1
|
da Silva JR, Ramos MJ, Fernandes PA. Elucidating on the quaternary structure of viper venom phospholipase A 2 enzymes in aqueous solution. Biochimie 2025; 232:1-14. [PMID: 39800211 DOI: 10.1016/j.biochi.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
This study focuses on the quaternary structure of the viper-secreted phospholipase A2 (PLA2), a central toxin in viper envenomation. PLA2 enzymes catalyze the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials. These inhibitors likely bind to the enzyme in the aqueous cytosol prior to membrane-binding. Thus, understanding its controversial solution structure is key for drug design. Crystal structures of PLA2 in the PDB show at least four different dimeric conformations, the most well-known being "extended" and "compact". This variability among enzymes with >50 % sequence identity raises questions about their transferability to aqueous solution. Therefore, we performed extensive molecular dynamics (MD) simulations of several PLA2 enzymes in water to determine their quaternary structure under physiological conditions. The MD simulations strongly indicate that PLA2 enzymes adopt a "semi-compact" conformation in cytosol, a hybrid between extended and compact conformations. To our knowledge, this is the first study that determines the most favorable dimeric conformation of PLA2 enzymes in solution, providing a basis for advancements in snakebite envenoming treatment. Recognizing snakebite envenoming as a neglected tropical disease has driven the search for efficient, affordable alternatives to the current antivenoms. Therefore, understanding the main drug targets within snake venom is crucial to this achievement.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
de Oliveira ALN, Lacerda MT, Ramos MJ, Fernandes PA. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins (Basel) 2024; 16:71. [PMID: 38393149 PMCID: PMC10893444 DOI: 10.3390/toxins16020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Pedro A. Fernandes
- Requimte-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-000 Porto, Portugal; (A.L.N.d.O.); (M.T.L.); (M.J.R.)
| |
Collapse
|
3
|
Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans 2021; 48:719-731. [PMID: 32267491 PMCID: PMC7200639 DOI: 10.1042/bst20200110] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
Collapse
|
4
|
Souza BBP, Cardozo Fh JL, Murad AM, Prates MV, Coura MM, Brand GD, Barbosa EA, Bloch C. Identification and characterization of phospholipases A2 from the skin secretion of Pithecopus azureus anuran. Toxicon 2019; 167:10-19. [DOI: 10.1016/j.toxicon.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 06/03/2019] [Indexed: 11/26/2022]
|
5
|
Vindas J, Carrera Y, Lomonte B, Gutiérrez JM, Calvete JJ, Sanz L, Fernández J. A novel pentameric phospholipase A2 myotoxin (PophPLA2) from the venom of the pit viper Porthidium ophryomegas. Int J Biol Macromol 2018; 118:1-8. [DOI: 10.1016/j.ijbiomac.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
|
6
|
Jin NZ, Gopinath SC. Potential blood clotting factors and anticoagulants. Biomed Pharmacother 2016; 84:356-365. [DOI: 10.1016/j.biopha.2016.09.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
|
7
|
Du QS, Trabi M, Richards RS, Mirtschin P, Madaras F, Nouwens A, Zhao KN, de Jersey J, Lavin MF, Guddat LW, Masci PP. Characterization and structural analysis of a potent anticoagulant phospholipase A2 from Pseudechis australis snake venom. Toxicon 2016; 111:37-49. [DOI: 10.1016/j.toxicon.2015.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/24/2022]
|
8
|
Aird SD, Aggarwal S, Villar-Briones A, Tin MMY, Terada K, Mikheyev AS. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genomics 2015; 16:647. [PMID: 26315097 PMCID: PMC4552096 DOI: 10.1186/s12864-015-1832-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
Background While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Results Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (<0.05 %). Hybrids produced most proteins found in both parental venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Conclusions Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive evolution of venoms may occur most rapidly through changes in expression levels that alter fitness contributions, and thus the strength of selection acting on specific secretome components. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1832-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven D Aird
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Shikha Aggarwal
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan. .,University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Alejandro Villar-Briones
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Mandy Man-Ying Tin
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Kouki Terada
- Okinawa Prefectural Institute of Health and the Environment, Biology and Ecology Group, 2003 Ozato, Ozato, Nanjo-shi, Okinawa, 901-1202, Japan.
