhibit alpha(1)beta(2)gamma(2L) GABA(A) receptors and are consistent with the hypothesis that electrostatic interactions between anesthetics and their protein binding sites modulate GABA(A) receptor potency. IMPLICATIONS When normalized to either their in vivo anesthetic potencies or hydrophobicities, cyclopropane and butane are 1-1.5 orders of magnitude less potent enhancers of agonist action on alpha(1beta2gamma2L) GABA(A) receptors than isoflurane. Additionally, cyclopropane and butane fail to directly activate or inhibit receptors, even at near aqueous saturating concentrations. Thus, it is unlikely that either enhancement or inhibition of the most common GABA(A) receptor subtype in the brain accounts for the behavioral activities of cyclopropane and butane.
Collapse
Affiliation(s)
- Douglas E Raines
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
28
|
Raines DE, Claycomb RJ, Forman SA. Modulation of GABAA Receptor Function by Nonhalogenated Alkane Anesthetics: The Effects on Agonist Enhancement, Direct Activation, and Inhibition. Anesth Analg 2003. [DOI: 10.1213/00000539-200301000-00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Araki H, Kobayashi Y, Hashimoto Y, Futagami K, Kawasaki H, Gomita Y. Characteristics of flurothyl-induced seizures and the effect of antiepileptic drugs on flurothyl-induced seizures in Mongolian gerbils. Pharmacol Biochem Behav 2002; 74:141-7. [PMID: 12376161 DOI: 10.1016/s0091-3057(02)00965-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the characteristics of the flurothyl-induced seizures and the effects of antiepileptic drugs on the flurothyl-induced seizure model in a previously untested Mongolian gerbil species. Mongolian gerbils demonstrated tonic extension immediately after or within 1 min after the appearance of clonic convulsion. Very high amplitude spike waves appeared in these regions concurrent with the appearance of clonic convulsion. When the tonic extension appeared immediately after the clonic convulsion, the high amplitude spike waves continued during tonic convulsion. When the tonic extension occurred, high amplitude spike waves appeared in these three regions within a very short time, and afterward Mongolian gerbils died. Administration of valproic acid-Na (200 mg/kg), ethosuximide (100 and 200 mg/kg), clonazepam (2 mg/kg) and diazepam (0.5, 1 and 2 mg/kg) significantly prolonged the latency of clonic convulsion. Zonisamide-Na, phenytoin and carbamazepine, however, had no such effect. In Mongolian gerbils, tonic extension was demonstrated immediately after the appearance of clonic convulsion, yet, this effect was inhibited by all these drugs in a dose-dependent manner. Diazepam completely blocked the appearance of any behavioral changes in animals. These findings suggest that diazepam has a significant effect on flurothyl-induced seizures. Flurothyl-induced convulsions are associated with GABA receptors; hence, benzodiazepine (BDP) suppression may result from the strong relation between BDP and GABAnergic neurons.
Collapse
Affiliation(s)
- Hiroaki Araki
- Department of Hospital Pharmacy, Okayama University Medical School, 2-5-1 Shikata-cho, 700-8558, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Cruz SL, Balster RL, Woodward JJ. Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Br J Pharmacol 2000; 131:1303-8. [PMID: 11090101 PMCID: PMC1572451 DOI: 10.1038/sj.bjp.0703666] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Revised: 08/11/2000] [Accepted: 08/21/2000] [Indexed: 11/09/2022] Open
Abstract
1. We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC(50) value for toluene of 0.17 mM. 2. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in XENOPUS oocytes expressing NR1/2A or NR1/2B receptor subtypes. 3. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. 4. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. 5. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacología y Toxicología, Cinvestav, IPN, Apartado Postal 22026, 14000 México DF, México
| | - Robert L Balster
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, VA 23298, U.S.A
| | - John J Woodward
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, VA 23298, U.S.A
| |
Collapse
|