1
|
Michálek O, Walker AA, Šedo O, Zdráhal Z, King GF, Pekár S. Composition and toxicity of venom produced by araneophagous white-tailed spiders (Lamponidae: Lampona sp.). Sci Rep 2022; 12:21597. [PMID: 36517485 PMCID: PMC9751281 DOI: 10.1038/s41598-022-24694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ondrej Šedo
- Research Group Proteomics, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Research Group Proteomics, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
2
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
3
|
Proteotranscriptomic Insights into the Venom Composition of the Wolf Spider Lycosa tarantula. Toxins (Basel) 2020; 12:toxins12080501. [PMID: 32764230 PMCID: PMC7471975 DOI: 10.3390/toxins12080501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 01/31/2023] Open
Abstract
Spider venoms represent an original source of novel compounds with therapeutic and agrochemical potential. Whereas most of the research efforts have focused on large mygalomorph spiders, araneomorph spiders are equally promising but require more sensitive and sophisticated approaches given their limited size and reduced venom yield. Belonging to the latter group, the genus Lycosa ("wolf spiders") contains many species widely distributed throughout the world. These spiders are ambush predators that do not build webs but instead rely strongly on their venom for prey capture. Lycosa tarantula is one of the largest species of wolf spider, but its venom composition is unknown. Using a combination of RNA sequencing of the venom glands and venom proteomics, we provide the first overview of the peptides and proteins produced by this iconic Mediterranean spider. Beside the typical small disulfide rich neurotoxins, several families of proteins were also identified, including cysteine-rich secretory proteins (CRISP) and Hyaluronidases. Proteomic analysis of the electrically stimulated venom validated 30 of these transcriptomic sequences, including nine putative neurotoxins and eight venom proteins. Interestingly, LC-MS venom profiles of manual versus electric stimulation, as well as female versus male, showed some marked differences in mass distribution. Finally, we also present some preliminary data on the biological activity of L. tarantula crude venom.
Collapse
|
4
|
Pain modulatory properties of Phoneutria nigriventer crude venom and derived peptides: A double-edged sword. Toxicon 2020; 185:120-128. [PMID: 32668276 DOI: 10.1016/j.toxicon.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Phoneutria nigriventer venom (PNV) is a complex mixture of toxins exerting multiple pharmacological effects that ultimately result in severe local pain at the site of the bite. It has been proposed that the PNV-induced pain is mediated by both peripheral and central mechanisms. The nociception triggered by PNV is peripherally mediated by the activation of B2, 5-HT4, NMDA, AMPA, NK1, and NK2 receptors, as well as TTXS-Na+, ASIC, and TRPV1 channels. The activation of tachykinin, glutamate and CGRP receptors along with the production of inflammatory mediators are, at least partially, responsible for the central component of pain. Despite its well established pro-nociceptive properties, PNV contains some toxins with antinociceptive activity, which have been studied in the last few years. The toxins ω-CNTX-Pn4a, ω-CNTX-Pn2a, ω-CNTX-Pn3a, κ-CNTX-Pn1a, U7-CNTX-Pn1a, δ-CNTX-Pn1a, and Γ-CNTX-Pn1a from PNV, as well as the semi-synthetic peptide PnPP-19 have been tested in different experimental models of pain showing consistent antinociceptive properties. This review aims to discuss the pro- and antinociceptive actions of PNV and its toxins, highlighting possible mechanisms involved in these apparently dualistic properties.
