1
|
[Development of malaria vaccines-state of the art]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 63:45-55. [PMID: 31828371 PMCID: PMC7223738 DOI: 10.1007/s00103-019-03070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Weltweit leben 3,1 Mrd. Menschen in Gebieten, in denen Malaria endemisch ist (Tropen, Subtropen). Jährlich erkranken etwa 200 Mio. Menschen, ca. 500.000 sterben daran. Betroffen sind vor allem Kinder. Um die Malaria zu kontrollieren und schlussendlich jegliche Neuinfektion zu verhindern, ist die Entwicklung wirksamer Impfstoffe von großer Bedeutung. In diesem Beitrag werden zunächst Hintergrundinformationen zur Geschichte der Impfstoffentwicklung, zur Malariaerkrankung und zu den Möglichkeiten der Therapie und Ausbreitungskontrolle gegeben. Der Hauptteil widmet sich dem aktuellen Forschungsstand zu Impfstoffen gegen den Erreger Plasmodium falciparum, gefolgt von einer ausführlichen Diskussion. Malaria ist eine parasitäre Infektionskrankheit, die von Einzellern, sog. Plasmodien, verursacht wird. Es werden 5 humanpathogene Spezies unterschieden, von denen P. falciparum über 99 % der Erkrankungen in Afrika verursacht. Überträger (Vektor) ist die Anophelesmücke. Plasmodium bietet innerhalb seines Lebenszyklus verschiedene Ansatzpunkte für die Wirkung von Impfstoffen. Von den insgesamt ca. 70 Impfstoffkandidaten sind die präerythrozytären Impfstoffe, die in den Leberzyklus des Parasiten eingreifen, aktuell am weitesten entwickelt. Die von der Weltgesundheitsorganisation (WHO) angestrebte Wirksamkeit von mindestens 75 % wurde aber längst nicht erreicht. Mit RTS,S/AS01 wird derzeit erstmals ein mäßig wirksamer Impfstoff großflächig eingesetzt. Schon jetzt ist offensichtlich, dass die Malaria nur im Zusammenspiel mit anderen Maßnahmen eingedämmt werden kann. Expositionsprophylaxe mit imprägnierten Moskitonetzen, der Einsatz von Insektiziden mit Residualeffekt in Innenräumen (Indoor Residual Spraying), die Vernichtung von Moskitobrutplätzen und schnelle Diagnose und Therapie der Erkrankung sind hier wichtige Elemente ebenso wie eine funktionierende Gesundheitsversorgung, die in den von Armut geprägten Gebieten oft nicht gewährleistet ist.
Collapse
|
2
|
Boyce RM, Hathaway N, Fulton T, Reyes R, Matte M, Ntaro M, Mulogo E, Waltmann A, Bailey JA, Siedner MJ, Juliano JJ. Reuse of malaria rapid diagnostic tests for amplicon deep sequencing to estimate Plasmodium falciparum transmission intensity in western Uganda. Sci Rep 2018; 8:10159. [PMID: 29977002 PMCID: PMC6033881 DOI: 10.1038/s41598-018-28534-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/25/2018] [Indexed: 01/29/2023] Open
Abstract
Molecular techniques are not routinely employed for malaria surveillance, while cross-sectional, community-based parasite surveys require significant resources. Here, we describe a novel use of malaria rapid diagnostic tests (RDTs) collected at a single facility as source material for sequencing to esimtate malaria transmission intensity across a relatively large catchment area. We extracted Plasmodium falciparum DNA from RDTs, then amplified and sequenced a region of the apical membrane antigen 1 (pfama1) using targeted amplicon deep sequencing. We determined the multiplicity of infection (MOI) for each sample and examined associations with demographic, clinical, and spatial factors. We successfully genotyped 223 of 287 (77.7%) of the samples. We demonstrated an inverse relationship between the MOI and elevation with individuals presenting from the highest elevation villages harboring infections approximately half as complex as those from the lowest (MOI 1.85 vs. 3.51, AOR 0.25, 95% CI 0.09-0.65, p = 0.004). This study demonstrates the feasibility and validity of using routinely-collected RDTs for molecular surveillance of malaria and has real-world utility, especially as the cost of high-throughpout sequencing continues to decline.