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan. .,Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
9
|
Damico DC, Vassequi-Silva T, Torres-Huaco F, Nery-Diez A, de Souza R, Da Silva S, Vicente C, Mendes C, Antunes E, Werneck C, Marangoni S. LmrTX, a basic PLA2 (D49) purified from Lachesis muta rhombeata snake venom with enzymatic-related antithrombotic and anticoagulant activity. Toxicon 2012; 60:773-81. [DOI: 10.1016/j.toxicon.2012.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 11/24/2022]
|
10
|
Purification, characterization and bactericidal activities of basic phospholipase A2 from the venom of Agkistrodon halys (Chinese pallas). Biochimie 2008; 90:1372-88. [DOI: 10.1016/j.biochi.2008.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 04/11/2008] [Indexed: 11/18/2022]
|
11
|
Samy RP, Gopalakrishnakone P, Chow VTK, Ho B. Viper metalloproteinase (Agkistrodon halys pallas) with antimicrobial activity against multi-drug resistant human pathogens. J Cell Physiol 2008; 216:54-68. [PMID: 18297685 DOI: 10.1002/jcp.21373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metalloproteinases are abundant enzymes in crotalidae and viperidae snake venoms. Snake venom metalloproteinases (SVMPs) comprise a family of zinc-dependent enzymes, which display many different biological activities. A 23.1 kDa protein was isolated from Agkistrodon halys (pallas, Chinese viper) snake venom. The toxin is a single chain polypeptide with a molecular weight of 23146.61 and an N-terminal sequence (MIQVLLVTICLAVFPYQGSSIILES) relatively similar to that of other metalloprotein-like proteases isolated from the snake venoms of the Viperidae family. The antibacterial effect of Agkistrodon halys metalloproteinase (AHM) on Burkholderia pseudomallei (strains TES and KHW), Escherichia coli, Enterobacter aerogenes, Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacterium) was studied at a concentration 120 microM. Interestingly, we found that the metalloproteinase exhibited antibacterial properties and was more active against S. aureus, P. vulgaris, P. mirabilis and multi-drug resistant B. pseudomallei (strain KHW) bacteria. AHM variants with high bacteriostatic activity (MIC 1.875-60 microM) also tended to be less cytotoxic against U-937 human monocytic cells up to 1 mM concentrations. These results suggest that this metalloprotein exerts its antimicrobial effect by altering membrane packing and inhibiting mechanosensitive targets.
Collapse
Affiliation(s)
- Ramar Perumal Samy
- Venom and Toxin Research Programme, Yong Loo Lin School of Medicine, Department of Anatomy, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
12
|
Rapid Evolution by Positive Selection and Gene Gain and Loss: PLA2 Venom Genes in Closely Related Sistrurus Rattlesnakes with Divergent Diets. J Mol Evol 2008; 66:151-66. [DOI: 10.1007/s00239-008-9067-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/26/2007] [Accepted: 12/24/2007] [Indexed: 01/10/2023]
|
13
|
Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC STRUCTURAL BIOLOGY 2007; 7:82. [PMID: 18062812 PMCID: PMC2248580 DOI: 10.1186/1472-6807-7-82] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
Abstract
Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.
Collapse
|
14
|
Abstract
Over the last several decades, research on snake venom toxins has provided not only new tools to decipher molecular details of various physiological processes, but also inspiration to design and develop a number of therapeutic agents. Blood circulation, particularly thrombosis and haemostasis, is one of the major targets of several snake venom proteins. Among them, anticoagulant proteins have contributed to our understanding of molecular mechanisms of blood coagulation and have provided potential new leads for the development of drugs to treat or to prevent unwanted clot formation. Some of these anticoagulants exhibit various enzymatic activities whereas others do not. They interfere in normal blood coagulation by different mechanisms. Although significant progress has been made in understanding the structure-function relationships and the mechanisms of some of these anticoagulants, there are still a number of questions to be answered as more new anticoagulants are being discovered. Such studies contribute to our fight against unwanted clot formation, which leads to death and debilitation in cardiac arrest and stroke in patients with cardiovascular and cerebrovascular diseases, arteriosclerosis and hypertension. This review describes the details of the structure, mechanism and structure-function relationships of anticoagulant proteins from snake venoms.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore.