Collapse
|
5
|
Cordellier M, Schneider JM, Uhl G, Posnien N. Sex differences in spiders: from phenotype to genomics. Dev Genes Evol 2020; 230:155-172. [PMID: 32052129 PMCID: PMC7127994 DOI: 10.1007/s00427-020-00657-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 01/26/2023]
Abstract
Sexual reproduction is pervasive in animals and has led to the evolution of sexual dimorphism. In most animals, males and females show marked differences in primary and secondary sexual traits. The formation of sex-specific organs and eventually sex-specific behaviors is defined during the development of an organism. Sex determination processes have been extensively studied in a few well-established model organisms. While some key molecular regulators are conserved across animals, the initiation of sex determination is highly diverse. To reveal the mechanisms underlying the development of sexual dimorphism and to identify the evolutionary forces driving the evolution of different sexes, sex determination mechanisms must thus be studied in detail in many different animal species beyond the typical model systems. In this perspective article, we argue that spiders represent an excellent group of animals in which to study sex determination mechanisms. We show that spiders are sexually dimorphic in various morphological, behavioral, and life history traits. The availability of an increasing number of genomic and transcriptomic resources and functional tools provides a great starting point to scrutinize the extensive sexual dimorphism present in spiders on a mechanistic level. We provide an overview of the current knowledge of sex determination in spiders and propose approaches to reveal the molecular and genetic underpinnings of sexual dimorphism in these exciting animals.
Collapse
Affiliation(s)
- Mathilde Cordellier
- Department of Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| | - Jutta M Schneider
- Department of Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| | - Gabriele Uhl
- Zoological Institute and Museum, Research Group General and Systematic Zoology, Universität Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany.
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
González-Gómez JC, Valenzuela-Rojas JC, García LF, Franco Pérez LM, Guevara G, Buitrago S, Cubillos A, Van Der Meijden A. Sexual dimorphism in the biomechanical and toxicological performance in prey incapacitation of two morphologically distinct scorpion species (Chactas sp. and Centruroides sp.). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Morphological differences between the sexes are a common feature in many groups of animals and can have important ecological implications for courtship, mating, access to prey and, in some cases, intersex niche partitioning. In this study, we evaluated the role of sexual dimorphism in the performance of the two structures that mediate the ability to access prey, the pinchers or chelae and the venomous stinger, in two species of scorpions with contrasting morphologies: Chactas sp., which has marked sexual dimorphism in the chelae, and Centruroides sp., which does not have such marked dimorphism in the chelae. We evaluated aspects such as chela pinch force, toxicity to prey (LD50) and the volume of venom in males and females of each species. We found significant differences between males and females of Chactas sp. in the chela pinch force, volume of venom and LD50. In contrast, for Centruroides sp., no differences between males and females were found in any of these traits. We discuss several potential selective regimes that could account for the pattern observed.
Collapse
Affiliation(s)
- Julio César González-Gómez
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Juan Carlos Valenzuela-Rojas
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Luis Fernando García
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
- Grupo Multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este, Universidad de la República, Simón del Pino, 1132 Treinta y Tres, Uruguay
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué, Colombia
| | - Giovany Guevara
- Grupo de Investigación en Zoología (GIZ), Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Sandra Buitrago
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Allison Cubillos
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Arie Van Der Meijden
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
- CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, Portugal
| |
Collapse
|
7
|
Preißler K, Gippner S, Lüddecke T, Krause ET, Schulz S, Vences M, Steinfartz S. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J Zool (1987) 2019. [DOI: 10.1111/jzo.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Preißler
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| | - S. Gippner
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - T. Lüddecke
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Animal Venomics Research Group Fraunhofer Institute for Molecular Biology and Applied Ecology Gießen Germany
| | - E. T. Krause
- Institute of Animal Welfare and Animal Husbandry Friedrich‐Loeffler‐Institut Celle Germany
| | - S. Schulz
- Institute of Organic Chemistry Technische Universität Braunschweig Braunschweig Germany
| | - M. Vences
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - S. Steinfartz
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| |
Collapse
|
8
|
Abstract
The rate of discovery of new spider species greatly exceeds the rate of spider venom characterisation, leading to an increasing number of species with unstudied venoms. However, recent advances in proteomics and genomics that enable the study of venoms from smaller species has expanded the accessible taxonomic range. Thus, although the number of unstudied spider venoms is likely to further increase, future research should focus on the characterisation of venoms and toxins from previously unstudied spider families. The rate of discovery of new spider species by far exceeds the rate of spider venom characterisation. Advances in proteomics and genomics techniques now allow the study of venoms from a much wider taxonomic range. Closing the taxonomic gap at the family level should be the main focus for toxinologists over the next decade.
