1
|
Tripathi M, Pathak S, Singh R, Singh P, Singh PK, Shukla AK, Maurya S, Kaur S, Thakur B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. TOXICS 2024; 12:657. [PMID: 39330585 PMCID: PMC11435892 DOI: 10.3390/toxics12090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Anthropogenic activities and increasing human population has led to one of the major global problems of heavy metal contamination in ecosystems and to the generation of a huge amount of waste material biomass. Hexavalent chromium [Cr(VI)] is the major contaminant introduced by various industrial effluents and activities into the ecosystem. Cr(VI) is a known mutagen and carcinogen with numerous detrimental effects on the health of humans, plants, and animals, jeopardizing the balance of ecosystems. Therefore, the remediation of such a hazardous toxic metal pollutant from the environment is necessary. Various physical and chemical methods are available for the sequestration of toxic metals. However, adsorption is recognized as a more efficient technology for Cr(VI) remediation. Adsorption by utilizing waste material biomass as adsorbents is a sustainable approach in remediating hazardous pollutants, thus serving the dual purpose of remediating Cr(VI) and exploiting waste material biomass in an eco- friendly manner. Agricultural biomass, industrial residues, forest residues, and food waste are the primary waste material biomass that could be employed, with different strategies, for the efficient sequestration of toxic Cr(VI). This review focuses on the use of diverse waste biomass, such as industrial and agricultural by-products, for the effective remediation of Cr(VI) from aqueous solutions. The review also focuses on the operational conditions that improve Cr(VI) remediation, describes the efficacy of various biomass materials and modifications, and assesses the general sustainability of these approaches to reducing Cr(VI) pollution.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sadanand Maurya
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| | - Babita Thakur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| |
Collapse
|
2
|
Oliveira MSF, Assila O, Fonseca AM, Parpot P, Valente T, Rombi E, Neves IC. Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment. Molecules 2024; 29:3521. [PMID: 39124926 PMCID: PMC11314495 DOI: 10.3390/molecules29153521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were used as adsorbents. Such AMD precipitates from abandoned Portuguese mines (AGO, AGO-1, CF, and V9) were compared with two raw materials from Morocco (ClayMA and pyrophyllite) in terms of their efficiency in wastewater treatment. Different analytical techniques, such as XRD diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 adsorption isotherms, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to characterize these natural materials. The adsorption properties were studied by optimizing different experimental factors, such as type of adsorbent, adsorbent mass, and dye concentration by the Box-Behnken Design model, using methylene blue (MB) and crystal violet (CV) compounds as organic pollutants. The obtained kinetic data were examined using the pseudo-first and pseudo-second order equations, and the equilibrium adsorption data were studied using the Freundlich and Langmuir models. The adsorption behavior of the different adsorbents was perfectly fitted by the pseudo-second order kinetic model and the Langmuir isotherm. The most efficient adsorbent for both dyes was AGO-1 due to the presence of the cellulose molecules, with qm equal to 40.5 and 16.0 mg/g for CV and MB, respectively. This study confirms the possibility of employing AMD precipitates to adsorb organic pollutants in water, providing valuable information for developing future affordable solutions to reduce the wastes associated with mining activity.
Collapse
Affiliation(s)
- Marta S. F. Oliveira
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
| | - Ouissal Assila
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
| | - António M. Fonseca
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
- CEB, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pier Parpot
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
- CEB, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Teresa Valente
- ICT, Institute of Earth Sciences, Pole of the University of Minho, 4710-057 Braga, Portugal;
| | - Elisabetta Rombi
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Isabel C. Neves
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
- CEB, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Reisi S, Farimaniraad H, Baghdadi M, Abdoli MA. Immobilization of polypyrrole on waste face masks using a novel in-situ-surface polymerization method: removal of Cr(VI) from electroplating wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:3162-3173. [PMID: 37161857 DOI: 10.1080/09593330.2023.2210771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
In this work, polypyrrole (PPy) was synthesized on the surface of waste surgical face masks (SFM) with a novel environmentally-friendly in-situ-surface polymerization approach and used as an adsorbent for removing hexavalent chromium (Cr(VI)). In this method, the SFM surface was activated using KMnO4, resulting in the immobilization of porous MnO2, on which pyrrole can be polymerized efficiently. The novelty of this method is the presence of the oxidant on the surface before the polymerization step, which results in a better surface modification with polypyrrole. This method provides adsorbents with higher adsorption capacity compared to the conventional polymerization method with ammonium persulfate (APS). The adsorbent prepared at the mass ratios of 1.0 and 2.0; respectively, for KMnO4/SFM and pyrrole/SFM showed the highest performance. The adsorbent characterization revealed the successful polymerization of pyrrole on the surface of SFM. Reusability of the KMnO4 and pyrrole solutions were successful with remarkable results, showing the advantage of this technique compared to the conventional polymerization method with APS. The effect of different factors on the adsorption process was investigated. The removal rate was around 98% under the optimum conditions (pH, 2; adsorbent dosage, 3 g L-1; contact time, 60 min). The equilibrium data were well fitted by Langmuir isotherm (R2 = 0.9999). Kinetic investigations revealed that the adsorption process fitted well with the pseudo-second-order model. The adsorbent was regenerated for up to five cycles. One of the most important advantages of the proposed method compared to other methods is the reduction of wastewater during the synthesis process.
Collapse
Affiliation(s)
- Saba Reisi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Hamidreza Farimaniraad
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abdoli
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Zerbini M, Solari PL, Orange F, Jeanson A, Leblanc C, Gomari M, Auwer CD, Beccia MR. Exploring uranium bioaccumulation in the brown alga Ascophyllum nodosum: insights from multi-scale spectroscopy and imaging. Sci Rep 2024; 14:1021. [PMID: 38200072 PMCID: PMC10781969 DOI: 10.1038/s41598-023-49293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Legacy radioactive waste can be defined as the radioactive waste produced during the infancy of the civil nuclear industry's development in the mid-20th Century, a time when, unfortunately, waste storage and treatment were not well planned. The marine environment is one of the environmental compartments worth studying in this regard because of legacy waste in specific locations of the seabed. Comprising nearly 70% of the earth's service, the oceans are the largest and indeed the final destination for contaminated fresh waters. For this reason, long-term studies of the accumulation biochemical mechanisms of metallic radionuclides in the marine ecosystem are required. In this context the brown algal compartment may be ecologically relevant because of forming large and dense algal beds in coastal areas and potential important biomass for contamination. This report presents the first step in the investigation of uranium (U, an element used in the nuclear cycle) bioaccumulation in the brown alga Ascophyllum nodosum using a multi-scale spectroscopic and imaging approach. Contamination of A. nodosum specimens in closed aquaria at 13 °C was performed with a defined quantity of U(VI) (10-5 M). The living algal uptake was quantified by ICP-MS and a localization study in the various algal compartments was carried out by combining electronic microscopy imaging (SEM), X-ray Absorption spectroscopy (XAS) and micro X-ray Florescence (μ-XRF). Data indicate that the brown alga is able to concentrate U(VI) by an active bioaccumulation mechanism, reaching an equilibrium state after 200 h of daily contamination. A comparison between living organisms and dry biomass confirms a stress-response process in the former, with an average bioaccumulation factor (BAF) of 10 ± 2 for living specimens (90% lower compared to dry biomass, 142 ± 5). Also, these results open new perspectives for a potential use of A. nodosum dry biomass as uranium biosorbent. The different partial BAFs (bioaccumulation factors) range from 3 (for thallus) to 49 (for receptacles) leading to a compartmentalization of uranium within the seaweed. This reveals a higher accumulation capacity in the receptacles, the algal reproductive parts. SEM images highlight the different tissue distributions among the compartments with a superficial absorption in the thallus and lateral branches and several hotspots in the oospheres of the female individuals. A preliminary speciation XAS analysis identified a distinct U speciation in the gametes-containing receptacles as a pseudo-autunite phosphate phase. Similarly, XAS measurements on the lateral branches (XANES) were not conclusive with regards to the occurrence of an alginate-U complex in these tissues. Nonetheless, the hypothesis that alginate may play a role in the speciation of U in the algal thallus tissues is still under consideration.