| |
Collapse
|
15
|
Kini RM. Structure–function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 2005; 45:1147-61. [PMID: 15922780 DOI: 10.1016/j.toxicon.2005.02.018] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phospholipase A(2) (PLA(2)) enzymes from snake venom are toxic and induce a wide spectrum of pharmacological effects, despite similarity in primary, secondary and tertiary structures and common catalytic properties. Thus, the structure-function relationships and the mechanism of this group of small proteins are subtle, complex and intriguing challenges. This review, taking the PLA(2) enzymes from spitting cobra (Naja nigricollis) venom as examples, describes the mechanism of anticoagulant effects. The strongly anticoagulant CM-IV inhibits both the extrinsic tenase and prothrombinase complexes, whereas the weakly anticoagulant PLA(2) enzymes (CM-I and CM-II) inhibit only the extrinsic tenase complex. CM-IV binds to factor Xa and interferes in its interaction with factor Va and the formation of prothrombinase complex. In contrast, CM-I and CM-II do not affect the formation of prothrombinase complex. In addition, CM-IV inhibits the extrinsic tenase complex by a combination of enzymatic and nonenzymatic mechanisms, while CM-I and CM-II inhibit by only enzymatic mechanism. These functional differences explain the disparity in the anticoagulant potency of N. nigricollis PLA(2) enzymes. Similarly, human secretory enzyme binds to factor Xa and inhibits the prothrombinase complex. We predicted the anticoagulant region of PLA(2) enzymes using a systematic and direct comparison of amino acid sequences. This region between 54 and 77 residues is basic in the strongly anticoagulant PLA(2) enzymes and neutral or negatively charged in weakly and non-anticoagulant enzymes. The prediction is validated independently by us and others using both site directed mutagenesis and synthetic peptides. Thus, strongly anticoagulant CM-IV binds to factor Xa (its target protein) through the specific anticoagulant site on its surface. In contrast, weakly anticoagulant enzymes, which lack the anticoagulant region fail to bind specifically to the target protein, factor Xa in the coagulation cascade. Thus, these studies strongly support the target model which suggests that protein-protein interaction rather than protein-phospholipid interaction determines the pharmacological specificity of PLA(2) enzymes.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Tsai IH, Wang YM, Chen YH, Tsai TS, Tu MC. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): molecular characterization, geographic variations and evidence of multiple ancestries. Biochem J 2004; 377:215-23. [PMID: 12959640 PMCID: PMC1223832 DOI: 10.1042/bj20030818] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 08/21/2003] [Accepted: 09/05/2003] [Indexed: 11/17/2022]
Abstract
Phospholipases A2 (PLA2s) were purified from the Trimeresurus stejnegeri venom obtained from various localities in Taiwan and three provinces in China, by gel filtration followed by reversed-phase HPLC. The precise molecular mass and N-terminal sequence of each PLA2 were determined. In addition to the six previously documented PLA2 isoforms of this species, we identified ten novel isoforms. The venom gland cDNAs of individual specimens of the viper from four localities were used for PCR and subsequent cloning of the PLA2s. The molecular masses and partial sequences of most of the purified PLA2s matched with those deduced from a total of 13 distinct cDNA sequences of these clones. Besides the commonly known Asp49 or Lys-49 PLA2s of crotalid venoms, a novel type of PLA2 with Asn-49 substitution at the Ca2+-binding site was discovered. This type of PLA2 is non-catalytic, but may cause local oedema and appears to be a venom marker of many tree vipers. In particular, we showed that T. stejnegeri displayed high geographic variations of the PLA2s within and between their Taiwanese and Chinese populations, which can be explained by geological isolation and prey ecology. A phylogenetic tree of the acidic venom PLA2s of this species and other related Asian vipers reveals that T. stejnegeri contains venom genes related to those from several sympatric pit vipers, including the genera Tropedolaemus and Gloydius besides the Trimeresurus itself. Taken together, these findings may explain the exceptionally high variations in the venom as well as the evolutionary advantage of this species.
Collapse
Affiliation(s)
- Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, P.O. Box 23-106, Taipei 107, Taiwan.
| | | | | | | | | |
Collapse
|
17
|
Zhang HL, Xu SJ, Wang QY, Song SY, Shu YY, Lin ZJ. Structure of a cardiotoxic phospholipase A(2) from Ophiophagus hannah with the "pancreatic loop". J Struct Biol 2002; 138:207-15. [PMID: 12217659 DOI: 10.1016/s1047-8477(02)00022-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The crystal structure of an acidic phospholipase A(2) from Ophiophagus hannah (king cobra) has been determined by molecular replacement at 2.6-A resolution to a crystallographic R factor of 20.5% (R(free)=23.3%) with reasonable stereochemistry. The venom enzyme contains an unusual "pancreatic loop." The conformation of the loop is well defined and different from those in pancreas PLA(2), showing its structural variability. This analysis provides the first structure of a PLA(2)-type cardiotoxin. The sites related to the cardiotoxic and myotoxic activities are explored and the oligomer observed in the crystalline state is described.