Collapse
Affiliation(s)
- Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
9
|
Lauria PSS, Casais-E-Silva LL, do Espírito-Santo RF, de Souza CMV, Zingali RB, Caruso MB, Soares MBP, Villarreal CF. Pain-like behaviors and local mechanisms involved in the nociception experimentally induced by Latrodectus curacaviensis spider venom. Toxicol Lett 2018; 299:67-75. [PMID: 30261224 DOI: 10.1016/j.toxlet.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to characterize the behavioral manifestations of nociception and the local mechanisms involved with the nociceptive response elicited by Latrodectus curacaviensis venom (LCV) in mice. After the intraplantar LCV inoculation, spontaneous nociception, mechanical and thermal nociceptive thresholds, motor performance, edema and cytokine levels were evaluated using von Frey filaments, hot/cold plate, rota-rod, plethismometer and ELISA, respectively. Analysis of LCV was performed by SDS-PAGE and chromatography. Intraplantar injection of LCV (1-100 ng/paw) induced intense and heat-sensitive spontaneous nociception, mediated by serotonin and bradykinin receptors, TRPV1 channels, as well as by transient local inflammation. LCV (0.1-10 ng/paw) induced mechanical allodynia, which was reduced by the local pretreatment with H1 receptor or TRPV1 antagonists. Corroborating the TRPV1 involvement, in thermal nociception assays, LCV induced a similar response to that of capsaicin, a TRPV1 agonist, facilitating the response to noxious hot stimuli and inhibiting the response to cold noxious stimulation. LCV promoted mast cell degranulation, increased IL-1β paw levels, but did not produce a relevant edematogenic effect. Analysis of LCV components showed a predominance of high molecular weight proteins. This work provides the first mechanistic hypothesis to explain the local pain induced by LCV, the most frequent clinical symptom of human envenomation.
Collapse
Affiliation(s)
| | | | | | | | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marjolly Brígido Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz FIOCRUZ, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil
| | - Cristiane Flora Villarreal
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil; Instituto Gonçalo Moniz FIOCRUZ, Salvador, BA, Brazil.
| |
Collapse
|
10
|
Zobel-Thropp PA, Bulger EA, Cordes MHJ, Binford GJ, Gillespie RG, Brewer MS. Sexually dimorphic venom proteins in long-jawed orb-weaving spiders ( Tetragnatha) comprise novel gene families. PeerJ 2018; 6:e4691. [PMID: 29876146 PMCID: PMC5985773 DOI: 10.7717/peerj.4691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication.
Collapse
Affiliation(s)
- Pamela A Zobel-Thropp
- Department of Biology, Lewis & Clark College, Portland, OR, United States of America
| | - Emily A Bulger
- Division of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States of America
| | - Greta J Binford
- Department of Biology, Lewis & Clark College, Portland, OR, United States of America
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
11
|
Gendreau KL, Haney RA, Schwager EE, Wierschin T, Stanke M, Richards S, Garb JE. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. BMC Genomics 2017; 18:178. [PMID: 28209133 PMCID: PMC5314461 DOI: 10.1186/s12864-017-3551-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/02/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. RESULTS We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. CONCLUSIONS The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in house spiders relative to black widows, along with the absence of a vertebrate-targeting α-latrotoxin gene in the house spider genome, may account for the extreme potency of black widow venom.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.,Department of Biological Sciences, Virginia Tech, Biocomplexity Institute, Blacksburg, VA, 24061, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Torsten Wierschin
- Institut für Mathematik und Informatik, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany
| | - Mario Stanke
- Institut für Mathematik und Informatik, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
12
|
White J, Weinstein SA. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon 2014; 87:76-80. [DOI: 10.1016/j.toxicon.2014.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/09/2014] [Accepted: 05/29/2014] [Indexed: 01/22/2023]
|
13
|