Collapse
Affiliation(s)
- Micol Zerbini
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | - Francois Orange
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06108, Nice, France
| | - Aurélie Jeanson
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Catherine Leblanc
- Station Biologique de Roscoff, UMR 8227, Sorbonne Université, CNRS, 29680, Roscoff, France
| | - Myriam Gomari
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Christophe Den Auwer
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Maria Rosa Beccia
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
| |
Collapse
|
5
|
Sharma R, Garg R, Bali M, Eddy NO. Potential applications of green-synthesized iron oxide NPs for environmental remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1397. [PMID: 37910248 DOI: 10.1007/s10661-023-12035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Water pollution is a significant issue worldwide due to an increase in anthropogenic activities. Heavy metals and dyes are among the most problematic contaminants that threaten the environment and negatively impact human health. Iron oxide nanoparticles (IONPs) synthesized using green methods have shown potential in these areas due to their significant adsorption capacity and photocatalytic potential. The size and morphology of biogenic IONPs can be tailored depending upon the concentration of the reducing medium and metal salt precursor. Green-synthesized IONPs have been found to be effective, economical, and environmentally friendly with their large surface area, making them suitable for removing toxic matter from contaminated water. Furthermore, they exhibit antibacterial potential against harmful microorganisms. The study emphasizes the importance of using such environmentally friendly tools to remove heavy metal ions and organic compounds from contaminated water. The underlying mechanism for the adsorption of heavy metal ions, photocatalytic degradation of organic compounds, and antimicrobial action has been explored in detail. The future prospective for the beneficial utilization of biogenic IONPs has also been signified to provide a detailed overview.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Chemistry, USS, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India.
| | - Manoj Bali
- Department of Chemistry, USS, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Nnabuk O Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
6
|
Lim ZS, Wong CY, Ahmad SA, Puasa NA, Phang LY, Shaharuddin NA, Merican F, Convey P, Zulkharnain A, Shaari H, Azmi AA, Kok YY, Gomez-Fuentes C. Harnessing Diesel-Degrading Potential of an Antarctic Microalga from Greenwich Island and Its Physiological Adaptation. BIOLOGY 2023; 12:1142. [PMID: 37627026 PMCID: PMC10452857 DOI: 10.3390/biology12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023]
Abstract
Microalgae are well known for their metal sorption capacities, but their potential in the remediation of hydrophobic organic compounds has received little attention in polar regions. We evaluated in the laboratory the ability of an Antarctic microalga to remediate diesel hydrocarbons and also investigated physiological changes consequent upon diesel exposure. Using a polyphasic taxonomic approach, the microalgal isolate, WCY_AQ5_1, originally sampled from Greenwich Island (South Shetland Islands, maritime Antarctica) was identified as Tritostichococcus sp. (OQ225631), a recently erected lineage within the redefined Stichococcus clade. Over a nine-day experimental incubation, 57.6% of diesel (~3.47 g/L) was removed via biosorption and biodegradation, demonstrating the strain's potential for phytoremediation. Fourier transform infrared spectroscopy confirmed the adsorption of oil in accordance with its hydrophobic characteristics. Overall, degradation predominated over sorption of diesel. Chromatographic analysis confirmed that the strain efficiently metabolised medium-chain length n-alkanes (C-7 to C-21), particularly n-heneicosane. Mixotrophic cultivation using diesel as the organic carbon source under a constant light regime altered the car/chl-a ratio and triggered vacuolar activities. A small number of intracellular lipid droplets were observed on the seventh day of cultivation in transmission electron microscopic imaging. This is the first confirmation of diesel remediation ability in an Antarctic green microalga.
Collapse
Affiliation(s)
- Zheng Syuen Lim
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (Z.S.L.); (Y.-Y.K.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
| | - Chiew-Yen Wong
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (Z.S.L.); (Y.-Y.K.)
- Centre for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Aini Puasa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia;
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Hasrizal Shaari
- Centre of Research and Field Services, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Alyza Azzura Azmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Yih-Yih Kok
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (Z.S.L.); (Y.-Y.K.)
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| |
Collapse
|
7
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
8
|
Açıkyıldız M, Gürses A, Güneş K, Şahin E. Adsorption of textile dyes from aqueous solutions onto clay: Kinetic modelling and equilibrium isotherm analysis. Front Chem 2023; 11:1156457. [PMID: 37065829 PMCID: PMC10097906 DOI: 10.3389/fchem.2023.1156457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The commercial activated carbon commonly uses to reduce of dye amount in the textile industry effluents. In this study has focused on the use of a natural clay sample as low cost but potential adsorbent. For this purpose the adsorption of commercial textile dyes, Astrazon Red FBL and Astrazon Blue FGRL, onto clay was investigated. The physicochemical and topographic characteristics of natural clay sample were determined by scanning electron microscopy (SEM), X-Ray fluorescence spectrometry (XRF), X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and cation exchange capacity measurements. It was determined that the major clay mineral was smectite with partial impurities. The effects of several operational parameters such as contact time, initial dye concentration, temperature, and adsorbent dosage on the adsorption process were evaluated. The adsorption kinetics was interpreted with pseudo-first order, pseudo-second order, and intra-particle diffusion models. The equilibrium adsorption data were analyzed using Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherm models. It was determined that the adsorption equilibrium was reached in the first 60 min for each dye. The amount of adsorbed dyes onto clay decreased with increasing temperature, similarly, it decreased with increasing sorbent dosage. The kinetic data were well described by pseudo-second order kinetic model, and adsorption equilibrium data was followed both Langmuir and Redlich-Peterson models for each dyes. The adsorption enthalpy and entropy values were calculated as −10.7 kJ.mol−1 and −13.21 J.mol−1.K−1 for astrazon red and those for astrazon blue −11.65 kJ.mol−1 and 37.4 J.mol−1.K−1, respectively. The experimental results support that the physical interactions between clay particles and dye molecules have an important role for the spontaneous adsorption of textile dyes onto the clay. This study revealed that clay could effectively be used as an alternative adsorbent with high removal percentages of astrazon red and astrazon blue.
Collapse
Affiliation(s)
- Metin Açıkyıldız
- Advanced Technology Application and Research Center, Kilis 7 Aralık University, Kilis, Türkiye
- *Correspondence: Metin Açıkyıldız,
| | - Ahmet Gürses
- Department of Chemistry, K. K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Kübra Güneş
- Department of Chemistry, K. K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Elif Şahin
- Department of Chemistry, K. K. Education Faculty, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
9
|
Islam MM, Mohana AA, Rahman MA, Rahman M, Naidu R, Rahman MM. A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. TOXICS 2023; 11:toxics11030252. [PMID: 36977017 PMCID: PMC10053122 DOI: 10.3390/toxics11030252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/01/2023]
Abstract
Chromium (Cr) exists in aqueous solution as trivalent (Cr3+) and hexavalent (Cr6+) forms. Cr3+ is an essential trace element while Cr6+ is a dangerous and carcinogenic element, which is of great concern globally due to its extensive applications in various industrial processes such as textiles, manufacturing of inks, dyes, paints, and pigments, electroplating, stainless steel, leather, tanning, and wood preservation, among others. Cr3+ in wastewater can be transformed into Cr6+ when it enters the environment. Therefore, research on Cr remediation from water has attracted much attention recently. A number of methods such as adsorption, electrochemical treatment, physico-chemical methods, biological removal, and membrane filtration have been devised for efficient Cr removal from water. This review comprehensively demonstrated the Cr removal technologies in the literature to date. The advantages and disadvantages of Cr removal methods were also described. Future research directions are suggested and provide the application of adsorbents for Cr removal from waters.
