1
|
Schweigerdt A, Stöbener DD, Scholz J, Schäfer A, Weinhart M. Thermoresponsive Brush Coatings for Cell Sheet Engineering with Low Protein Adsorption above the Polymers' Phase Transition Temperature. ACS APPLIED BIO MATERIALS 2024; 7:7544-7555. [PMID: 39499587 PMCID: PMC11577427 DOI: 10.1021/acsabm.4c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
Thermoresponsive polymer coatings on cell culture substrates enable noninvasive cell detachment and cell sheet fabrication for biomedical applications. Optimized coatings should support controlled culture and detachment of various cell types and allow chemical modifications, e.g., to introduce specific growth factors for enhanced gene expression. Furthermore, the sterilization and storage stability of the coatings must be assessed for translational attempts. Poly(glycidyl ether) (PGE) brush coatings with short alkoxy side chains provide a versatile platform for cell culture and detachment, but their polyether backbones are susceptible to oxidation and degradation. Thus, we rationally designed potential alternatives with thermoresponsive glycerol-based block copolymers comprising a stable polyacrylate or polymethacrylate backbone and an oligomeric benzophenone (BP)-based anchor. The resulting poly(ethoxy hydroxypropyl acrylate-b-benzophenone acrylate) (pEHPA-b-BP) and poly(ethoxy hydroxypropyl methacrylate-b-benzophenone methacrylate) (pEHPMA-b-BP) block copolymers preserve the short alkoxy-terminated side chains of the PGE derived structure on a stable, but hydrophobic, aliphatic backbone. The amphiphilicity balance is maintained through incorporated hydroxyl groups, which simultaneously can be used for chemical modification. The polymers were tailored into brush coatings on polystyrene surfaces via directed adsorption using the BP oligomer anchor. The resulting coatings with thickness values up to ∼3 nm supported efficient adhesion and proliferation of human fibroblasts despite minimal protein adsorption. The conditions for cell sheet fabrication on pEHPA-b-BP were gentler and more reliable than on pEHPMA-b-BP, which required additional cooling. Hence, the stability of pEHPA-b-BP and PGE coatings was evaluated post gamma and formaldehyde (FO) gas sterilization. Gamma sterilization partially degraded PGE coatings and hindered cell detachment on pEHPA-b-BP. In contrast, FO sterilization only slowed detachment on PGE coatings and had no adverse effects on pEHPA-b-BP, maintaining their efficient performance in cell sheet fabrication.
Collapse
Affiliation(s)
- Alexander Schweigerdt
- Institute
of Chemistry and Biochemistry, Freie Universitaet
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Daniel D. Stöbener
- Institute
of Chemistry and Biochemistry, Freie Universitaet
Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Johanna Scholz
- Institute
of Chemistry and Biochemistry, Freie Universitaet
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas Schäfer
- Institute
of Chemistry and Biochemistry, Freie Universitaet
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Marie Weinhart
- Institute
of Chemistry and Biochemistry, Freie Universitaet
Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, 30167 Hannover, Germany
| |
Collapse
|
2
|
Lukáš Petrova S, Vragović M, Pavlova E, Černochová Z, Jäger A, Jäger E, Konefał R. Smart Poly(lactide)- b-poly(triethylene glycol methyl ether methacrylate) (PLA- b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics 2023; 15:pharmaceutics15041191. [PMID: 37111676 PMCID: PMC10143907 DOI: 10.3390/pharmaceutics15041191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA-b-PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and 1H NMR spectroscopy, were used to characterize the block copolymers, while 1H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions. The results show that the LCST values for the block copolymers decreased with increasing PLA content in the copolymer. The selected block copolymer presented LCST transitions at physiologically relevant temperatures, making it suitable for manufacturing nanoparticles (NPs) and drug encapsulation-release of the chemotherapeutic paclitaxel (PTX) via temperature-triggered drug release mechanism. The drug release profile was found to be temperature-dependent, with PTX release being sustained at all tested conditions, but substantially accelerated at 37 and 40 °C compared to 25 °C. The NPs were stable under simulated physiological conditions. These findings demonstrate that the addition of hydrophobic monomers, such as PLA, can tune the LCST temperatures of thermo-responsive polymers, and that PLA-b-PTEGMA copolymers have great potential for use in drug and gene delivery systems via temperature-triggered drug release mechanisms in biomedicine applications.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martina Vragović