Collapse
Affiliation(s)
- Hai-Long Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, 100101, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Eriksson M, Christensen K, Lindahl TL, Larsson A. Pharmaceutical thrombosis prevention in cardiovascular disease. Expert Opin Investig Drugs 2002; 11:553-63. [PMID: 11922863 DOI: 10.1517/13543784.11.4.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in modern society. As a result of this, great efforts have been made to establish regimens for prophylaxis and treatment of such disorders. Pharmacological intervention is also a prerequisite for the success of other therapeutic approaches, e.g. coronary angioplasty. Prevention of platelet aggregation is a goal that can be achieved by counteracting various receptors on the platelet surface. The main attentions for such interventions are focused on inhibiting the glycoprotein IIb/IIIa receptor. So far, they are limited to intravenous usage. Adenosine diphosphate receptor inhibitors are available for intravenous and oral usage. Their effect is, at least partly, also exerted via the counteraction of adenosine diphosphate-mediated activation of the glycoprotein IIb/IIIa complex. An oral direct thrombin inhibitor is under clinical evaluation. This review focuses on atherothrombotic disorders, but recent advances within new fields of anticoagulation (i.e., treatment of severe septic shock and a novel approach to prevent thromboembolic disorder during surgery) should not be overlooked.
Collapse
Affiliation(s)
- Mats Eriksson
- Department of Surgical Sciences, Institute of Anesthesiology and Intensive Care, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
19
|
Oliveira DG, Toyama MH, Novello JC, Beriam LOS, Marangoni S. Structural and functional characterization of basic PLA2 isolated from Crotalus durissus terrificus venom. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:161-8. [PMID: 12018617 DOI: 10.1023/a:1015320616206] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The venom of Crotalus durissus terrificus was fractionated by reverse-phase HPLC to obtain crotapotins (F5 and F7) and PLA2 (F15, F16, and F17) of high purity. The phospholipases A2 (PLA2S) and crotapotins showed antimicrobial activity against Xanthomonas axonopodis pv. passiflorae, although the unseparated crotoxin did not. The F17 of the PLA2 also revealed significant anticoagulant activity, althrough for this to occur the presence of Glu 53 and Trp 61 is important. The F17 of the PLA2 showed allosteric behavior in the presence of a synthetic substrate. The amino acid sequence of this PLA2 isoform, determined by automatic sequencing, was HLLQFNKMLKFETRK NAVPFYAFGCYCGWGGQRRPKDATDRCCFVHDCCYEKVTKCNTKWDFYRYSLKSGY ITCGKGTWCKEQICECDRVAAECLRRSLSTYKNEYMFYPDSRCREPSETC. Analysis showed that the sequence of this PLA2 isoform differed slightly from the amino acid sequence of the basic crotoxin subunit reported in the literature. The homology with other crotalid PLA2 cited in the literature varied from 60% to 90%. The pL was estimated to be 8.15, and the calculated molecular weight was 14664.14 as determined by Tricine SDS-PAGE, two-dimensional electrophoresis, and MALDI-TOFF. These results also suggested that the enzymatic activity plays an important role in the bactericidal effect of the F17 PLA2 as well as that of anticoagulation, although other regions of the molecule may also be involved in this biological activity.
Collapse
Affiliation(s)
- D G Oliveira
- Departamento de Bioquimica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), SP, Brasil
| | | | | | | | | |
Collapse
|
20
|
Tsai IH, Chen YH, Wang YM, Liau MY, Lu PJ. Differential Expression and Geographic Variation of the Venom Phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus. Arch Biochem Biophys 2001; 387:257-64. [PMID: 11370849 DOI: 10.1006/abbi.2000.2229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the geographic variations in venoms of two medically important pitvipers, we have purified and characterized the phospholipases A2 (PLA2s) from the pooled venoms of Calloselasma rhodostoma from Malaysia, Thailand, Indonesia, and Vietnam, as well as the individual venom of Trimeresurus mucrosquamatus collected from both North and South Taiwan. Enzymatic and pharmacological activities of the purified PLA2s were also investigated. The complete amino acid sequences of the purified PLA2s were determined by sequencing the corresponding cDNAs from the venom gland and shown to be consistent with their molecular weight data and the N-terminal sequences. All the geographic venom samples of C. rhodostoma contain a major noncatalytic basic PLA2-homolog and two or three acidic PLA2s in different proportions. These acidic PLA2s contain Glu6-substitutions and show distinct inhibiting specificities toward the platelets from human and rabbit. We also found that the T. mucrosquamatus venoms from North Taiwan but not those from South Taiwan contain an Arg6-PLA2 designated as TmPL-III. Its amino acid sequence is reported for the first time. This enzyme is structurally almost identical to the low- or nonexpressed Arg6-PLA2 from C. rhodostoma venom gland, and thus appears to be a regressing venom component in both of the Asian pitvipers.
Collapse
Affiliation(s)
- I H Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|