|
14
|
Palagi A, Koh JM, Leblanc M, Wilson D, Dutertre S, King GF, Nicholson GM, Escoubas P. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J Proteomics 2013; 80:292-310. [DOI: 10.1016/j.jprot.2013.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
15
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
16
|
Dhananjaya BL, Nataraju A, Raghavendra Gowda CD, Sharath BK, D’souza CJM. Vanillic acid as a novel specific inhibitor of snake venom 5′-nucleotidase: A pharmacological tool in evaluating the role of the enzyme in snake envenomation. BIOCHEMISTRY (MOSCOW) 2010; 74:1315-9. [DOI: 10.1134/s0006297909120037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Moore S, Smyth WF, Gault VA, O'Kane E, McClean S. Mass spectrometric characterisation and quantitation of selected low molecular mass compounds from the venom of Haplopelma lividum (Theraphosidae). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1747-1755. [PMID: 19437423 DOI: 10.1002/rcm.4063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Arachnid venoms present a diverse and complex matrix for investigation, with their latent potential for innovative drug and pesticide design largely unrealised. The characterisation and quantification of selected low molecular mass compounds isolated from the crude venom of the Cobalt blue tarantula (Haplopelma lividum) were the objectives of this study. Fractionation of the crude venom was performed using reversed-phase high-performance liquid chromatography, with compound identification using both electrospray ionisation ion trap mass spectrometry and quadrupole time-of-flight mass spectrometry. Four compounds were identified, and quantification on a percentage dry weight basis was achieved by liquid chromatography/electrospray ionisation tandem mass spectrometry based on the formation of their corresponding product ions. Of these the most abundant component was glutamic acid, present at a level of 0.97%. Histamine and adenosine were detected at 0.14% and 0.10% dry weight, respectively, with the polyamine spermine noted in trace amounts at 0.002%. The limits of detection and quantification were established for each of the identified components. The fragmentation profile for histamine has also been proposed.
Collapse
Affiliation(s)
- Sara Moore
- The SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, UK
| | | | | | | | | |
Collapse
|
18
|
Paludo KS, Biscaia SMP, Chaim OM, Otuki MF, Naliwaiko K, Dombrowski PA, Franco CRC, Veiga SS. Inflammatory events induced by brown spider venom and its recombinant dermonecrotic toxin: a pharmacological investigation. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:323-33. [PMID: 19041422 DOI: 10.1016/j.cbpc.2008.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
Accidents involving Brown spider (Loxosceles sp.) venom produce a massive inflammatory response in injured region. This venom has a complex mixture of different toxins, and the dermonecrotic toxin is the major contributor to toxic effects. The ability of Loxosceles intermedia venom and a recombinant isoform of dermonecrotic toxin to induce edema and increase in vascular permeability was investigated. These toxins were injected into hind paws and caused a marked dose and time-dependent edema and increase in vascular permeability in mice. Furthermore, the enzymatic activity of venom toxins may be primal for these effects. A mutated recombinant isoform of dermonecrotic toxin, that has only residual enzymatic activity, was not able to induce these inflammatory events. Besides the previous heating of toxins markedly reduced the paw edema and vascular permeability showing that thermolabile constituents can trigger these effects. In addition, the ability of these venom toxins to evoke inflammatory events was partially reduced in compound 48/80-pretreated animals, suggesting that mast cells may be involved in these responses. Pretreating mice with histamine (prometazine and cetirizine) and serotonin (methysergide) receptor antagonists significantly attenuated toxins induced edema and vascular permeability. Moreover, HPLC analysis of whole venom showed the presence of histamine sufficient to induce inflammatory responses. In conclusion, these inflammatory events may result from the activation of mast cells, which in turn release bioamines and may be related to intrinsic histamine content of venom.