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
3
|
Linn JD, Liberman L, Neal CAP, Calabrese MA. Role of chain architecture in the solution phase assembly and thermoreversibility of aqueous PNIPAM/silyl methacrylate copolymers. Polym Chem 2022; 13:3840-3855. [PMID: 37193094 PMCID: PMC10181847 DOI: 10.1039/d2py00254j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive polymers functionalized with reactive inorganic groups enable creation of macromolecular structures such as hydrogels, micelles, and coatings that demonstrate smart behavior. Prior studies using poly(N-isopropyl acrylamide-co-3-(trimethoxysilyl)propyl methacrylate) (P(NIPAM-co-TMA)) have stabilized micelles and produced functional nanoscale coatings; however, such systems show limited responsiveness over multiple thermal cycles. Here, polymer architecture and TMA content are connected to the aqueous self-assembly, optical response, and thermo-reversibility of two distinct types of PNIPAM/TMA copolymers: random P(NIPAM-co-TMA), and a 'blocky-functionalized' copolymer where TMA is localized to one portion of the chain, P(NIPAM-b-NIPAM-co-TMA). Aqueous solution behavior characterized via cloud point testing (CPT), dynamic light scattering (DLS), and variable-temperature nuclear magnetic resonance spectroscopy (NMR) demonstrates that thermoresponsiveness and thermoreversibility over multiple cycles is a strong function of polymer configuration and TMA content. Despite low TMA content (≤2% mol), blocky-functionalized copolymers assemble into small, well-ordered structures above the cloud point that lead to distinct transmittance behaviors and stimuli-responsiveness over multiple cycles. Conversely, random copolymers form disordered aggregates at elevated temperatures, and only exhibit thermoreversibility at negligible TMA fractions (0.5% mol); higher TMA content leads to irreversible structure formation. This understanding of the architectural and assembly effects on the thermal cyclability of aqueous PNIPAM-co-TMA can be used to improve the scalability of responsive polymer applications requiring thermoreversible behavior, including sensing, separations, and functional coatings.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Christopher A P Neal
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Hu N, Chen C, Metwalli E, Bießmann L, Herold C, Fu J, Cubitt R, Zhong Q, Müller-Buschbaum P. Hydration and Thermal Response Kinetics of a Cross-Linked Thermoresponsive Copolymer Film on a Hydrophobic PAN Substrate Coating Probed by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6819-6829. [PMID: 34043364 DOI: 10.1021/acs.langmuir.1c00931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hydration and thermal response kinetics of the cross-linked thermoresponsive copolymer poly((diethylene glycol monomethyl ether methacrylate)-co-poly(ethylene glycol) methyl ether methacrylate), abbreviated as P(MEO2MA-co-OEGMA300), thin film on a hydrophobic polyacrylonitrile (PAN) substrate coating, which resembles a synthetic fabric, is probed by in situ neutron reflectivity (NR). The PAN and monomer (MEO2MA and OEGMA300) solutions are sequentially spin-coated onto a silicon (Si) substrate. Afterward, plasma treatment is applied to realize the cross-linking of PAN and monomers. The as-prepared cross-linked P(MEO2MA-co-OEGMA300) film on the hydrophobic PAN substrate coating presents a two-layer structure: a substrate-near layer, which is a mixture of PAN and P(MEO2MA-co-OEGMA300), and a main layer, which is composed of pure hydrophilic P(MEO2MA-co-OEGMA300). During hydration in D2O vapor atmosphere, the hydrophobic PAN component prevents the formation of D2O enrichment in the substrate-near layer. However, an additional vapor-near layer is observed on top of the main layer, which is enriched with D2O. The hydration process is constrained by the cross-linking points in the film, inducing the relaxation time to be longer than that in a spin-coated P(MEO2MA-co-OEGMA300) film. Because the as-prepared cross-linked film presents a transition temperature (TT) at 38 °C, the hydrated film switches to the collapsed state when the temperature is increased from 23 to 50 °C. The response to a thermal stimulus is also slower due to the existence of the internal cross-linking points as compared to the spin-coated film. Interestingly, no reswelling is observed at the end of the thermal stimulus, which can be also attributed to the presence of internal cross-linking points.