Collapse
Affiliation(s)
- Md. Monjurul Islam
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Anika Amir Mohana
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Md. Aminur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Zonal Laboratory, Department of Public Health Engineering (DPHE), Jashore 7400, Bangladesh
| | - Mahbubur Rahman
- Chittagong University of Engineering and Technology, Faculty of Civil Engineering, Chattogram 4349, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
10
|
Sounderarajan S, Puchalapalli DSR, Ayothiraman S. Effect of synthetic fatty liquor and neatsfoot oil as co-contaminants on the reduction of hexavalent chromium using Fusarium oxysporum and its kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86427-86438. [PMID: 35639327 DOI: 10.1007/s11356-022-21080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The hexavalent chromium is one of the major carcinogenic components released during the tanning process and lots of work have been carried out on the reduction of hexavalent chromium via chemical and biological routes. Different fatty oils are also employed in the tanning process and have also been released as an effluent along with chromium. However, it is difficult to find a study on the reduction of chromium in the presence of other contaminant which would help to mimic the real-time complication of treating the tannery effluent. It is the first attempt on the reduction of hexavalent chromium in the presence of synthetic fatty liquor and neatsfoot oil using Fusarium oxysporum. The maximum percentage of chromium reduction was 73.62% and 60.28% in neatsfoot oil and synthetic fatty oil, respectively, for the initial chromium concentration of 25 mg/L. The biomass productivity was better with both neatsfoot oil and synthetic fatty oil, whereas the same has decreased with the presence of chromium. The reduction of chromium was found to follow the uncompetitive substrate inhibition kinetics than the general Michaelis-Menten kinetics. The kinetic parameters were calculated using particle swarm optimization algorithm, which were compared with the already reported data. The uncompetitive substrate inhibition kinetics was represented the experimental data in both the cases and the value of substrate inhibition constant was low in the case of neatsfoot oil compared with the synthetic fatty liquor.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Dinesh Sankar Reddy Puchalapalli
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
11
|
Treatment of Tanning Effluent Using Seaweeds and Reduction of Environmental Contamination. J CHEM-NY 2022. [DOI: 10.1155/2022/7836671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the main sources of dangerous chemicals that are dumped untreated into land and water bodies and have a negative influence on the ecosystem are industrial effluents. Seaweeds are currently used for treating industrial effluent effectively. The technology is at a maturing stage. This paper reviews the characterization and cultivation of seaweeds for wastewater treatment. In this present study, different extracts of four seaweeds such as Gracilaria edulis, Sargassum wightii, Turbinaria ornata, and Kappaphycus alvarezii, from the Mandapam coastal regions were analyzed. The seaweeds are used to treat the leather industry effluents collected from EKM leather processing company, Erode, Tamil Nadu, India. Among all, extracts of Gracilaria edulis survived at different concentrations of TDS: 15,000, 25000, and 35000 mg/l. Out of these different ranges, TDS of about 25000 mg/l seaweed named Gracilaria edulis reduced more amounts of chemicals present in the effluent like TDS (93.90%), phosphates (72.71%), nitrate (75.08%), nitrite (76.92%), and turbidity (99.01%) content. Additionally, we produce the quality and strength of agar gel from the cultivation of Gracilaria edulis by the Nikansui method. Finally, we got the extraction procedure to obtain a higher yield of about 10.26% and a maximum gel strength of 92.06 g·cm−2 while maintaining the melting point at 78°C.
Collapse
|
12
|
Abuelfutouh NAK, ABD-WAHAB FIRDAUS, Muhammed Bahaaddin W, M. MUSA LUBNA, NOUR HAMID ABDURAHMAN, Y. QUDSIEH ISAM. Potential of Low Carbon Nanotubes Dosage on Chromium Removal from Water. IIUM ENGINEERING JOURNAL 2022; 23:10-19. [DOI: 10.31436/iiumej.v23i2.1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This paper involves a method of eliminating hexavalent chromium (Cr (VI)) from the synthetic water via a low dosage of carbon nanotubes (CNT). The ability of CNT to remove Cr(VI) from synthetic water through the adsorption process was studied in batch experimentation. The findings revealed up to 100% elimination of Cr(VI) in the 0.07 mg/L Cr(VI) concentration. These excessive elimination proficiencies were credited to the powerful adsorption of chromium ions to the physical properties of the CNT. A pattern layout was created in these experimental runs in order to locate the ideal situation of the Cr(VI) deletion from synthetic water. To accomplish the purposes of the experiment, there were 4 independent variables influencing several points, namely the CNT dosage, the pH of the water, the agitation speed, and the contact time. The StatGraphics Centurion XV software has been used to create the adsorption equivalence and to discover the major impacts to the elimination of Cr(VI). The results show that the adsorption capability of the carbon nanotubes was considerably reliant on the pH of the Cr(VI) solution, supported by the CNT dosage, the contact time, and the agitation speed. The expected optimization, using the adsorption equation, shows that a 1 mg CNT dosage with a pH=2, 120 minutes contact time, and moderate agitation rate at 150 rpm is the most optimal.
ABSTRAK: Kajian ini melibatkan kaedah bagi menyingkirkan kromium (VI) dari air sintetik menggunakan karbon tiub nano berdos rendah. Eksperimen kelompok dilakukan bagi menentukan keupayaaan karbon tiub nano menyingkirkan Cr(VI) dari air sintetik melalui proses penjerapan. Dapatan kajian menunjukkan Cr(VI) telah disingkirkan sebanyak 100% dari kepekatan 0.07 mg/L Cr(VI). Kecekapan penyingkiran ini adalah disebabkan penjerapan ion-ion kromium yang kuat terhadap sifat fizikal nano tiub karbon tersebut. Rekabentuk eksperimen telah dibina bagi menentukan peringkat optima penyingkiran Cr(VI) dari air sintetik. Bagi mencapai matlamat kajian, empat faktor yang terdiri daripada dos nano tiub karbon, pH air, kelajuan goncangan dan masa sentuhan diukur. Perisian StatGraphics Centurion XV telah digunakan bagi mendapatkan nilai setara proses penjerapan dan kesan utama yang menyebabkan tersingkirnya Cr(VI). Dapatan kajian menunjukkan keupayaan penjerapan oleh nano tiub karbon sangat bergantung kepada pH larutan Cr(VI), disusuli dengan dos nano tiub karbon masa sentuhan dan kelajuan goncangan. Penjerapan optimum Cr(VI) dapat dicapai pada tahap 1 mg dos nano tiub karbon, larutan pada pH 2, masa sentuhan selama 120 minit dengan kelajuan goncangan sebanyak 150 rpm.
Collapse
|
13
|
El-sayed AA, Aly HF. Adsorption behavior of chromium in an aqueous suspension of δ-alumina in absence and in presence of humic substances. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The radioisotope Cr-51 was exploited for studying the chromium adsorption behavior in aqueous media of alumina in aqueous media. Where, it represents 1.8% by weight and exists in earth’s crust in different forms. Factors affecting this adsorption behavior are pH, amount of alumina and humic acid presence. In case of pH adsorption curves, three different areas under peak can be described based on pH changes which lead to the formation of different species too. The first area is the maximum constant adsorption at pH, range 1–3, the second one is adsorption decreasing with increasing pH through pH range 4–7 and the third one is step-down adsorption at higher pH range. The increasing amount of alumina leads to increase in the percent adsorption, where 10 and 2 g/l alumina were found to have 100% while in case of 0.2 g/l it is 80%. The presence of humic acid decreases the adsorption of chromate with increasing pH to be 30% comparing to 80% in case of 0.2 g/l alumna at pH 2. This can be also indicated by adsorption capacity which is found to be 436.8 μg/g in case of 0.2 g alumina; and it decreases in presence of Humic Acid (HA) to 145.8 μg/g at same weight of alumina. Also, the equilibrium capacities are found as 54.6 μg/g for 2 g/l and 1.2 μg/g for 10 g/l. Triple layer model (TLM) was used for simulation of chromium adsorption behavior in presence of alumina with the applied conditions of study. The results showed high coincidence with the practically found data.