Collapse
Affiliation(s)
- Ross M Boyce
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, 27599, USA.
| | - Nick Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, 368 Plantation St., Worcester, Massachusetts, 01605, USA
| | - Travis Fulton
- Division of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, 135 Dauer Drive, Chapel Hill, 27599, USA
| | - Raquel Reyes
- Division of General Medicine & Clinical Epidemiology, University of North Carolina at Chapel Hill, 5039 Old Clinic Building, CB 7110, Chapel Hill, 27599, USA
| | - Michael Matte
- Department of Community Health, Mbarara University of Science & Technology, P.O. Box 1410, Mbarara, Uganda
| | - Moses Ntaro
- Department of Community Health, Mbarara University of Science & Technology, P.O. Box 1410, Mbarara, Uganda
| | - Edgar Mulogo
- Department of Community Health, Mbarara University of Science & Technology, P.O. Box 1410, Mbarara, Uganda
| | - Andreea Waltmann
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, 27599, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, 368 Plantation St., Worcester, Massachusetts, 01605, USA
| | - Mark J Siedner
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 125 Nashua Street, Suite 722, Boston, 02114, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, 27599, USA.,Division of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, 135 Dauer Drive, Chapel Hill, 27599, USA.,Curriculum in Genetics and Microbiology, University of North Carolina at Chapel Hill, 321 South Columbia Street, Chapel Hill, NC, 27516, USA
| |
Collapse
|
3
|
Ouattara A, Tran TM, Doumbo S, Adams M, Agrawal S, Niangaly A, Nelson-Owens S, Doumtabé D, Tolo Y, Ongoiba A, Takala-Harrison S, Traoré B, Silva JC, Crompton PD, Doumbo OK, Plowe CV. Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali. Am J Trop Med Hyg 2018; 99:43-50. [PMID: 29848401 PMCID: PMC6085788 DOI: 10.4269/ajtmh.17-0737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte–binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte–binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.
Collapse
Affiliation(s)
- Amed Ouattara
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali.,Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.,Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safiatou Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Matthew Adams
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sonia Agrawal
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | | | - Didier Doumtabé
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Shannon Takala-Harrison
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Boubacar Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | | |
Collapse
|
4
|
Das S, Muleba M, Stevenson JC, Pringle JC, Norris DE. Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasit Vectors 2017; 10:45. [PMID: 28122597 PMCID: PMC5267472 DOI: 10.1186/s13071-017-1993-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Background A commonly used measure of malaria transmission intensity is the entomological inoculation rate (EIR), defined as the product of the human biting rate (HBR) and sporozoite infection rate (SIR). The EIR excludes molecular parameters that may influence vector control and surveillance strategies. The purpose of this study was to investigate Anopheles multiple blood feeding behavior (MBF) and Plasmodium falciparum multiplicity of infection (MOI) within the mosquito host in Nchelenge District, northern Zambia. Mosquitoes were collected from light traps and pyrethroid spray catch in Nchelenge in the 2013 wet season. All anophelines were tested for blood meal host, P. falciparum, and MOI using PCR. Circumsporozoite (CSP) ELISA and microsatellite analysis were performed to detect parasites in the mosquito and MBF, respectively. Statistical analyses used regression models to assess MBF and MOI and exact binomial test for human sex bias. Both MBF and MOI can enhance our understanding of malaria transmission dynamics beyond what is currently understood through conventional EIR estimates alone. Results The dominant malaria vectors collected in Nchelenge were Anopheles funestus (sensu stricto) and An. gambiae (s.s.) The EIRs of An. funestus (s.s.) and An. gambiae (s.s.) were 39.6 infectious bites/person/6 months (ib/p/6mo) and 5.9 ib/p/6mo, respectively, and took multiple human blood meals at high rates, 23.2 and 25.7% respectively. There was no bias in human host sex preference in the blood meals. The SIR was further characterized for parasite genetic diversity. The overall P. falciparum MOI was 6.4 in infected vectors, exceeding previously reported average MOIs in humans in Africa. Conclusions Both Anopheles MBF rates and P. falciparum MOI in Nchelenge were among some of the highest reported in sub-Saharan Africa. The results suggest an underestimation of the EIR and large numbers of circulating parasite clones. Together, the results describe important molecular aspects of transmission excluded from the traditional EIR measurement. These elements may provide more sensitive measures with which to assess changes in transmission intensity and risk in vector and parasite surveillance programs.