Collapse
Affiliation(s)
- Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Chen Chen
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Ezzeldin Metwalli
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lorenz Bießmann
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christian Herold
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, 510275 Guangzhou, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Zhang L, Zhang D, Yang Y, Zhang Y. Stimuli-Responsive Proteinosomes Based on Biohybrid Shell Cross-Linked Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3950-3959. [PMID: 33751892 DOI: 10.1021/acs.langmuir.1c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new method of stimuli-responsive proteinosome fabrication with the shell cross-linked micelle as a template is reported in this research. A thermoresponsive diblock copolymer poly[di(ethylene glycol) methyl ether methacrylate]-b-poly[poly(ethylene glycol) methyl ether methacrylate-co-pyridyl disulfide methacrylamide] [PDEGMA-b-P(PEGMA-co-PDSMA)] was synthesized and self-assembled into micelles with PDEGMA cores and P(PEGMA-co-PDSMA) shells at the temperature above its lower critical solution temperature (LCST). Reduced bovine serum albumin (BSA) molecules with six thiol groups were used to cross-link the shells of the micelles by reacting with the pendant pyridyl disulfide groups on the P(PEGMA-co-PDSMA) block. At a temperature below the LCST of the polymer, the PDEGMA cores were dissolved in water, affording proteinosomes with a size of about 50 nm and capsule-like structures. The proteinosome was also thermoresponsive with a phase transition temperature at 35 °C. The fabrication of the proteinosome had no obvious influence on the structure and activity of BSA, and BSA retained most of its secondary structure and esterase-like activity. Because the BSA molecules were connected to the polymer chains through disulfide bonds, they could be released upon addition of dithiothreitol. The in vitro cell viability evaluation and the cellular uptake assay demonstrated that the proteinosome showed low toxicity to NIH 3T3 and 4T1 cells and could be internalized into the 4T1 cells.
Collapse
Affiliation(s)
- Lixin Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yongfang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
6
|
Martinez-Moro M, Jenczyk J, Giussi JM, Jurga S, Moya SE. Kinetics of the thermal response of poly(N-isopropylacrylamide co methacrylic acid) hydrogel microparticles under different environmental stimuli: A time-lapse NMR study. J Colloid Interface Sci 2020; 580:439-448. [PMID: 32711195 DOI: 10.1016/j.jcis.2020.07.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Hydrogels of N-isopropylacrylamide and methacrylic acid (P(NIPAm-co-MAA)) display pH sensitivity and complex positively charged molecules through carboxylate groups, while having a critical solution temperature at which they reduce in volume and dehydrate. We aimed to elucidate how the responsiveness of MAA to environmental changes alters PNIPAm hydrogels at the molecular level using nuclear magnetic resonance (NMR). Time-lapse NMR allows us to follow the evolution of NMR signal under a temperature stimulus, providing unique information on conformational freedom of the hydrogel polymers. EXPERIMENTS We used time-lapse NMR to follow the evolution of the NMR signal with time over a temperature change from 25 to 40°C and to study the swelling/deswelling kinetics of P(NIPAm-co-MAA) microgels at different pH values and ionic strengths, and in the presence of positively charged molecules complexing carboxylate groups. FINDINGS At acid pH, hydrogel collapse is favored over neutral pH, and at basic pH the carboxylates remain steadily hydrated during temperature increase. Increasing ionic strength results in a faster, more effective collapse than decreasing pH. Complexation of medium-sized molecules with several charges (spermine, spermidine) causes a faster collapse than complexation with large molecular weight poly(allylamine) hydrochloride, but similar to the collapse effected by large poly(diallyldimethylammonium) chloride. This work opens new perspectives to using time-lapse NMR to study thermoresponsive systems that respond to multiple stimuli, with particular relevance in designing hydrogels for drug delivery.
Collapse
Affiliation(s)
- Marta Martinez-Moro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain.
| |
Collapse
|
7
|
Konefał R, Černoch P, Konefał M, Spěváček J. Temperature Behavior of Aqueous Solutions of Poly(2-oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers (Basel) 2020; 12:E1879. [PMID: 32825475 PMCID: PMC7565327 DOI: 10.3390/polym12091879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
1H NMR methods in combination with dynamic light scattering were applied to study temperature behavior of poly(2-isopropyl-2-oxazoline) (PIPOx) homopolymer as well as PIPOx-b-poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx)-b-PMeOx diblock copolymers in aqueous solutions. 1H NMR spectra showed a different way of phase transition for the main and side chains in PIPOx-based solutions. Additionally, the phase transition is irreversible for PIPOx homopolymer and partially reversible for PIPOx-b-PMeOx copolymer. As revealed by NMR, the phase transition in PEtOx-based copolymers solutions exists despite the absence of solution turbidity. It is very broad, virtually independent of the copolymer composition and reversible with some hysteresis. Two types of water molecules were detected in solutions of the diblock copolymers above the phase transition-"free" with long and "bound" with short spin-spin relaxation times T2. NOESY spectra revealed information about conformational changes observed already in the pre-transition region of PIPOx-b-PMeOx copolymer solution.