Collapse
Affiliation(s)
- Ashraf A. El-sayed
- Department of Nuclear Fuel Chemistry , Hot Laboratory and Waste management Center, Egyptian Atomic Energy Authority , P.C. 13759 , Cairo , Egypt
| | - Hisham F. Aly
- Department of Nuclear Fuel Chemistry , Hot Laboratory and Waste management Center, Egyptian Atomic Energy Authority , P.C. 13759 , Cairo , Egypt
| |
Collapse
|
14
|
Büker L, Böttcher R, Leimbach M, Hahne T, Dickbreder R, Bund A. Influence of carboxylic acids on the performance of trivalent chromium electrolytes for the deposition of functional coatings. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Vaid N, Sudan J, Dave S, Mangla H, Pathak H. Insight Into Microbes and Plants Ability for Bioremediation of Heavy Metals. Curr Microbiol 2022; 79:141. [PMID: 35320423 DOI: 10.1007/s00284-022-02829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
Contamination of ground and surface water, soil, and air by harmful and carcinogenic chemicals is one of the most prevalent problems in the modern industrialized world. Heavy metal toxicity has demonstrated to be paramount hazardous and there are various risks associated with it. In addition, these heavy metals have adverse effects on human health and plant physiology. The field of bioremediation has undergone an impactful revolution in recent years due to an exponential increase in various issues related to soil and water pollution. Bioremediation is an advanced and efficient technology, which involves the use of biological means such as microorganisms and plants to degrade heavy metal contaminants. Among the millions of microbes present in the ecosystem, the highest metal adsorption ability is possessed by species belonging to genus Penicillium, Streptomyces, Bacillus, Rhizopus, Chlorella, Ascophyllum, Sargassum, and Aspergillus. Among different plant species, Allium, Eucalyptus, Helianthus, and Hibiscus are the main heavy metal absorbers. The present review concentrates on the research in the bioremediation of important heavy metals through the use of plants and microbes.
Collapse
Affiliation(s)
- Nishtha Vaid
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Jebi Sudan
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Saurabh Dave
- Department of Chemistry, JECRC University, Jaipur, Rajasthan, India
| | - Himanshi Mangla
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Hardik Pathak
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India.
| |
Collapse
|
16
|
Rajapaksha AU, Selvasembian R, Ashiq A, Gunarathne V, Ekanayake A, Perera VO, Wijesekera H, Mia S, Ahmad M, Vithanage M, Ok YS. A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152055. [PMID: 34871684 DOI: 10.1016/j.scitotenv.2021.152055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 05/26/2023]
Abstract
The contamination of natural resources by hexavalent chromium (Cr(VI)) originating from natural and anthropogenic activities is a serious environmental concern. Although many articles on chromium remediation have been published, a comprehensive understanding of the mechanisms involved in remediation with different sorbents is not yet available. In this systematic review, the performance and applicability of several adsorptive materials for Cr(VI) removal from aqueous media are discussed, along with a detailed analysis of the mechanisms involved. Statistical analysis is applied to compare the efficacies of different adsorbents, while a similar approach is used to determine the effects of sorbent properties and experimental conditions on the adsorption capacity. A detailed analysis of the factors involved in fixed-bed column studies is also presented. A suitable desorption approach to the regeneration of the spent adsorbent and its adsorption performance in reuse is also examined. Among the different sorbents, nanoparticles and mineral-doped biochar were found to be the most effective sorbents, while the adsorption was higher at low pH (~4.0) than that at intermediate pH (6-8). Contrary to our expectation, adsorption was high for sorbents with low specific surface areas, suggesting that the adsorption of Cr(VI) is largely influenced by the chemical properties of the sorbents. The optimum adsorption in fixed-bed column systems is obtained at a lower Cr(VI) ion concentration, a lower influent flow rate, and a higher bed height. Since most of the studies reviewed herein were merely experimental and utilized ideal conditions with the presence of a single contaminant, i.e. Cr(VI) in water, further studies on adsorption dynamics with the presence of other interfering ions are suggested. This review is promising for the further development of Cr(VI) removal strategies and closes the research gaps pertaining to their challenges.
Collapse
Affiliation(s)
- Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Ahamed Ashiq
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - V O Perera
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Hasintha Wijesekera
- Department of Natural Resources, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Shamin Mia
- Department of Agronomy, Patuakhali Science and Technology, University of Patuakhali, Bangladesh
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Pakistan
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Kinuthia GK, Ngure V, Kamau L. Urban mosquitoes and filamentous green algae: their biomonitoring role in heavy metal pollution in open drainage channels in Nairobi industrial area, Kenya. BMC Ecol Evol 2021; 21:188. [PMID: 34635056 PMCID: PMC8507369 DOI: 10.1186/s12862-021-01913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background Industrial wastewater is a human health hazard upon exposure. Aquatic organisms in contaminated wastewater may accumulate the toxic elements with time. Human population living in informal settlements in Nairobi industrial area risk exposure to such toxic elements. Biomonitoring using aquatic organisms in open drainage channels can be key in metal exposure assessment. Levels of Mercury (Hg), Lead (Pb), Chromium (Cr), Cadmium (Cd), Thallium (Tl), and Nickel (Ni) were established in samples of wastewater, filamentous green algae (Spirogyra) and mosquitoes obtained from open drainage channels in Nairobi industrial area, Kenya. Results Pb, Cr, & Ni levels ranged from 3.08 to 15.31 µg/l while Tl, Hg, & Cd ranged from 0.05 to 0.12 µg/l in wastewater. The Pb, Cr, Ni, & Cd levels were above WHO, Kenya & US EPA limits for wastewater but Hg was not. Pb, Cr, Tl, & Ni levels in assorted field mosquitoes were 1.3–2.4 times higher than in assorted laboratory-reared mosquitoes. Hg & Cd concentrations in laboratory-reared mosquitoes (0.26 mg/kg & 1.8 mg/kg respectively) were higher than in field mosquitoes (0.048 mg/kg & 0.12 mg/kg respectively). The levels of Pb, Cr, & Ni were distinctively higher in field mosquito samples than in wastewater samples from the same site. Pb, Cr, Ni, Cd & Hg levels in green filamentous Spirogyra algae were 110.62, 29.75, 14.45, 0.44, & 0.057 mg/kg respectively. Correlation for Pb & Hg (r (2) = 0.957; P < 0.05); Cd & Cr (r (2) = 0.985; P < 0.05) in algae samples was noted. The metal concentrations in the samples analyzed were highest in filamentous green algae and least in wastewater. Conclusion Wastewater, mosquitoes, and filamentous green algae from open drainage channels and immediate vicinity, in Nairobi industrial area (Kenya) contained Hg, Pb, Cr, Cd, Tl, and Ni. Mosquitoes in urban areas and filamentous green algae in open drainage channels can play a role of metal biomonitoring in wastewater. The potential of urban mosquitoes transferring heavy metals to human population from the contaminated wastewater should be investigated.
Collapse
Affiliation(s)
- Geoffrey Kariuki Kinuthia
- Department of Science, Engineering & Health, Daystar University, PO Box 44400 - 00100 GPO, Nairobi, Kenya.
| | - Veronica Ngure
- Department of Biological Sciences, Laikipia University, PO Box 1100 - 20300, Nyahururu, Kenya
| | - Luna Kamau
- Center for Biotechnology Research and Development (Malaria laboratory), Kenya Medical Research Institute (KEMRI), PO Box 548840 - 00200, Nairobi, Kenya
| |
Collapse
|
18
|
Ociński D, Augustynowicz J, Wołowski K, Mazur P, Sitek E, Raczyk J. Natural community of macroalgae from chromium-contaminated site for effective remediation of Cr(VI)-containing leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147501. [PMID: 33975106 DOI: 10.1016/j.scitotenv.2021.147501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The natural macroalgal community, which developed in the unique and extremely Cr(VI)-polluted aquatic reservoir situated near a historical chromium-waste landfill, was studied in order to recognize the main mechanisms of Cr(VI) detoxification by the algal species. The conducted taxonomic analysis revealed mixed composition of the filamentous forms of algae and showed that three species of Tribonema, namely T. vulgare, T. microchloron and T. viride, which have not been studied before with regard to the mechanisms of Cr(VI) removal, are likely responsible for the effective bioremediation of this highly Cr(VI)-polluted habitat. The studied algal community, with the ability to grow in extremely high concentrations of Cr(VI), i.e. up to ca. 6150 times the upper limit for surface water, exhibited hyperaccumulative properties for chromium (max 16230 mg/kg dry weight) under the given environmental conditions. We found that the main mechanism of Cr(VI) detoxification was reduction followed by Cr(III) biosorption - feasibly by ion exchange and complexation mechanisms - and that the excellent efficiency of chromium reduction under the given, unfavorable weakly alkaline conditions indicates the biological origin of this process. It was concluded that the examined reservoir inhabited by the algal community can be used, after some modifications, as a simple cost-effective "bioreactor" allowing the reduction of chromium concentration to the desired level. Moreover, the conducted studies are also essential to obtain in-depth knowledge and should also be helpful in the relevance of the community for its further application as a potential biosorbent of Cr(VI) on a global scale.