Collapse
Affiliation(s)
- Smita Das
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mbanga Muleba
- Tropical Disease Research Centre, P.O. Box 71769, Ndola, Zambia
| | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.,Macha Research Trust, P.O. Box 630166, Choma, Zambia
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Designing malaria vaccines to circumvent antigen variability. Vaccine 2015; 33:7506-12. [PMID: 26475447 PMCID: PMC4731100 DOI: 10.1016/j.vaccine.2015.09.110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.
Collapse
|
6
|
Dolmazon V, Matsika-Claquin MD, Manirakiza A, Yapou F, Nambot M, Menard D. Genetic diversity and genotype multiplicity of Plasmodium falciparum infections in symptomatic individuals living in Bangui (CAR). Acta Trop 2008; 107:37-42. [PMID: 18501320 DOI: 10.1016/j.actatropica.2008.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
This study provides the first estimate of the genetic diversity and genotype multiplicity of Plasmodium falciparum infections in symptomatic individuals living in Bangui (Central African Republic, CAR). Three hundred thirty six clinical isolates were used for analysis of parasite population polymorphism and genotyped by nested-PCR of msp-1 block 2, and msp-2 block 3. We found a very high level of polymorphism, with, respectively, 17 and 25 different alleles at the msp-1 and msp-2 loci and a high percentage of multiclonal infections (42.7% with msp-1 and 76.7% with msp-2), with a mean of 1.7 genotype with msp-1 and 2.8 with msp-2. We observed that (i) multiclonal infections and allelic polymorphism of msp-2 were significantly more frequent in Southern districts than in Northern districts of Bangui suggesting that the epidemiological features of P. falciparum may vary within Bangui and (ii) showed that immunocompromised HIV-positive patients tend to have a lower average number of msp-2 allele per isolate than immunocompetent patients.
Collapse
|
7
|
Abstract
BACKGROUND Four types of malaria vaccine, SPf66 and MSP/RESA vaccines (against the asexual stages of the Plasmodium parasite) and CS-NANP and RTS,S vaccines (against the sporozoite stages), have been tested in randomized controlled trials in endemic areas. OBJECTIVES To assess malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae and P ovale in preventing infection, disease and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (April 2004), CENTRAL (The Cochrane Library Issue 2, 2004), MEDLINE (1966 to April 2004), EMBASE (1980 to April 2004), Science Citation Index (1981 to April 2004), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized controlled trials comparing vaccines against Plasmodium falciparum, P. vivax, P. malariae or P. ovale with placebo or routine antimalarial control measures in people of any age receiving a challenge malaria infection. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed trial quality and extracted data. MAIN RESULTS Eighteen efficacy trials involving 10,971 participants were included. There were ten trials of SPf66 vaccine, four trials of CS-NANP vaccines, two trials of RTS,S vaccine, and two of MSP/RESA vaccine. Results with SPf66 in reducing new malaria infections (P. falciparum) were heterogeneous: it was not effective in four African trials (Peto odds ratio (OR) 0.96, 95% confidence interval (CI) 0.81 to 1.14), but in five trials outside Africa the number of first attacks was reduced (Peto OR 0.77, 95% CI 0.67 to 0.88). Trials to date have not indicated any serious adverse events with SPf66 vaccine. In three trials of CS-NANP vaccines, there was no evidence for protection by these vaccines against P. falciparum malaria (Peto OR 1.12, 95% CI 0.64 to 1.93). In a small trial in non-immune adults in the USA, RTS,S gave strong protection against experimental infection with P. falciparum. In a trial in an endemic area of the Gambia in semi-immune people, there was a reduction in clinical malaria episodes in the second year of follow up, corresponding to a vaccine efficacy of 66% (CI 14% to 85%). In a trial in Papua New Guinea, MSP/RESA had no protective effect against episodes of clinical malaria. There was evidence of an effect on parasite density, but this differed according to whether the participants had been pretreated with sulfadoxine/pyrimethamine or not. The prevalence of infections with the parasite subtype of MSP2 in the vaccine was reduced compared with the other subtype (Peto OR 0.35, CI 0.23 to 0.53). AUTHORS' CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in other regions. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified. There was not enough evidence to evaluate the use of CS-NANP vaccines. The RTS,S vaccine showed promising result, as did the MSP/RESA vaccine, but it should include the other main allelic form of MSP2. The MSP/RESA trial demonstrated that chemotherapy during a vaccine trial may reduce vaccine efficacy, and trials should consider very carefully whether this practice is justified.