Collapse
Affiliation(s)
- Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (P.Č.); (M.K.)
| | | | | | | |
Collapse
|
8
|
Zhong Q, Hu N, Mi L, Wang JP, Metwalli E, Bießmann L, Herold C, Yang J, Wu GP, Xu ZK, Cubitt R, Müller-Buschbaum P. Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)- block-poly(poly(ethylene glycol)methyl ether methacrylate) Thin Films Investigated by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6228-6237. [PMID: 32388986 DOI: 10.1021/acs.langmuir.0c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of thermal history on the kinetic response of thin thermoresponsive diblock copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate), abbreviated as PMEO2MA-b-POEGMA300, films is investigated by in situ neutron reflectivity. The PMEO2MA and POEGMA300 blocks are both thermoresponsive polymers with a lower critical solution temperature. Their transition temperatures (TTs) are around 25 °C (TT1, PMEO2MA) and 60 °C (TT2, POEGMA300). Thus, by applying different temperature protocols (20 to 60 or 20 to 40 to 60 °C), the PMEO2MA-b-POEGMA300 thin films experience different thermal histories: the first protocol directly switches from a swollen to a collapsed state, whereas the second one switches first from a swollen to a semicollapsed and finally to a collapsed state. Although the applied thermal histories differ, the response and final state of the collapsed films are very close to each other. After the thermal stimulus, both films present a complicated response composed of an initial shrinkage, followed by a rearrangement. Interestingly, a subsequent reswelling of the collapsed film is only observed in the case of having applied a thermal stimulus of 20 to 40 °C. The normalized film thickness and the D2O amount of each layer in the PMEO2MA-b-POEGMA300 films are consistent at the end of the two different thermal stimuli. Hence, it can be concluded that the thermal history does not influence the final state of the PMEO2MA-b-POEGMA300 films upon heating. Based on this property, these thin films are especially suitable for the temperature switches on the nanoscale, which may experience different thermal histories.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Ji-Ping Wang
- Shanghai University of Engineering Science, 333 Long Teng Road, 201620 Shanghai, China
| | - Ezzeldin Metwalli
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lorenz Bießmann
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christian Herold
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jing Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
9
|
Shimura R, Suematsu Y, Horiuchi H, Takeoka S, Oshima A, Washio M. Fabrication of thermo-responsive cell-culture membranes with Poly(N-isopropylacrylamide) by electron-beam graft polymerization. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Koseki Y, Murayama R, Fujiwara W, Kimata M, Ito K. LCST Behaviors of Amphiphilic Pyridine Derivatives with Oligo(ethylene glycol) Chains. CHEM LETT 2020. [DOI: 10.1246/cl.190835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yugo Koseki
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryota Murayama
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wataru Fujiwara
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| | - Mitsumasa Kimata
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kazuaki Ito
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Yoshinaga N, Uchida S, Naito M, Osada K, Cabral H, Kataoka K. Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials 2019; 197:255-267. [PMID: 30669016 DOI: 10.1016/j.biomaterials.2019.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/23/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022]
Abstract
There has been a progressive interest in the molecular design of polymers and lipids as synthetic carriers for targeting therapeutic mRNA in vivo with the ability to circumvent nuclease attack for treating intractable diseases. Herein, we developed a simple approach to attain one order of magnitude higher nuclease tolerability of mRNA through the formation of polyplex micelles (PMs) by combining ω-cholesteryl (ω-Chol)-poly (ethylene-glycol) (PEG)-polycation block copolymers with mRNA pre-hybridized with cholesterol (Chol)-tethered RNA oligonucleotides (Chol (+)-OligoRNA). Even one or a few short Chol (+)-OligoRNA anchors harboring along the 46-fold longer mRNA strand was sufficient to induce tight mRNA packaging in the PM core, as evidenced by Förster resonance energy transfer (FRET) measurement as well as by a longitudinal relaxation time (T1) measurement using NMR. These results suggest that Chol (+)-OligoRNA on mRNA strand serves as a node to attract ω-Chol moiety of the block copolymers to tighten the mRNA packaging in the PM core. These mRNA loaded PMs showed high tolerability against nuclease attack, and exerted appreciable protein translational activity in cultured cells without any inflammatory responses, achieved by shortening of the length of hybridizing Chol (+)-OligoRNAs to 17 nucleotides. Finally, the Chol (+)-OligoRNA-stabilized PM revealed efficient mRNA introduction into the mouse lungs via intratracheal administration, demonstrating in vivo utility of this formulation.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kensuke Osada