Collapse
Affiliation(s)
- Daniel Ociński
- Department of Chemical Technology, Faculty of Production Engineering, Wroclaw University of Economics and Business, ul. Komandorska 118/120, Wrocław, Poland.
| | - Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Konrad Wołowski
- W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
| | - Piotr Mazur
- Institute of Experimental Physics, University of Wrocław, Max Born Sq., 9, 50-204 Wrocław, Poland
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Jerzy Raczyk
- Department of Physical Geography, University of Wrocław, ul. W. Cybulskiego 34, 50-205 Wrocław, Poland
| |
Collapse
|
19
|
Fu Y, Wang L, Peng W, Fan Q, Li Q, Dong Y, Liu Y, Boczkaj G, Wang Z. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media-A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126041. [PMID: 34229381 DOI: 10.1016/j.jhazmat.2021.126041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/20/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous conversion of most harmful As(III) and Cr(VI) to their less toxic counterparts is environmentally desirable and cost-effective. It has been confirmed that simultaneous oxidation of As(III) to As(V) and reduction of Cr(VI) to Cr(III) can occur via free radical or mediated electron transfer processes. While Cr(VI) is reduced by reacting with H•, eaq-, photoelectron directly or undergoing ligand exchange with H2O2 and SO32-, As(III) is oxidized by HO•, SO4•-, O2•-, and holes (h+) in free radical process. The ability to concentrate Cr and As species on heterogeneous interface and conductivity determining the co-conversion efficiency in mediated electron transfer process. Acidity has positive effect on these co-conversion, while mediated electron transfer process is not much affected by dissolved oxygen (O2). Organic compounds (e.g., oxalate, citrate and phenol) commonly favor Cr(VI) reduction and inhibit As(III) oxidation. To better understand the trends in the existing data and to identify the knowledge gaps, this review elaborates the complicated mechanisms for co-conversion of As(III) and Cr(VI) by various methods. Some challenges and prospects in this active field are also briefly discussed.
Collapse
Affiliation(s)
- Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenya Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yongxia Dong
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Chemical and Process Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
20
|
Liu S, Shohji I, Kobayashi T, Hirohashi J, Wake T, Yamamoto H, Kamakoshi Y. Mechanistic study of Ni–Cr–P alloy electrodeposition and characterization of deposits. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Ayele A, Suresh A, Benor S, Konwarh R. Optimization of chromium(VI) removal by indigenous microalga (Chlamydomonas sp.)-based biosorbent using response surface methodology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1276-1288. [PMID: 33428305 DOI: 10.1002/wer.1510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 05/13/2023]
Abstract
Phycoremediation of heavy metals has garnered considerable recent research interest. In this study, an indigenous microalga (Chlamydomonas sp.)-based biosorbent was employed for biosorption of Cr(VI) dissolved solids (Cr(VI)-DS), optimized using response surface methodology (RSM). The effects of microalga concentration, pH, and contact time were studied with 250 mg Cr(VI)-DS L-1 . The biosorption of Cr(VI)-DS was higher at acidic pH (94.17% at pH 4) than at alkaline conditions (68.53% at pH 10). The interaction of pH and microalga concentration exerted significant (p < 0.05) influence on the biosorption. Under the optimized parameters of 1.5 g microalga L-1 , pH 4, and contact time of 30 min, a predicted biosorption of 91.31% and biosorption capacity of 152 mg Cr(VI)-DS g-1 biomass were documented. FTIR analysis attested the electronegative surface functional groups of the microalgae biomass, bracketed together with its high biosorption potency. The study evinced the potential of the indigenous microalga for remediation of hexavalent chromium. PRACTITIONER POINTS: Indigenous Ethiopian microalga (Chlamydomonas sp.) exhibited 94% Cr(VI) abatement with biosorption capacity of 152 mg Cr(VI) g-1 . FTIR analysis of the biosorbent divulged the presence of electronegative functional groups (amino, carboxyl, hydroxyl, and carbonyl groups). Higher biosorption of Cr(VI)-DS under acidic pH (94.17% at pH 4) than alkaline pH (68.53% at pH 10). Significant (p < 0.05) interaction effect of pH and biomass concentration on the biosorption, evinced in RSM optimization 91% Cr(VI) removal achieved under optimal conditions of 1.5 g biosorbent L-1 , 30 min of contact time, and pH 4.
Collapse
Affiliation(s)
- Abate Ayele
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Arumuganainar Suresh
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research - The University for Innovation, Gandhinagar, India
| | - Solomon Benor
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Office of Science and Research Affair Director General, Ministry of Science and Higher Education, Addis Ababa, Ethiopia
| | - Rocktotpal Konwarh
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Centre of Excellence - Nanotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Ma T, Wu Y, Liu N, Yan C. Adsorption behavior of Cr(VI) and As(III) on multiwall carbon nanotubes modified by iron–manganese binary oxide (FeMnOx/MWCNTs) from aqueous solution. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1897626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tian Ma
- Department of Environment, Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
| | - Yunhai Wu
- Department of Environment, Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
| | - Ningning Liu
- Department of Environment, Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
| | - Congcong Yan
- Department of Environment, Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
| |
Collapse
|
23
|
Singh P, Itankar N, Patil Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111547. [PMID: 33190974 DOI: 10.1016/j.jenvman.2020.111547] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Chromium (Cr) is most widely used heavy metal with vast applications in industrial sectors such as metallurgy, automobile, leather, electroplating, etc. Subsequently, these industries discharge large volumes of toxic Cr containing industrial wastewaters without proper treatment/management into the environment, causing severe damage to human health and ecology. This review gives some novel insights on the existing, successful and promising bio-based approaches for Cr remediation. In lieu of the multiple limitations of the physical and chemical methods for remediation, various biological means have been deciphered, wherein dead and live biomass have shown immense capabilities of removing/reducing and/or remediating Cr from polluted environmental niches. Adsorption of Cr by various agro-based waste and reduction/precipitation by different microbial groups have shown promising results in chromium removal/recovery. Various microbial based agents and aquatic plants like duckweeds are emerging as efficient adsorbents of metals and their role in chromium bioremediation is an effective green technology that needs to be harnessed effectively. The role of iron and sulphur reducing bacteria have shown potential for enhanced Cr remediation. Biosurfactants have revealed immense scope as enhancers of microbial metal bioremediation and have been reported to have potential for use in chromium recovery as well. The authors also explore the combined use of biochar and biosurfactants as a potential strategy for chromium bioremediation for the development of technology worth adopting. Cr is non-renewable and finite resource, therefore its safe removal/recovery from wastes is of major significance for achieving social, economic and environmental sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Nilisha Itankar
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Yogesh Patil
- Symbiosis Centre for Research and Innovation, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
24
|
Reduction Removal of Cr(VI) from Wastewater by CO·−2 Deriving from Formate Anion Based on Activated Carbon Catalyzed Persulfate. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Saha D, Hoinkis TJ, Van Bramer SE. Electrospun, flexible and reusable nanofiber mat of graphitic carbon nitride: Photocatalytic reduction of hexavalent chromium. J Colloid Interface Sci 2020; 575:433-442. [DOI: 10.1016/j.jcis.2020.04.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
|
26
|
Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176013. [PMID: 32824890 PMCID: PMC7504174 DOI: 10.3390/ijerph17176013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022]
Abstract
Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as Klebsiella sp. via 16S rRNA sequencing. In Luria–Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models—Langmuir and Freundlich—were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI).