Collapse
Affiliation(s)
- P Graves
- EpiVec Consulting, 606 Kimberly Lane NE, Atlanta, GA 30306, USA.
| | | |
Collapse
|
8
|
Abstract
Malaria persists as an undiminished global problem, but the resources available to address it have increased. Many tools for understanding its biology and epidemiology are well developed, with a particular richness of comparative genome sequences. Targeted genetic manipulation is now effectively combined with in vitro culture assays on the most important human parasite, Plasmodium falciparum, and with in vivo analysis of rodent and monkey malaria parasites in their laboratory hosts. Studies of the epidemiology, prevention, and treatment of human malaria have already been influenced by the availability of molecular methods, and analyses of parasite polymorphisms have long had useful and highly informative applications. However, the molecular epidemiology of malaria is currently undergoing its most substantial revolution as a result of the genomic information and technologies that are available in well-resourced centers. It is a challenge for research agendas to face the real needs presented by a disease that largely exists in extremely resource-poor settings, but it is one that there appears to be an increased willingness to undertake. To this end, developments in the molecular epidemiology of malaria are reviewed here, emphasizing aspects that may be current and future priorities.
Collapse
Affiliation(s)
- David J Conway
- Medical Research Council Laboratories, Fajara, P.O. Box 273, Banjul, The Gambia.
| |
Collapse
|
9
|
Takala SL, Coulibaly D, Thera MA, Dicko A, Smith DL, Guindo AB, Kone AK, Traore K, Ouattara A, Djimde AA, Sehdev PS, Lyke KE, Diallo DA, Doumbo OK, Plowe CV. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med 2007; 4:e93. [PMID: 17355170 PMCID: PMC1820605 DOI: 10.1371/journal.pmed.0040093] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/16/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-1(19)) derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection. METHODS AND FINDINGS Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-1(19) were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-1(19) haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-1(19) haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-1(19) haplotypes QKSNGL and EKSNGL, respectively) were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%-49%) and 36% (95% CI 34%-39%), respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%-18%). Multiplicity of infection based on MSP-1(19) was higher at the beginning of the transmission season and in the oldest individuals (aged > or =11 y). Three MSP-1(19) haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-1(19) polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701) as being particularly important in determining allele specificity of anti-MSP-1(19) immunity. CONCLUSIONS Parasites with MSP-1(19) haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial site. If immunity elicited by an MSP-1-based vaccine is allele-specific, a vaccine based on either the FVO or FUP strain might have better initial efficacy at this site. This study, to our knowledge the largest of its kind to date, provides molecular information needed to interpret population responses to MSP-1-based vaccines and suggests that certain MSP-1(19) polymorphisms may be relevant to cross-protective immunity.