Collapse
|
19
|
Herzig V, Hodgson WC. Intersexual variations in the pharmacological properties of Coremiocnemis tropix (Araneae, Theraphosidae) spider venom. Toxicon 2009; 53:196-205. [DOI: 10.1016/j.toxicon.2008.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
|
20
|
Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Ueda H, McVean A. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon 2008; 53:349-59. [PMID: 19103215 DOI: 10.1016/j.toxicon.2008.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/26/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
The present study was conducted to explore the following hypotheses: (i) do scorpions (Scorpio maurus palmatus) from different biotopes exhibit intraspecific diversity in their venom? (ii) if so, is this variation associated with ecological or genetic factors, geographical distance, and/or multiple interrelated parameters? To address these questions, scorpions were collected from four geographically isolated localities in Egypt. Three of these locations are from mutually isolated pockets in the arid biotope of Southern Sinai (Wadi Sahab, El-Agramia and Rahaba plains). The fourth population was sampled from the semiarid biotope of Western Mediterranean Costal Desert (WMCD). Using reducing gel electrophoresis (SDS-PAGE), we have shown biotope-specific variation in the expression of peptides from scorpions collected from these distinct areas. WMCD sourced venom samples contain higher molecular weight protein components (219, 200, 170, 139, 116 kDa) than Southern Sinai scorpion venom samples. The Southern Sinai venom is characterized by the presence of 11 protein bands (93-0.58 kDa) that are not mirrored in the individual venom samples of WMCD. Bands of 33 and 3.4 kDa were characteristics of all individual venom samples of the scorpion populations. Even within Southern Sinai area, Sahab venom contains five fractions that are not detected in both El-Agramia and Rahaba venom samples. Moreover, male and female venom analysis revealed some sex-related proteomic similarities and differences between scorpion populations. Female venom appears to be more complicated than the male venom. Female venom samples showed bands of 219, 200, 77.5, 55.5, 45, 39, 37, 24 and 16 kDa which were absent in the male venom. The random amplified polymorphic DNA (RAPD) technique was used to estimate the genetic distance between the four scorpion populations. The RAPD data confirmed the genetic diversity at molecular level among the sampled populations. More than 77 RAPD bands (ranging in size from 125 to 15,000 bp) were defined from the four scorpion populations. Of the 77 bands, 57 (76.2%) were polymorphic and 20 were monomorphic among the populations. The similarity coefficient data of venom and DNA were used to construct separate dendrograms, which grouped together the Southern Sinai populations and these were some distance away from the WMCD population. Taken together, we suspect that a combination of local environmental conditions, geographical separation and genetic separation may play a major role in the intraspecific variation of venom of S. m. palmatus.
Collapse
|
21
|
Isbister GK, O'Leary M, Miller M, Brown SGA, Ramasamy S, James R, Schneider JS. A comparison of serum antivenom concentrations after intravenous and intramuscular administration of redback (widow) spider antivenom. Br J Clin Pharmacol 2007; 65:139-43. [PMID: 18171334 DOI: 10.1111/j.1365-2125.2007.03004.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS There are no studies measuring antivenom concentrations following intramuscular administration. This study aimed to compare antivenom concentrations following intravenous and intramuscular administration of redback spider antivenom (RBSAV). METHODS Twenty patients recruited to a controlled trial comparing intramuscular and intravenous administration of antivenom had serial blood samples collected at 30 min intervals for 2 h after the administration of one or two doses of antivenom. Antivenom concentration was measured using an enzyme immunoassay. RESULTS Ten patients received intramuscular antivenom but antivenom could not be detected in serum after either one or two vials, at any time point. The median time of the final sample after commencement of antivenom treatment in these patients was 3.2 h (1.8-5 h). Ten patients received intravenous antivenom (three one vial and seven two or more vials) and antivenom was detected in all patients. CONCLUSIONS RBS AV given by the intramuscular route is unlikely to be effective in the treatment of redback (widow) spider bite.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Tropical Toxinology Unit, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nicholson GM, Graudins A, Wilson HI, Little M, Broady KW. Arachnid toxinology in Australia: From clinical toxicology to potential applications. Toxicon 2006; 48:872-98. [PMID: 16934848 DOI: 10.1016/j.toxicon.2006.07.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The unique geographic isolation of Australia has resulted in the evolution of a distinctive range of Australian arachnid fauna. Through the pioneering work of a number of Australian arachnologists, toxinologists, and clinicians, the taxonomy and distribution of new species, the effective clinical treatment of envenomation, and the isolation and characterisation of the many distinctive neurotoxins, has been achieved. In particular, work has focussed on several Australian arachnids, including red-back and funnel-web spiders, paralysis ticks, and buthid scorpions that contain neurotoxins capable of causing death or serious systemic envenomation. In the case of spiders, species-specific antivenoms have been developed to treat envenomed patients that show considerable cross-reactivity. Both in vitro and clinical case studies have shown they are particularly efficacious in the treatment of envenomation by spiders even from unrelated families. Despite their notorious reputation, the high selectivity and potency of a unique range of toxins from the venom of Australian arachnids will make them invaluable molecular tools for studies of neurotransmitter release and vesicle exocytosis as well as ion channel structure and function. The venoms of funnel-web spiders, and more recently Australian scorpions, have also provided a previously untapped rich source of insect-selective neurotoxins for the future development of biopesticides and the characterisation of previously unvalidated insecticide targets. This review provides a historical viewpoint of the work of many toxinologists to isolate and characterise just some of the toxins produced by such a unique group of arachnids and examines the potential applications of these novel peptides.