- National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Le Fer G, Wirotius AL, Brûlet A, Garanger E, Lecommandoux S. Self-Assembly of Stimuli-Responsive Biohybrid Synthetic-b-Recombinant Block Copolypeptides. Biomacromolecules 2018; 20:254-272. [DOI: 10.1021/acs.biomac.8b01390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Gaëlle Le Fer
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Anne-Laure Wirotius
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, UMR 12 CEA−CNRS, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Elisabeth Garanger
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Sébastien Lecommandoux
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| |
Collapse
|
13
|
A molecular dynamics simulation scenario for studying solvent-mediated interactions of polymers and application to thermoresponse of poly(N-isopropylacrylamide) in water. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Carbohydr Polym 2018; 197:375-384. [DOI: 10.1016/j.carbpol.2018.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022]
|
15
|
Xu Y, Tijssen KCH, Bomans PHH, Akiva A, Friedrich H, Kentgens APM, Sommerdijk NAJM. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nat Commun 2018; 9:2582. [PMID: 29968713 PMCID: PMC6030133 DOI: 10.1038/s41467-018-05006-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Many biomineral crystals form complex non-equilibrium shapes, often via transient amorphous precursors. Also in vitro crystals can be grown with non-equilibrium morphologies, such as thin films or nanorods. In many cases this involves charged polymeric additives that form a polymer-induced liquid precursor (PILP). Here, we investigate the CaCO3 based PILP process with a variety of techniques including cryoTEM and NMR. The initial products are 30-50 nm amorphous calcium carbonate (ACC) nanoparticles with ~2 nm nanoparticulate texture. We show the polymers strongly interact with ACC in the early stages, and become excluded during crystallization, with no liquid-liquid phase separation detected during the process. Our results suggest that "PILP" is actually a polymer-driven assembly of ACC clusters, and that its liquid-like behavior at the macroscopic level is due to the small size and surface properties of the assemblies. We propose that a similar biopolymer-stabilized nanogranular phase may be active in biomineralization.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Koen C H Tijssen
- Solid-state NMR Group, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul H H Bomans
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Anat Akiva
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Arno P M Kentgens
- Solid-state NMR Group, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Nico A J M Sommerdijk
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
16
|
Konefał R, Spěváček J, Černoch P. Thermoresponsive poly(2-oxazoline) homopolymers and copolymers in aqueous solutions studied by NMR spectroscopy and dynamic light scattering. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Controlled tuning of LCST based on poly (N-isopropylacrylamide)/Hydroxypropyl cellulose temperature-sensitive hydrogel by electron beam pre-radiation method. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1398-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Spěváček J, Konefał R, Dybal J, Čadová E, Kovářová J. Thermoresponsive behavior of block copolymers of PEO and PNIPAm with different architecture in aqueous solutions: A study by NMR, FTIR, DSC and quantum-chemical calculations. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Sabbagh F, Muhamad II. Physical and Chemical Characterisation of Acrylamide-Based Hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0599-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Osváth Z, Iván B. The Dependence of the Cloud Point, Clearing Point, and Hysteresis of Poly(N-isopropylacrylamide) on Experimental Conditions: The Need for Standardization of Thermoresponsive Transition Determinations. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600470] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsófia Osváth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| | - Béla Iván