Collapse
|
27
|
Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27563-27581. [PMID: 32418096 DOI: 10.1007/s11356-020-08903-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination is a global issue, where the prevalent contaminants are arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb). More often, they are collectively known as "most problematic heavy metals" and "toxic heavy metals" (THMs). Their treatment through a variety of biological processes is one of the prime interests in remediation studies, where heavy metal-microbe interaction approaches receive high interest for their cost effective and ecofriendly solutions. In this review, we provide an up to date information on different microbial processes (bioremediation) for the removal of THMs. For the same, emphasis is put on oxidation-reduction, biomineralization, bioprecipitation, bioleaching, biosurfactant technology, biovolatilization, biosorption, bioaccumulation, and microbe-assisted phytoremediation with their selective advantages and disadvantages. Further, the literature briefly discusses about the various setups of cleaning processes of THMs in environment under ex situ and in situ applications. Lately, the study sheds light on the manipulation of microorganisms through genetic engineering and nanotechnology for their advanced treatment approaches.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
- Department of Botany, University of Delhi, Delhi, India.
| | - Ved Pal Singh
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
28
|
Mu C, Wang L, Wang L. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25140-25148. [PMID: 32347498 DOI: 10.1007/s11356-020-08982-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The microbial fuel cell coupled constructed wetland (CW-MFC) was used for treatment sewage and simultaneously generating electricity. The main aim of this study was to explore the optimal conditions for the treatment of hexavalent chromium (Cr (VI)) wastewater by the CW-MFC system. The performance of CW-MFC in removing Cr (VI) and chemical oxygen demands (COD) contained in wastewater and its electricity generation were studied. Electrode spacing, Cr (VI) and COD concentration, and hydraulic retention time (HRT) had certain effects on the performance of CW-MFC. For the electrode spacing of 10 cm, the highest power density of 458.2 mW/m3 could be obtained with the influent concentration of Cr (VI) (60 mg/L) and COD (500 mg/L). The highest Cr (VI) and COD removal rate were obtained with the HRT of 3 days. Compared with CW system, the electrical energy generated in CW-MFC was beneficial to improving the removal efficiency of COD and Cr (VI). Thus, the results confirmed that CW-MFC is a promising technology to remove Cr (VI) from wastewater and achieve bioelectricity production simultaneously.
Collapse
Affiliation(s)
- Chunxia Mu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Li Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
29
|
Balasubramanian UM, Vaiyazhipalayam Murugaiyan S, Marimuthu T. Enhanced adsorption of Cr(VI), Ni(II) ions from aqueous solution using modified Eichhornia crassipes and Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20648-20662. [PMID: 31512129 DOI: 10.1007/s11356-019-06357-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The environment is seriously affected by the release of hazardous heavy metals from the industries. The transformation of aquatic weeds into valuable nanosorbent has been considered as effective and efficient material in the wastewater treatment process. The aim of the study is to analyze the potential of nano-EC and nano-LM for the removal of chromium(VI) and nickel(II) ions. The characteristics of nanosorbent were analyzed using Fourier transform infrared spectroscopy (FTIR), Brunauer Emmett-Teller analysis (BET), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermo gravimetric analysis (TGA), respectively. Adsorptive performance of nanosorbent was studied with respect to pH, contact time, nano adsorbent dosage, and metal ion concentration. The maximum monolayer adsorption capacity of Cr(VI) and Ni(II) with respect to nano-EC was found to be 79.04 mgg-1 and 85.09 mgg-1, respectively. Adsorption isotherm and kinetic studies were performed and it was reported that adsorption isotherm follows Langmuir model with regression coefficient R2 > 0.9 for nano-EC and nano-LM respectively. The pseudo-second order model was found to fit well with experimental data. Experimental results suggested that nano-EC can be considered as a suitable nanosorbent for the removal of Cr(VI) and Ni(II) ions from effluents.
Collapse
|
30
|
Verma B, Sewani H, Balomajumder C. Synthesis of carbon nanotubes via chemical vapor deposition: an advanced application in the Management of Electroplating Effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14007-14018. [PMID: 32036530 DOI: 10.1007/s11356-020-08002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 05/20/2023]
Abstract
Iron catalyst supported over magnesium oxide had been synthesized with different percentages of Fe, i.e., 0.5, 1, and 5% employing the method of impregnation. These fabricated catalysts were used to grow carbon nanotubes (CNTs) using a chemical vapor deposition (CVD) method in the CVD reactor. The 5% Fe/MgO catalyst showed the maximum growth of CNTs. The synthesized novel CNTs (5Fe-CNTs) were investigated for their adsorption capabilities for the removal of parts per million levels of hexavalent chromium from electroplating effluent. The 5Fe-CNTs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and Zeta analyzer. The 5Fe-CNTs showed remarkable adsorption capacity of 63.3 mg g-1 toward Cr(VI) in water. The effects of various operating conditions on the removal of Cr(VI) from wastewater have been evaluated. Kinetic and thermodynamic studies were performed, and it was observed that the experimental data is in best agreement with pseudo-second-order kinetics. Besides the synthesized CNTs exhibited good recyclability for adsorbing Cr(VI) as even after 3 adsorption cycles, the adsorption capacity was reduced by less than 10%.
Collapse
Affiliation(s)
- Bharti Verma
- Department of Chemical Engineering, IIT Roorkee, Roorkee, 247667, India.
| | - Hitesh Sewani
- Department of Chemical Engineering, IIT Roorkee, Roorkee, 247667, India
| | | |
Collapse
|
31
|
Singh S, Kumar V, Datta S, Dhanjal DS, Sharma K, Samuel J, Singh J. Current advancement and future prospect of biosorbents for bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135895. [PMID: 31884296 DOI: 10.1016/j.scitotenv.2019.135895] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 05/12/2023]
Abstract
The increasing use of heavy metals, synthetic dyes and pesticides is a major environmental concern. Wastewaters containing heavy metals and dyes, extensively released from small and large scale industries enter excessively into food chains resulting in mutagenesis, carcinogenicity and serious health impairments in living systems. The arrays of technologies are implemented to date to remediate both inorganic and organic contaminants from wastewaters. Among which, adsorption is the most attractive method as it employs eco-friendly, sustainable and cost-effective biomaterials. Use of bioadsorbents is advantageous over the conventional adsorbents. Clay, chitin, peat, microbial biomass and agricultural wastes are commonly used bioadsorbants. These bioadsorbents are extensively used for elimination of dyes, heavy metals, adsorption of toxic industrial effluents, removal of fertilizers/pesticides, atmospheric pollutants and nuclear waste from the environment. The current review presents state of the art knowledge on various types of biosorbents, their uses, and mechanism of action. Various strategies to enhance the efficiency of bioadsorbents and physicochemical conditions to remediate dyes and heavy metals from waste streams are also incorporated in this review. Use of nano-bioadsorbents in industries to minimize the hazardous effect of solid and liquid waste has also been discussed.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India; Punjab Biotechnology Incubators, Mohali 160059, Punjab, India; Regional Advanced Water Testing Laboratory, Mohali 160059, Punjab, India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior 474009, MP, India
| | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Punjab, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kankan Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Jastin Samuel
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India; Waste Valorization Research Lab, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India.