Collapse
Affiliation(s)
- Graham M Nicholson
- Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, City Campus, Broadway, NSW 2007, Australia.
| | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVES To identify and demonstrate necrotizing dermatitis in infancy; an uncommon, puzzling syndrome, in which anecdotal reporting and personal experience indicates that one third of cases may require skin grafting. Much informed discussion about the pathogenesis of this distressing syndrome centres on the role of spider envenomation; and in particular on the speculative role of the Australian White-tailed spider, Lampona cylindrata. METHODS We present here six cases of necrotizing dermatitis treated surgically at the Royal Children's Hospital and Mater Children's Hospital in Brisbane over the period from 1991 to 1999. Clinical history, surgical details and pathological investigations were reviewed in each case. Microbiological investigation of necrotic ulcers included standard aerobic and anaerobic culture. RESULT Nocardia and Staphylococcus were cultured in two cases, but no positive bites were witnessed and no spiders were identified by either the children or their parents. All cases were treated with silver sulphadiazine creme. Two of the infants required general anaesthesia, excision debridement and split skin grafting. The White-tailed spider, Lampona cylindrata, does not occur in Queensland, but Lampona murina does; neither species has necrotizing components in its venom. Circumstantial evidence is consistent with this syndrome being due to invertebrate envenomation, possibly following arachnid bites. CONCLUSION In our experience there is insufficient evidence to impute a specific genus as the cause, at this stage of scientific knowledge. If the offending creature is a spider, we calculate that the syndrome of necrotizing dermatitis occurs in less than 1 in 5000 spider bites.
Collapse
Affiliation(s)
- P C Lui
- Department of Paediatric Surgery, Royal Children's Hospital, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
24
|
Abstract
Spider bite continues to be a controversial subject worldwide and attribution of clinical effects to different spiders is problematic because of poor case definition and paucity of clinical evidence. The effects of medically important spiders are sometimes underestimated and simultaneously there is misattribution of effects to harmless spider groups. The majority of suspected spider bites present as skin lesions or necrotic ulcers where the history of a spider bite must be confirmed. To be a definite spider bite, the patient must immediately observe the spider and there be evidence of the bite, such as pain. Important groups of spiders worldwide include the widow spiders (latrodectism), recluse spiders (loxoscelism) and some mygalomorph spiders including the Australian Funnel web spider. Most spiders only cause minor effects, including a large number of groups that have been implicated in necrotic arachnidism.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Emergency Department, Newcastle Mater Misericordiae Hospital and the University of Newcastle, Newcastle, NSW 2298, Australia.