Collapse
Affiliation(s)
- Shannon L Takala
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Alassane Dicko
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - David L Smith
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ando B Guindo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Abdoulaye K Kone
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Amed Ouattara
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Abdoulaye A Djimde
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Paul S Sehdev
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kirsten E Lyke
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dapa A Diallo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Christopher V Plowe
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Enosse S, Dobaño C, Quelhas D, Aponte JJ, Lievens M, Leach A, Sacarlal J, Greenwood B, Milman J, Dubovsky F, Cohen J, Thompson R, Ballou WR, Alonso PL, Conway DJ, Sutherland CJ. RTS,S/AS02A malaria vaccine does not induce parasite CSP T cell epitope selection and reduces multiplicity of infection. PLOS CLINICAL TRIALS 2006; 1:e5. [PMID: 16871327 PMCID: PMC1488895 DOI: 10.1371/journal.pctr.0010005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/30/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The candidate malaria vaccine RTS,S/AS02A is a recombinant protein containing part of the circumsporozoite protein (CSP) sequence of Plasmodium falciparum, linked to the hepatitis B surface antigen and formulated in the proprietary adjuvant system AS02A. In a recent trial conducted in children younger than age five in southern Mozambique, the vaccine demonstrated significant and sustained efficacy against both infection and clinical disease. In a follow-up study to the main trial, breakthrough infections identified in the trial were examined to determine whether the distribution of csp sequences was affected by the vaccine and to measure the multiplicity of infecting parasite genotypes. DESIGN P. falciparum DNA from isolates collected during the trial was used for genotype studies. SETTING The main trial was carried out in the Manhiça district, Maputo province, Mozambique, between April 2003 and May 2004. PARTICIPANTS Children from the two cohorts of the main trial provided parasite isolates as follows: children from Cohort 1 who were admitted to hospital with clinical malaria; children from Cohort 1 who were parasite-positive in a cross-sectional survey at study month 8.5; children from Cohort 2 identified as parasite-positive during follow-up by active detection of infection. OUTCOME Divergence of DNA sequence encoding the CSP T cell-epitope region sequence from that of the vaccine sequence was measured in 521 isolates. The number of distinct P. falciparum genotypes was also determined. RESULTS We found no evidence that parasite genotypes from children in the RTS,S/AS02A arm were more divergent than those receiving control vaccines. For Cohort 1 (survey at study month 8.5) and Cohort 2, infections in the vaccine group contained significantly fewer genotypes than those in the control group, (p = 0.035, p = 0.006), respectively, for the two cohorts. This was not the case for children in Cohort 1 who were admitted to hospital (p = 0.478). CONCLUSIONS RTS,S/AS02A did not select for genotypes encoding divergent T cell epitopes in the C-terminal region of CSP in this trial. In both cohorts, there was a modest reduction in the mean number of parasite genotypes harboured by vaccinated children compared with controls, but only among those with asymptomatic infections.
Collapse
Affiliation(s)
- Sonia Enosse
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - Carlota Dobaño
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
- Centre de Salut Internacional, Hospital Clínic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Diana Quelhas
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
| | - John J Aponte
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
- Centre de Salut Internacional, Hospital Clínic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | - Jahit Sacarlal
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
| | - Brian Greenwood
- Gates Malaria Partnership, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jessica Milman
- PATH Malaria Vaccine Initiative, Bethesda, Maryland, United States
| | - Filip Dubovsky
- PATH Malaria Vaccine Initiative, Bethesda, Maryland, United States
| | - Joe Cohen
- GlaxoSmithKline Biologicals, Rixensart, Belgium
| | - Ricardo Thompson
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | | | - Pedro L Alonso
- Centro de Investigação em Saúde da Manhiça, Ministério de Saúde, Maputo, Mozambique
- Centre de Salut Internacional, Hospital Clínic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | - David J Conway
- Gates Malaria Partnership, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Laboratories, Fajara, Gambia
| | - Colin J Sutherland
- HPA Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Abstract
BACKGROUND A malaria vaccine is badly needed. SPf66 was one of the earliest vaccines developed. It is a synthetic peptide vaccine containing antigens from the blood stages of malaria linked together with an antigen from the sporozoite stage, and is targeted mainly against the blood (asexual) stages. OBJECTIVES To assess the effect of SPf66 malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae, and P. ovale in preventing infection, disease, and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (September 2005), CENTRAL (The Cochrane Library 2005, Issue 3), MEDLINE (1966 to September 2005), EMBASE (1980 to September 2005), LILACS (1982 to September 2005), Science Citation Index (1981 to September 2005), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized and quasi-randomized controlled trials comparing SPf66 vaccine with placebo or routine antimalarial control measures in people of any age receiving an artificial challenge or natural exposure to malaria infection (any species). DATA COLLECTION AND ANALYSIS Two people independently assessed trial quality and extracted data, including adverse events. Results were expressed as relative risks (RR) with 95% confidence intervals (CI). MAIN RESULTS Ten efficacy trials of SPf66 involving 9698 participants were included. Results with SPf66 in reducing new episodes of P. falciparum malaria were heterogeneous: it was not effective in four African trials (RR 0.98, 95% CI 0.90 to 1.07; 2371 participants) or in one Asian trial (RR 1.06, 95% CI 0.90 to 1.25; 1221 participants). In four trials in South America the number of first attacks with P. falciparum was reduced by 28% (RR 0.72, 95% CI 0.63 to 0.82; 3807 participants). It did not reduce episodes of P. vivax malaria or admission to hospital with severe malaria. Trials have not indicated any serious adverse events with SPf66 vaccine. AUTHORS' CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in South America. There is no justification for further trials of SPf66 in its current formulation. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified.