| |
Collapse
|
32
|
Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol 2020; 104:3729-3743. [DOI: 10.1007/s00253-020-10533-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
|
33
|
Liu G, Vijayaraman SB, Dong Y, Li X, Andongmaa BT, Zhao L, Tu J, He J, Lin L. Bacillus velezensis LG37: transcriptome profiling and functional verification of GlnK and MnrA in ammonia assimilation. BMC Genomics 2020; 21:215. [PMID: 32143571 PMCID: PMC7060608 DOI: 10.1186/s12864-020-6621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background In recent years, interest in Bacillus velezensis has increased significantly due to its role in many industrial water bioremediation processes. In this study, we isolated and assessed the transcriptome of Bacillus velezensis LG37 (from an aquaculture pond) under different nitrogen sources. Since Bacillus species exhibit heterogeneity, it is worth investigating the molecular mechanism of LG37 through ammonia nitrogen assimilation, where nitrogen in the form of molecular ammonia is considered toxic to aquatic organisms. Results Here, a total of 812 differentially expressed genes (DEGs) from the transcriptomic sequencing of LG37 grown in minimal medium supplemented with ammonia (treatment) or glutamine (control) were obtained, from which 56 had Fold Change ≥2. BLAST-NCBI and UniProt databases revealed 27 out of the 56 DEGs were potentially involved in NH4+ assimilation. Among them, 8 DEGs together with the two-component regulatory system GlnK/GlnL were randomly selected for validation by quantitative real-time RT-PCR, and the results showed that expression of all the 8 DEGs are consistent with the RNA-seq data. Moreover, the transcriptome and relative expression analysis were consistent with the transporter gene amtB and it is not involved in ammonia transport, even in the highest ammonia concentrations. Besides, CRISPR-Cas9 knockout and overexpression glnK mutants further evidenced the exclusion of amtB regulation, suggesting the involvement of alternative transporter. Additionally, in the transcriptomic data, a novel ammonium transporter mnrA was expressed significantly in increased ammonia concentrations. Subsequently, OEmnrA and ΔmnrA LG37 strains showed unique expression pattern of specific genes compared to that of wild-LG37 strain. Conclusion Based on the transcriptome data, regulation of nitrogen related genes was determined in the newly isolated LG37 strain to analyse the key regulating factors during ammonia assimilation. Using genomics tools, the novel MnrA transporter of LG37 became apparent in ammonia transport instead of AmtB, which transports ammonium nitrogen in other Bacillus strains. Collectively, this study defines heterogeneity of B. velezensis LG37 through comprehensive transcriptome analysis and subsequently, by genome editing techniques, sheds light on the enigmatic mechanisms controlling the functional genes under different nitrogen sources also reveals the need for further research.
Collapse
Affiliation(s)
- Guangxin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Sarath Babu Vijayaraman
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yanjun Dong
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Binda Tembeng Andongmaa
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Li Lin
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China. .,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
| |
Collapse
|
34
|
Wang H, Cui H, Song X, Xu R, Wei N, Tian J, Niu H. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal. J Colloid Interface Sci 2020; 561:46-57. [DOI: 10.1016/j.jcis.2019.11.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
|
35
|
Leimbach M, Tschaar C, Schmidt U, Bund A. Low-frequency pulse plating for tailoring the optical appearance of chromium layers for decorative applications. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01406-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
The optical appearance of electroplated chromium layers is a crucial factor for decorative applications. Currently in the decorative chromium plating industry the so far used hexavalent electrolytes are being replaced progressively by solutions of trivalent chromium. However, chromium deposited from trivalent baths tends to have a yellowish color hue at thicknesses beyond 100 nm, which is undesired for most applications. The shift in color is related to a change in surface morphology due to the globular growth of the chromium nuclei. By utilizing pulsed current with on-times in the range of seconds, the grain growth is suppressed and the formation of fresh nuclei is favored. As a result, the average grain size of the layer can be decreased significantly. Compact chromium layers with small grains and improved color values are formed. A blueish appearance and high brightness were maintained up to thicknesses of more than 200 nm. Based on the results a combination of constant and pulsed current is suggested, yielding similar visual appearance as in the case of pulsed current only, but reaching the targeted film thickness much faster.
Graphic abstract
Collapse
|
36
|
Nayak S, S R, P B, Kale P. A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:804-818. [PMID: 32028787 DOI: 10.1080/15226514.2020.1717432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sukinda Valley, one of the highly polluted areas of the world is generating tons of mining waste and causing serious health and environmental issues in its surroundings. Several reports are available reporting the severity of hexavalent chromium, yet little efforts have been made to address the pollution and its remediation due to a lack of proper remedial measures. The review highlights the pros and cons of various physical, chemical and biological techniques used worldwide for the treatment of chromium waste and also suggests better and reliable bioremediation measures. Microbes such as Acidophilium and Acidithiobacillus caldus (Bioleaching), Pseudomonas, Micrococcus and Bacillus (Bioreduction), Aereobacterium and Saccharomyces (Biosorption), are widely used for bioremediation of hexavalent chromium owing to their unique metabolic activities, ionic movement through an extracellular membrane, and other cellular adsorptions and reduction properties. The use of native and hybrid combinations of microbes supported by organic supplements is projected as a fast and efficient technique that not only reduces chromium quantity but also maintains the integrity of the microbial sources. Innovation and emphasis on nano-based products like nanocomposite, nano adsorbent, nanoscale zerovalent iron (nZVI) particles and multifunctional plant-growth-promoting bacteria (PGPB) will serve as the next generation environmental remediation technologies in the near future.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | | - Balasubramanian P
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Paresh Kale
- Department of Electrical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
37
|
Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJO. Wastewater treatment using filamentous algae - A review. BIORESOURCE TECHNOLOGY 2020; 298:122556. [PMID: 31843358 DOI: 10.1016/j.biortech.2019.122556] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Wastewater treatment using algae is a promising approach for efficient removal of contaminating nutrients and their conversion into useful products. Monocultures of filamentous algae provide easier harvesting compared to microalgae, and better control of biomass quality than polyculture systems such as algal turf scrubbers. In this review, recent research into wastewater treatment using freshwater filamentous algae is compiled and critically analysed. Focus is given to filamentous algae monocultures, with key relevant findings from microalgae and polyculture systems discussed and compared. The application of monocultures of filamentous algae is an emerging area of research. Gaps are identified in our understanding of key aspects important to large-scale system design, including criteria for species selection, influence of nutrient type and loading, inorganic carbon supply, algae-bacteria interactions, and parameters such as pond depth, mixing and harvesting regimes. This technology has much promise, however future research is needed to maximise productivity and wastewater treatment efficiency.
Collapse
Affiliation(s)
- Jiajun Liu
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill Pemberton
- Melbourne Water Corporation, 990 La Trobe Street, Docklands 3008, Australia
| | - Justin Lewis
- Melbourne Water Corporation, 990 La Trobe Street, Docklands 3008, Australia
| | - Peter J Scales
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
38
|
Abed RMM, Shanti M, Muthukrishnan T, Al-Riyami Z, Pracejus B, Moraetis D. The Role of Microbial Mats in the Removal of Hexavalent Chromium and Associated Shifts in Their Bacterial Community Composition. Front Microbiol 2020; 11:12. [PMID: 32082277 PMCID: PMC7001535 DOI: 10.3389/fmicb.2020.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial mats are rarely reported for chromium-polluted ecosystems, hence information on their bacterial diversity and role in chromium removal are very scarce. We investigated the role of nine microbial mats, collected from three quarry sumps of chromium mining sites, in the removal of hexavalent chromium [Cr(VI)]. Bacterial diversity in these mats and community shifts after incubation with Cr(VI) have been investigated using MiSeq sequencing. In nature, a chromium content of 1,911 ± 100 mg kg–1 was measured in the microbial mats, constituting the third highest source of environmentally available chromium. The mats were able to remove 1 mg l–1 of Cr(VI) in 7 days under aerobic conditions. MiSeq sequencing of the original mats yielded 46–99% of the sequences affiliated to Proteobacteria, Firmicutes and Actinobacteria. When the mats were incubated with Cr(VI), the bacterial community shifted in the favor of Alphaproteobacteria and Verrucomicrobiae. We conclude that microbial mats in the quarry sumps harbor diverse microorganisms with the ability to remove toxic Cr(VI), hence these mats can be potentially used to remove chromium from polluted waters.