| | | |
Collapse
|
25
|
Isbister GK, Gray MR. White-tail spider bite: a prospective study of 130 definite bites by Lampona species. Med J Aust 2003; 179:199-202. [PMID: 12914510 DOI: 10.5694/j.1326-5377.2003.tb05499.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Accepted: 05/08/2003] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the circumstances and clinical effects of bites by white-tail spiders, including the two species Lampona cylindrata and L. murina commonly encountered by humans, and the incidence of necrotic lesions. DESIGN Prospective cohort study of definite white-tail spider bites. Cases were only included if there was a clear history of bite, the spider was caught and was identified by an expert. SETTING Calls to Australian poisons information centres and emergency departments. PATIENTS 130 patients with a definite bite by a white-tail spider from February 1999 to April 2002. RESULTS There were 79 bites by L. cylindrata and 51 by L. murina. Bites occurred in warmer months, 95% indoors and 75% between 16: 00 and 08: 00. The activity at the time of the bite was characteristic and the spider was encountered between bedclothes, towels or clothing. 25% of bites occurred on distal limbs. Pain/discomfort occurred in all cases, and was severe in 27%. Other effects included puncture marks (17%), redness/red mark (83%) and itchiness (44%). Systemic effects occurred in 9%. There were no cases of necrotic ulcers (97.5% CI, 0-2.8%) or confirmed infections. Median duration of effects was 24 hours (interquartile range, 1-168 hours). There were three distinct clinical patterns: pain only (21%), pain and red mark for < 24 hours (35%), and a persistent painful or irritating red lesion (44%). CONCLUSIONS Bites by Lampona spp. cause minor effects in most cases, or a persistent painful red lesion in almost half the cases. White-tail spider bites are very unlikely to cause necrotic ulcers, and other diagnoses must be sought.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Level 5, Clinical Sciences Building, Newcastle Mater Misericordiae Hospital, Waratah, NSW 2298, Australia.
| | | |
Collapse
|
26
|
Abstract
Snake envenomation employs three well integrated strategies: prey immobilization via hypotension, prey immobilization via paralysis, and prey digestion. Purines (adenosine, guanosine and inosine) evidently play a central role in the envenomation strategies of most advanced snakes. Purines constitute the perfect multifunctional toxins, participating simultaneously in all three envenomation strategies. Because they are endogenous regulatory compounds in all vertebrates, it is impossible for any prey organism to develop resistance to them. Purine generation from endogenous precursors in the prey explains the presence of many hitherto unexplained enzyme activities in snake venoms: 5'-nucleotidase, endonucleases (including ribonuclease), phosphodiesterase, ATPase, ADPase, phosphomonoesterase, and NADase. Phospholipases A(2), cytotoxins, myotoxins, and heparinase also participate in purine liberation, in addition to their better known functions. Adenosine contributes to prey immobilization by activation of neuronal adenosine A(1) receptors, suppressing acetylcholine release from motor neurons and excitatory neurotransmitters from central sites. It also exacerbates venom-induced hypotension by activating A(2) receptors in the vasculature. Adenosine and inosine both activate mast cell A(3) receptors, liberating vasoactive substances and increasing vascular permeability. Guanosine probably contributes to hypotension, by augmenting vascular endothelial cGMP levels via an unknown mechanism. Novel functions are suggested for toxins that act upon blood coagulation factors, including nitric oxide production, using the prey's carboxypeptidases. Leucine aminopeptidase may link venom hemorrhagic metalloproteases and endogenous chymotrypsin-like proteases with venom L-amino acid oxidase (LAO), accelerating the latter. The primary function of LAO is probably to promote prey hypotension by activating soluble guanylate cyclase in the presence of superoxide dismutase. LAO's apoptotic activity, too slow to be relevant to prey capture, is undoubtedly secondary and probably serves principally a digestive function. It is concluded that the principal function of L-type Ca(2+) channel antagonists and muscarinic toxins, in Dendroaspis venoms, and acetylcholinesterase in other elapid venoms, is to promote hypotension. Venom dipeptidyl peptidase IV-like enzymes probably also contribute to hypotension by destroying vasoconstrictive peptides such as Peptide YY, neuropeptide Y and substance P. Purines apparently bind to other toxins which then serve as molecular chaperones to deposit the bound purines at specific subsets of purine receptors. The assignment of pharmacological activities such as transient neurotransmitter suppression, histamine release and antinociception, to a variety of proteinaceous toxins, is probably erroneous. Such effects are probably due instead to purines bound to these toxins, and/or to free venom purines.