Collapse
Affiliation(s)
- P Graves
- Centers for Diseases Control and Prevention, Division of Parasitic Diseases, Mailstop F42, Building 102, Room 2113, 4770 Burford Highway NE, Atlanta, GA 30306, USA.
| | | |
Collapse
|
12
|
Issifou S, Rogier C, Adjagba-Olakpo M, Chabi-Worou N, Ntoumi F. Complexity and genetic diversity of Plasmodium falciparum infections in young children living in urban areas of Central and West Africa. Parasitol Res 2003; 90:423-8. [PMID: 12759745 DOI: 10.1007/s00436-003-0854-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2002] [Accepted: 01/29/2003] [Indexed: 10/26/2022]
Abstract
A site-based characterization of Plasmodium falciparum infections in children living in two malaria hyperendemic urban areas from West and Central Africa was undertaken. A total of 58 and 46 children with either asymptomatic infections or uncomplicated (symptomatic) malaria were recruited in Gabon and Benin, respectively. Parasite density, hematological factors, the genetic diversity of P. falciparum merozoite surface protein 2 (msp2) and the complexity of infections (mean number of P. falciparum genotypes per infected child) were used for this characterization. Gabonese children with uncomplicated malaria presented a higher mean axillary temperature (39.2 vs 38.6, P=0.004) and a higher geometric mean parasite density (30,538 vs 18,921, P<0.001) associated with a significantly lower hemoglobin level ( P<0.01). A higher degree of msp2 polymorphism and the complexity of P. falciparum infections were also observed in children from Gabon ( P<0.05). With a similar level of malaria transmission in both urban sites, these results suggest an impact of malaria control interventions on the dynamics of concurrent P. falciparum infections.
Collapse
Affiliation(s)
- Saadou Issifou
- Centre Régional pour le Développement et la Santé (CREDESA/SSP), Cotonou, Benin
| | | | | | | | | |
Collapse
|
13
|
Abstract
Molecular techniques offer new approaches for malaria field trials, particularly PCR techniques, which facilitate accurate diagnosis of Plasmodium infections and increase the power of estimates of vaccine effects on malaria prevalence or incidence. Molecular methods also help to assess selective effects of vaccines. Longitudinal genotyping data can be used to initiate novel analyses of parasite dynamics, including estimates of incidence of infection with individual parasite clones and duration of infections. In addition, high-throughput methods can be used to apply these techniques routinely in randomized controlled trials, as well as programme-based evaluations of malaria control.