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| |
Collapse
|
21
|
Chen S, Zhang Y, Wang K, Zhou H, Zhang W. N-Ester-substituted polyacrylamides with a tunable lower critical solution temperature (LCST): the N-ester-substitute dependent thermoresponse. Polym Chem 2016. [DOI: 10.1039/c6py00515b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New thermoresponsive polymers ofN-ester-substituted polyacrylamides were discovered, and theN-ester-substitute exerting a great influence on the solution property was demonstrated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yuan Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
22
|
Hiller W, Engelhardt N, Kampmann AL, Degen P, Weberskirch R. Micellization and Mobility of Amphiphilic Poly(2-oxazoline) Based Block Copolymers Characterized by 1H NMR Spectroscopy. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wolf Hiller
- Faculty
of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, D-44227 Dortmund, Germany
| | - Nadine Engelhardt
- Faculty
of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, D-44227 Dortmund, Germany
| | - Anne-Larissa Kampmann
- Faculty
of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, D-44227 Dortmund, Germany
| | - Patrick Degen
- Center
for Synchrotron Radiation (DELTA), TU Dortmund, Maria-Goeppert-Meyer-Str. 2, D-44227 Dortmund, Germany
| | - Ralf Weberskirch
- Faculty
of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, D-44227 Dortmund, Germany
| |
Collapse
|
23
|
Illescas J, Casu M, Alzari V, Nuvoli D, Scorciapino MA, Sanna R, Sanna V, Mariani A. Poly(ionic liquid)s derived from 3-octyl-1-vinylimidazolium bromide andN-isopropylacrylamide with tunable properties. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Javier Illescas
- Dipartimento di Chimica e Farmacia; Università di Sassari, and Local INSTM Unit; 07100 Sassari Italy
| | - Mariano Casu
- Dipartimento di Scienze Chimiche e Geologiche; Università di Cagliari, Cittadella Universitaria di Monserrato; 09042 Monserrato Italy
| | - Valeria Alzari
- Dipartimento di Chimica e Farmacia; Università di Sassari, and Local INSTM Unit; 07100 Sassari Italy
| | - Daniele Nuvoli
- Dipartimento di Chimica e Farmacia; Università di Sassari, and Local INSTM Unit; 07100 Sassari Italy
| | - Mariano Andrea Scorciapino
- Dipartimento di Scienze Chimiche e Geologiche; Università di Cagliari, Cittadella Universitaria di Monserrato; 09042 Monserrato Italy
| | - Roberta Sanna
- Dipartimento di Chimica e Farmacia; Università di Sassari, and Local INSTM Unit; 07100 Sassari Italy
| | - Vanna Sanna
- Dipartimento di Chimica e Farmacia; Università di Sassari, and Local INSTM Unit; 07100 Sassari Italy
| | - Alberto Mariani
- Dipartimento di Chimica e Farmacia; Università di Sassari, and Local INSTM Unit; 07100 Sassari Italy
| |
Collapse
|
24
|
Oikonomou EK, Bokias G, Iliopoulos I, Kallitsis JK. Sequential Association of Anionic/Thermosensitive Diblock Copolymers with Cationic Surfactants. Macromolecules 2013. [DOI: 10.1021/ma302535k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evdokia K. Oikonomou
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
- Foundation of Research and Technology
Hellas, Institute of Chemical Engineering Sciences (ICE/HT FORTH), P.O. Box 1414, GR-26504 Patras, Greece
| | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Ilias Iliopoulos
- Matiere Molle et Chimie, ESPCI ParisTech - CNRS, UMR-7167, 75005 Paris, France
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
- Foundation of Research and Technology
Hellas, Institute of Chemical Engineering Sciences (ICE/HT FORTH), P.O. Box 1414, GR-26504 Patras, Greece
| |
Collapse
|
25
|
Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 2012; 33:1898-920. [PMID: 22961764 DOI: 10.1002/marc.201200433] [Citation(s) in RCA: 405] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/27/2012] [Indexed: 01/29/2023]
Abstract
This review focuses on polymers with upper critical solution temperature (UCST) in water or electrolyte solution and provides a detailed survey of the yet few existing examples. A guide for synthetic chemists for the design of novel UCST polymers is presented and possible handles to tune the phase transition temperature, sharpness of transition, hysteresis, and effectiveness of phase separation are discussed. This review tries to answer the question why polymers with UCST remained largely underrepresented in academic as well as applied research and what requirements have to be fulfilled to make these polymers suitable for the development of smart materials with a positive thermoresponse.