Collapse
Affiliation(s)
- Steven D Aird
- Laboratório de Toxinas Naturais, Universidade Estadual do Ceará, Avenida Paranjana, 1700, Itaperí, 60740-000, Fortaleza, CE, Brazil.
| |
Collapse
|
27
|
Abstract
Spider venoms represent an incredible source of biologically active substances which selectively target a variety of vital physiological functions in both insects and mammals. Many toxins isolated from spider venoms have been invaluable in helping to determine the role and diversity of neuronal ion channels and the process of exocytosis. In addition, there is enormous potential for the use of insect specific toxins from animal sources in agriculture. For these reasons, the past 15-20 years has seen a dramatic increase in studies on the venoms of many animals, particularly scorpions and spiders. This review covers the pharmacological and biochemical activities of spider venoms and the nature of the active components. In particular, it focuses on the wide variety of ion channel toxins, novel non-neurotoxic peptide toxins, enzymes and low molecular weight compounds that have been isolated. It also discusses the intraspecific sex differences in given species of spiders.
Collapse
Affiliation(s)
- Lachlan D Rash
- Monash Venom Group, Department of Pharmacology, PO Box 13E, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
28
|
Escoubas P, Corzo G, Whiteley BJ, Célérier ML, Nakajima T. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-performance liquid chromatography study of quantitative and qualitative variation in tarantula spider venoms. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:403-413. [PMID: 11857724 DOI: 10.1002/rcm.595] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Animal venoms are important sources of novel pharmacological tools, useful in biochemical characterization of their receptors. Venom quality control, batch-to-batch homogeneity and high reproducibility of venom fractionation and toxin purification are crucial issues for biochemical and pharmacological studies. To address these issues, a study of the variability of tarantula spider venom samples was undertaken. Venom profiles of samples collected from individuals of different age and sex, and from sibling spiders of the same species, were generated by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and analyzed to assess venom variability and method accuracy. Sex-linked venom variation was studied on eight species. Clear qualitative differences were observed for six out of eight species, as well as quantitative differences. Age-related variation studied in Poecilotheria rufilata showed essentially age-related quantitative differences between adults of both sexes and immature juveniles. The venoms of nine siblings and three wild-collected Pterinochilus murinus were studied for individual variation, showing only very minor quantitative differences. On the same samples, the quality of MALDI-TOFMS venom fingerprinting was demonstrated to be highly reproducible. Our results show that tarantula venom peptide fingerprinting is a highly reliable identification method, that pooled batches of venom from several animals can be used for venom purification, that venom composition does not appear to be qualitatively related to ontogenesis in the spiders studied, and that qualitative sex-linked variation occurs across most species and may be important in activity studies.
Collapse
Affiliation(s)
- Pierre Escoubas
- Suntory Institute for Bioorganic Research, Mishima-Gun, Shimamoto-Cho, Wakayamadai 1-1-1, Osaka 618-8503, Japan.
| | | | | | | | | |
Collapse
|
29
|
Binford GJ. An analysis of geographic and intersexual chemical variation in venoms of the spider Tegenaria agrestis (Agelenidae). Toxicon 2001; 39:955-68. [PMID: 11223084 DOI: 10.1016/s0041-0101(00)00234-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spider Tegenaria agrestis is native to Europe, where it is considered medically innocuous. This species recently colonized the US where it has been accused of bites that result in necrotic lesions and systemic effects in humans. One possible explanation of this pattern is the US spiders have unique venom characteristics. This study compares whole venoms from US and European populations to look for unique US characteristics, and to increase our understanding of venom variability within species. This study compared venoms from T. agrestis males and females from Marysville, Washington (US), Tungstead Quarry, England (UK) and Le Landeron, Switzerland, by means of liquid chromatography; and the US and UK populations by insect bioassays. Chromatographic profiles were different between sexes, but similar within sexes between US and UK populations. Venoms from the Swiss population differed subtly in composition from UK and US venoms. No peaks were unique to the US population. Intersexual differences were primarily in relative abundance of components. Insect assays revealed no differences between US and UK venom potency, but female venoms were more potent than male. These results are difficult to reconcile with claims of necrotic effects that are unique to venoms of US Tegenaria.
Collapse
Affiliation(s)
- G J Binford
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|