Collapse
Affiliation(s)
- Ingrid Felger
- Swiss Tropical Institute, Socinstrasse 57, PO Box 4002, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Four types of malaria vaccine, SPf66 and MSP/RESA vaccines (against the asexual stages of the Plasmodium parasite) and CS-NANP and RTS,S vaccines (against the sporozoite stages), have been tested in randomized controlled trials in endemic areas. OBJECTIVES To assess malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae and P ovale in preventing infection, disease and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group trials register (July 2002), the Cochrane Controlled Trials Register (The Cochrane Library Issue 2, 2002), MEDLINE (1966 to July 2002), EMBASE (1980 to May 2002), Science Citation Index (1981 to July 2002), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized controlled trials comparing vaccines against Plasmodium falciparum, P. vivax, P. malariae or P. ovale with placebo or routine antimalarial control measures in people of any age receiving a challenge malaria infection. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed trial quality and extracted data. MAIN RESULTS Eighteen efficacy trials involving 10,971 participants were included. There were ten trials of SPf66 vaccine, four trials of CS-NANP vaccines, two trials of RTS,S vaccine, and two of MSP/RESA vaccine. Results with SPf66 in reducing new malaria infections (P. falciparum) were heterogeneous: it was not effective in four African trials (Peto odds ratio (OR) 0.96, 95% confidence interval (CI) 0.81 to 1.14), but in five trials outside Africa the number of first attacks was reduced (Peto OR 0.77, 95% CI 0.67 to 0.88). Trials to date have not indicated any serious adverse events with SPf66 vaccine. In three trials of CS-NANP vaccines, there was no evidence for protection by these vaccines against P. falciparum malaria (Peto OR 1.12, 95% CI 0.64 to 1.93). In a small trial in non-immune adults in the USA, RTS,S gave strong protection against experimental infection with P. falciparum. In a trial in an endemic area of the Gambia in semi-immune people, there was a reduction in clinical malaria episodes in the second year of follow up, corresponding to a vaccine efficacy of 66% (CI 14% to 85%). In a trial in Papua New Guinea, MSP/RESA had no protective effect against episodes of clinical malaria. There was evidence of an effect on parasite density, but this differed according to whether the participants had been pretreated with sulfadoxine/pyrimethamine or not. The prevalence of infections with the parasite subtype of MSP2 in the vaccine was reduced compared with the other subtype (Peto OR 0.35, CI 0.23 to 0.53). REVIEWER'S CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in other regions. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified. There was not enough evidence to evaluate the use of CS-NANP vaccines. The RTS,S vaccine showed promising result, as did the MSP/RESA vaccine, but it should include the other main allelic form of MSP2. The MSP/RESA trial demonstrated that chemotherapy during a vaccine trial may reduce vaccine efficacy, and trials should consider very carefully whether this practice is justified.
Collapse
Affiliation(s)
- P Graves
- 1400 W. Oak Street, Fort Collins, CO 80521, USA.
| | | |
Collapse
|
15
|
Abstract
This review discusses how the use of molecular genetic techniques such as the polymerase chain reaction are helping in the management and prevention of malaria.
Collapse
Affiliation(s)
- Brian Greenwood
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
16
|
Kashala O, Amador R, Valero MV, Moreno A, Barbosa A, Nickel B, Daubenberger CA, Guzman F, Pluschke G, Patarroyo ME. Safety, tolerability and immunogenicity of new formulations of the Plasmodium falciparum malaria peptide vaccine SPf66 combined with the immunological adjuvant QS-21. Vaccine 2002; 20:2263-77. [PMID: 12009282 DOI: 10.1016/s0264-410x(02)00115-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SPf66 is a synthetic malaria peptide vaccine, which has been widely tested in combination with aluminium hydroxide (alum) as the adjuvant. Since this formulation is weakly immunogenic, we sought to improve its immunogenicity by using the saponin adjuvant QS-21. SPf66/QS-21 vaccines were evaluated for safety, tolerability and immunogenicity in healthy adults. The vaccines were found to be safe in 87/89 (97.8%) volunteers studied. However, two individuals developed severe vaccine allergy following the third dose of 1/3 SPf66/QS-21 formulations tested. Vaccine formulations containing QS-21 induced a 45- to over 200-fold increase in anti-SPf66 IgG titres over the alum formulation after the second and third doses, respectively. Anti-SPf66 antibody from some subjects reacted against asexual blood stage parasites, as demonstrated by immunofluorescence and immunoblotting. Antibody responses generated by the QS-21 formulations were of longer duration compared to those evoked by the alum formulation. While SPf66/alum has been found to induce only CD4+ T cell response, the QS-21 formulations exhibited the potential to also elicit SPf66-specific CD8+ responses. These observations demonstrate that the use of QS-21 can substantially enhance the immunogenicity of peptide vaccines, such as SPf66.