Collapse
Affiliation(s)
- Jan Seuring
- Philipps-Universität Marburg, Department of Chemistry and Scientific Center for Materials Science, Hans-Meerwein Straße, 35032 Marburg, Germany
| | | |
Collapse
|
26
|
|
27
|
Miao L, Lu M, Yang C, Zhang Y, Shen T, Ma J. Preparation and microstructural analysis of poly(ethylene oxide) comb-type grafted poly(N-isopropyl acrylamide) hydrogels crosslinked by poly(ϵ-caprolactone). J Appl Polym Sci 2012. [DOI: 10.1002/app.38172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kozhunova EY, Makhaeva EE, Khokhlov AR. Collapse of thermosensitive polyelectrolyte semi-interpenetrating networks. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Roth PJ, Davis TP, Lowe AB. Comparison between the LCST and UCST Transitions of Double Thermoresponsive Diblock Copolymers: Insights into the Behavior of POEGMA in Alcohols. Macromolecules 2012. [DOI: 10.1021/ma300374y] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter J. Roth
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Thomas P. Davis
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Andrew B. Lowe
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
30
|
Hofmann CH, Schönhoff M. Dynamics and distribution of aromatic model drugs in the phase transition of thermoreversible poly(N-isopropylacrylamide) in solution. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-011-2577-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Influence of indomethacin-loading on the micellization and drug release of thermosensitive dextran-graft-poly(N-isopropylacrylamide). REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Temperature responsive flocculation and solid–liquid separations with charged random copolymers of poly(N-isopropyl acrylamide). J Colloid Interface Sci 2011; 360:61-70. [DOI: 10.1016/j.jcis.2011.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
|
33
|
Rodríguez FP, Jiménez-Regalado EJ. Micellar polymerization, characterization, and viscoelasticity of combined thermally insensitive terpolyacrylamides. POLYM ENG SCI 2011. [DOI: 10.1002/pen.22015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G. Thermodynamic investigation of thermoresponsive xanthan-poly (N
-isopropylacrylamide) hydrogels. POLYM INT 2011. [DOI: 10.1002/pi.3113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Ise T, Nagaoka K, Osa M, Yoshizaki T. Cloud points in aqueous solutions of poly(N-isopropylacrylamide) synthesized by aqueous redox polymerization. Polym J 2010. [DOI: 10.1038/pj.2010.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Isomeric sugar effects on thermal phase transition of aqueous PNIPA solutions, probed by ATR-FTIR spectroscopy; insights to protein protection by sugars. Colloid Polym Sci 2010. [DOI: 10.1007/s00396-010-2354-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Coronado R, Pekerar S, Lorenzo AT, Sabino MA. Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym Bull (Berl) 2010. [DOI: 10.1007/s00289-010-0407-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Dey P, Rajora VK, Jassal M, Agrawal AK. A novel route for synthesis of temperature responsive nanoparticles. J Appl Polym Sci 2010. [DOI: 10.1002/app.33133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Österberg M, Laine J. Poly(N-isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules 2010; 11:2683-91. [DOI: 10.1021/bm100719d] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin O. Zoppe
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Youssef Habibi
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Orlando J. Rojas
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Richard A. Venditti
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Leena-Sisko Johansson
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Kirill Efimenko
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Monika Österberg
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| | - Janne Laine
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 8005, Raleigh, North Carolina, and Department of Forest Products Technology, School of Science and Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076 Finland
| |
Collapse
|
40
|
Solid–liquid separations with a temperature-responsive polymeric flocculant: Effect of temperature and molecular weight on polymer adsorption and deposition. J Colloid Interface Sci 2010; 348:9-23. [DOI: 10.1016/j.jcis.2010.04.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 11/23/2022]
|
41
|
Jijo VJ, Sharma KP, Mathew R, Kamble S, Rajamohanan PR, Ajithkumar TG, Badiger MV, Kumaraswamy G. Volume Transition of PNIPAM in a Nonionic Surfactant Hexagonal Mesophase. Macromolecules 2010. [DOI: 10.1021/ma100357h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. J. Jijo
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - Kamendra P. Sharma
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - R. Mathew
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - Samruddhi Kamble
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - P. R. Rajamohanan
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - T. G. Ajithkumar
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - M. V. Badiger
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| | - Guruswamy Kumaraswamy
- Complex Fluids and Polymer Engineering, National Chemical Laboratory (NCL), Pune 411008, India
| |
Collapse
|
42
|
Unver A, Akovali G. Plasma-induced, solid-state polymerization ofN-isopropylacrylamide. J Appl Polym Sci 2010. [DOI: 10.1002/app.31391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Xu Y, Li G, Haraguchi K. Gel Formation and Molecular Characteristics of Poly(N
-isopropylacrylamide) Prepared by Free-Radical Redox Polymerization in Aqueous Solution. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.200900565] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Shechter I, Ramon O, Portnaya I, Paz Y, Livney YD. Microcalorimetric Study of the Effects of a Chaotropic Salt, KSCN, on the Lower Critical Solution Temperature (LCST) of Aqueous Poly(N-isopropylacrylamide) (PNIPA) Solutions. Macromolecules 2009. [DOI: 10.1021/ma9018312] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ory Ramon
- Laboratory of Biopolymers and Food-Nanotechnology, Department of Biotechnology & Food Engineering
| | - Irina Portnaya
- Laboratory of Biopolymers and Food-Nanotechnology, Department of Biotechnology & Food Engineering
| | | | - Yoav D. Livney
- Laboratory of Biopolymers and Food-Nanotechnology, Department of Biotechnology & Food Engineering
| |
Collapse
|
45
|
Li Z, Kyeremateng SO, Fuchise K, Kakuchi R, Sakai R, Kakuchi T, Kressler J. Aggregation Behavior of Poly(N
-isopropylacrylamide) Semitelechelics with a Perfluoroalkyl Segment in Watera. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Hofmann C, Schönhoff M. Do additives shift the LCST of poly (N-isopropylacrylamide) by solvent quality changes or by direct interactions? Colloid Polym Sci 2009. [DOI: 10.1007/s00396-009-2103-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Spěváček J. NMR investigations of phase transition in aqueous polymer solutions and gels. Curr Opin Colloid Interface Sci 2009. [DOI: 10.1016/j.cocis.2008.10.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Yu YY, Tian F, Wei C, Wang CC. Facile synthesis of triple-stimuli (photo/pH/thermo) responsive copolymers of 2-diazo-1,2-naphthoquinone-mediated poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide). ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23357] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Ahmed Z, Gooding EA, Pimenov KV, Wang L, Asher SA. UV resonance Raman determination of molecular mechanism of poly(N-isopropylacrylamide) volume phase transition. J Phys Chem B 2009; 113:4248-56. [PMID: 19260666 PMCID: PMC2668225 DOI: 10.1021/jp810685g] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is the premier example of a macromolecule that undergoes a hydrophobic collapse when heated above its lower critical solution temperature (LCST). Here we utilize dynamic light scattering, H-NMR, and steady-state and time-resolved UVRR measurements to determine the molecular mechanism of PNIPAM's hydrophobic collapse. Our steady-state results indicate that in the collapsed state the amide bonds of PNIPAM do not engage in interamide hydrogen bonding, but are hydrogen bonded to water molecules. At low temperatures, the amide bonds of PNIPAM are predominantly fully water hydrogen bonded, whereas, in the collapsed state one of the two normal CO hydrogen bonds is lost. The NH-water hydrogen bonding, however, remains unperturbed by the PNIPAM collapse. Our kinetic results indicate a monoexponential collapse with tau approximately 360 (+/-85) ns. The collapse rate indicates a persistence length of n approximately 10. At lengths shorter than the persistence length the polymer acts as an elastic rod, whereas at lengths longer than the persistence length the polymer backbone conformation forms a random coil. On the basis of these results, we propose the following mechanism for the PNIPAM volume phase transition. At low temperatures PNIPAM adopts an extended, water-exposed conformation that is stabilized by favorable NIPAM-water solvation shell interactions which stabilize large clusters of water molecules. As the temperature increases an increasing entropic penalty occurs for the water molecules situated at the surface of the hydrophobic isopropyl groups. A cooperative transition occurs where hydrophobic collapse minimizes the exposed hydrophobic surface area. The polymer structural change forces the amide carbonyl and N-H to invaginate and the water clusters cease to be stabilized and are expelled. In this compact state, PNIPAM forms small hydrophobic nanopockets where the (i, i + 3) isopropyl groups make hydrophobic contacts. A persistent length of n approximately 10 suggests a cooperative collapse where hydrophobic interactions between adjacent hydrophobic pockets stabilize the collapsed PNIPAM.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Department of Chemistry, University of Pittsburgh, PA 15260, Phone: 412 624 8570, Fax: 412 624 0580,
| | - Edward A. Gooding
- Department of Chemistry, University of Pittsburgh, PA 15260, Phone: 412 624 8570, Fax: 412 624 0580,
| | - Konstantin V. Pimenov
- Department of Chemistry, University of Pittsburgh, PA 15260, Phone: 412 624 8570, Fax: 412 624 0580,
| | - Luling Wang
- Department of Chemistry, University of Pittsburgh, PA 15260, Phone: 412 624 8570, Fax: 412 624 0580,
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, PA 15260, Phone: 412 624 8570, Fax: 412 624 0580,
| |
Collapse
|
50
|
Chiang WH, Hsu YH, Chern CS, Chiu HC. Thermally Induced Polymeric Assemblies from the PAAc-Based Copolymer Containing Both PNIPAAm and mPEG Grafts in Water. J Phys Chem B 2009; 113:4187-96. [DOI: 10.1021/jp8106292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yuan-Hung Hsu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chorng-Shyan Chern
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsin-Cheng Chiu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|