Collapse
Affiliation(s)
- Oscar Kashala
- Aquila Biopharmaceuticals Inc., Framingham, MA 01702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alloueche A, Silveira H, Conway DJ, Bojang K, Doherty T, Cohen J, Pinder M, Greenwood BM. High-throughput sequence typing of T-cell epitope polymorphisms in Plasmodium falciparum circumsporozoite protein. Mol Biochem Parasitol 2000; 106:273-82. [PMID: 10699256 DOI: 10.1016/s0166-6851(99)00221-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We report a method for typing polymorphisms at the T-cell epitopes within the Th2R and Th3R regions of the Plasmodium falciparum circumsporozoite protein (CSP). This method combines the use of PCR and sequence specific oligonucleotide probes (PCR-SSOP), and allows the identification of single nucleotide polymorphisms in these epitope regions. PCR-SSOP is a robust and a high-throughput sequence typing technique which has the same specificity and fidelity as direct sequencing. This method has been developed specifically for the assessment of the protective efficacy of RTS,S/SBAS2 vaccine against the 3D7 strain of P. falciparum (RTS,S/SBAS2 vaccine contains a part of the 3D7 CSP protein) in a phase IIb trial in Gambia which has been completed recently. PCR-SSOP could be used to determine the allelic frequencies of other parasite antigens and their geographical distribution.
Collapse
Affiliation(s)
- A Alloueche
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang G, Daubenberger C, Huber W, Matile H, Tanner M, Pluschke G. Sequence diversity of the merozoite surface protein 1 of Plasmodium falciparum in clinical isolates from the Kilombero District, Tanzania. Acta Trop 2000; 74:51-61. [PMID: 10643908 DOI: 10.1016/s0001-706x(99)00045-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Merozoite surface protein 1 of Plasmodium falciparum (PfMSP-1) is regarded as a key candidate antigen for malaria vaccine development. It exhibits significant antigenic polymorphism and has been divided into 17 building blocks based on the analysis of sequence diversity. Differences in the antigenic composition of PfMSP-1 in local P. falciparum populations may result in differences in the efficacy of vaccines, which contain sequences of particular allelic variant(s) of PfMSP-1. To contribute to the required knowledge of genetic diversity of malaria parasites in geographically diverse regions, we have used the polymerase chain reaction (PCR) to analyze the sequence diversity of blocks 1-4 of PfMSP-1 in disease isolates from the Kilombero District in Tanzania. In the semi-conserved block 1, in which dimorphic amino acid variances have been described at three positions, we found three of the five previously described combinations of these three pairs of amino acids. In addition one combination was found, which has not been reported before in parasite isolates from different locations worldwide. Of the two sequence variants, which were dominating, one (S44-Q47-V52) corresponded to the 83.1 sequence incorporated into the SPf66 malaria peptide vaccine, while the other one (G44-H47-I52) differed from the previous in all three dimorphic amino acids. The partial protection observed in a phase III SPf66 trial conducted in the Kilombero District in children aged 1-5, thus does not seem to be associated with a clear dominance of favourable variants of block 1 of PfMSP-1 in this area. All three different principle types of block 2, the major polymorphic region of PfMSP-1, were found in the Tanzanian isolates. Most of the sequences contained K1-type tripeptide repeats, but clones with MAD20-type repeats or no repetitive sequence (RO33-type block 2) were also present. K1- and MAD20-type tripeptide repeat motifs were never mixed within one parasite clone. In one sequence a hexapeptide repeat was found at the end of block 2, which has not been reported before. Dimorphism in 13 of the 17 previously described variable positions of the semi-conserved block 3 and three of four recombination types of block 4 (K/K, M/K and M/M) were found among the Tanzanian isolates. Apart from previously described dimorphic amino acid positions, polymorphism was rare in the non-repeated building blocks. Selection and spreading of parasite variants, which contain amino acid exchanges at other than the dimorphic positions thus, is not a common event. Parasite isolates frequently harboured more than one PfMSP-1 allele. Three of the four heterogeneous isolates analysed contained two different general types of sequences. One isolate contained at least four distinct clones, demonstrating the high endemicity of malaria in the Kilombero District, which is a well-established site for malaria vaccine field trials.
Collapse
Affiliation(s)
- G Jiang
- Swiss Tropical Institute, Basel
| | | | | | | | | | | |
Collapse
|