Collapse
Affiliation(s)
- Raeid M M Abed
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mary Shanti
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | - Zayana Al-Riyami
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Bernhard Pracejus
- Earth Science Department, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Daniel Moraetis
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
39
|
Biological and Nonbiological Approaches for Treatment of Cr(VI) in Tannery Effluent. EMERGING ECO-FRIENDLY GREEN TECHNOLOGIES FOR WASTEWATER TREATMENT 2020. [DOI: 10.1007/978-981-15-1390-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Kulkarni PS, Watwe VS, Hipparge AJ, Sayyad SI, Sonawane RA, Kulkarni SD. Valorization of Uncharred Dry Leaves of Ficus benjamina towards Cr (VI) removal from Water: Efficacy Influencing Factors and mechanism. Sci Rep 2019; 9:19385. [PMID: 31852951 PMCID: PMC6920481 DOI: 10.1038/s41598-019-55993-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 11/30/2022] Open
Abstract
The potential of uncharred biomaterial derived from dry leaves of Ficusbenjamina (Family: Moraceae,local name: Weeping Fig) plant to remove Cr(VI) from aqueous samples was investigated. In the present work, treatment of dilute acids was used for activating the adsorption centres on the biomass instead of cumbersome charring process. The plant material was characterized using FT-IR, FE-SEM and EDX. Various influencing factors such as pH of equilibrating solution, contact time, Cr (VI) concentrations, adsorbent dose and temperature were optimized to obtain maximum sorption efficacy. The interactions among the biomaterial and Cr (VI) in water were studied by fitting the sorption data in four different adsorption isotherms. The data fitting and experimental evidences indicated formation of monolayer of Cr(VI) over the biomass surface. The process followed pseudo-second order kinetics and was thermodynamically spontaneous under laboratory conditions and reached equilibrium in 24 hours. Maximum adsorption capacity of 56.82 mg/g was obtained at the pH 2 when the concentration before adsorption was 200 mg L−1 of Cr(VI) with 24 hours of equilibration time and 2.50 g L−1 of dose of biomaterial at room temperature. The sorption efficiency was found to be better than many charred bio-based materials.
Collapse
Affiliation(s)
- Preeti S Kulkarni
- Post-graduate and Research Centre, Department of Chemistry, MES Abasaheb Garware College, Pune, India.
| | - Varuna S Watwe
- Post-graduate and Research Centre, Department of Chemistry, MES Abasaheb Garware College, Pune, India
| | - Abubakar J Hipparge
- Post-graduate and Research Centre, Department of Chemistry, MES Abasaheb Garware College, Pune, India
| | - Sana I Sayyad
- Post-graduate and Research Centre, Department of Chemistry, MES Abasaheb Garware College, Pune, India
| | - Rutika A Sonawane
- Post-graduate and Research Centre, Department of Chemistry, MES Abasaheb Garware College, Pune, India
| | - Sunil D Kulkarni
- Post-graduate and Research Centre, Department of Chemistry, Shikshana Prasarak Mandali's Sir Parashurambhau College, Tilak Road, Pune, India
| |
Collapse
|
41
|
Campaña-Pérez JF, Portero Barahona P, Martín-Ramos P, Carvajal Barriga EJ. Ecuadorian yeast species as microbial particles for Cr(VI) biosorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28162-28172. [PMID: 31363969 DOI: 10.1007/s11356-019-06035-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Pollution caused by heavy metals is a prime concern due to its impact on human health, animals, and ecosystems. Cr(VI), generated in a range of different industries as a liquid effluent, is one of the most frequent contaminants. In the work presented herein, the adsorption efficiency of three species of native yeasts from Ecuador (Kazachstania yasuniensis, Kodamaea transpacifica, and Saturnispora quitensis) for Cr(VI) removal from simulated wastewater was assessed, taking Saccharomyces cerevisiae as a reference. After disruption of the flocs of yeast with a cationic surfactant, adsorption capacity, kinetics, and biosorption isotherms were studied. K. transpacifica isolate was found to feature the highest efficiency among the four yeasts tested, as a result of its advantageous combination of surface charge, individual cell size (4.04 μm), and surface area (1588.27 m2/L). The performance of S. quitensis was only slightly lower. The remarkable biosorption capacities of these two isolates (476.19 and 416.67 mg of Cr(VI)/g of yeast, respectively) evidence the potential of non-conventional yeast species as sorption microbial particles for polluted water remediation.
Collapse
Affiliation(s)
- Juan Fernando Campaña-Pérez
- Centro Neotropical para Investigación de la Biomasa (CNIB), Colección de Levaduras Quito Católica (CLQCA), Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado, 17-01-2184, Quito, Ecuador.
| | - Patricia Portero Barahona
- Centro Neotropical para Investigación de la Biomasa (CNIB), Colección de Levaduras Quito Católica (CLQCA), Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado, 17-01-2184, Quito, Ecuador
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA), University of Zaragoza, Carretera de Cuarte, s/n, 22071, Huesca, Spain
| | - Enrique Javier Carvajal Barriga
- Centro Neotropical para Investigación de la Biomasa (CNIB), Colección de Levaduras Quito Católica (CLQCA), Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado, 17-01-2184, Quito, Ecuador
| |
Collapse
|
42
|
Shafiee M, Abedi MA, Abbasizadeh S, Sheshdeh RK, Mousavi SE, Shohani S. Effect of zeolite hydroxyl active site distribution on adsorption of Pb(II) and Ni(II) pollutants from water system by polymeric nanofibers. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1624572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohaddeseh Shafiee
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Ali Abedi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Saeed Abbasizadeh
- Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Reza Khalighi Sheshdeh
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Sepideh Shohani
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical science, Arak, Iran
| |
Collapse
|
43
|
Effective Factor Analysis for Chromium(VI) Removal from Aqueous Solutions and Its Application to Tunçbilek Lignite Using Design of Experiments. J CHEM-NY 2019. [DOI: 10.1155/2019/1263735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poisonous heavy metals in air, water, and soil produce global environmental problems that are considerable threats to humankind. To meet the local and international guidelines for heavy metal release, companies often use different approaches, such as chemical precipitation, chelating agents, or activated carbon produced by adsorption. One of these heavy and toxic metals is chromium(VI). Chromium(VI) is commonly used in many applications, such as dye fixation in the textile industry or as an anticorrosive agent in paints. The aim of this paper is to explore the factors affecting the removal of one of these deadly heavy metals, chromium(VI), from aqueous solutions. For this purpose, activated carbon from Turkish Tunçbilek lignite is prepared with both chemical and physical activation methods to investigate the adsorption behavior of chromium(VI). The effects of initial chromium(VI) concentration, adsorption temperature, and pH on adsorption are studied using a design of experiments method with a full 24 factorial design with center points. The Freundlich and Langmuir adsorption isotherms that are commonly used in chemical engineering are also applied both for predicting the amount of chromium(VI) adsorbed and confirming the validity and advantages of the obtained regression model. The results indicate that the design of experiments and regression can explain and support the design of new materials by using linear and physically meaningful equations instead of local nonlinear and empirical models that are usually insufficient. Additionally, three experiments were carried out in the liquid phase to test the activated carbon samples: chromium, chromium and sucrose, and chromium-sucrose-ion. A change in adsorption capacities of the activated carbon samples was observed. Sucrose was chosen for the experiments because it contains six carbon atoms in a slightly soluble structure. The results indicated that Tunçbilek lignite exhibits good adsorption capability.
Collapse
|
44
|
Combined allelopathic effects of Spirogyra (Zygnematales: Zygnemataceae) and Ceratophyllum demersum (Ceratophyllales: Ceratophyllaceae) on the growth of Microcystis aeruginosa (Chroocolales: Microcystaceae). Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00238-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Chen L, Wang C, Liu S, Zhu L. Investigation of adsorption/desorption behavior of Cr(VI) at the presence of inorganic and organic substance in membrane capacitive deionization (MCDI). J Environ Sci (China) 2019; 78:303-314. [PMID: 30665650 DOI: 10.1016/j.jes.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
The adsorption and desorption behavior of Cr(VI) in membrane capacitive deionization (MCDI) was investigated systematically in the presence of bovine serum albumin (BSA) and KCl with different concentrations, respectively. Results revealed that Cr(VI) absorption was enhanced and the adsorption amount for Cr(VI) increased from 155.7 to 190.8 mg/g when KCl concentration increased from 100 to 200 mg/L in the adsorption process, which was attributed to the stronger driving force. However, the adsorption amount sharply decreased to 90.2 mg/g when KCl concentration reached up to 1000 mg/L suggesting the negative effect for Cr(VI) removal that high KCl concentration had. As for the effect of BSA on ion adsorption, the amount for Cr (VI) significantly declined to 78.3 mg/g and pH was found to be an important factor contributing to this significant reduction. Then, the desorption performance was also conducted and it was obtained that the presence of KCl had negligible effect on Cr(VI) desorption, while promoted by the addition of BSA. The incomplete desorption was obtained and the residual chromium ions onto the electrode after desorption was detected via energy-dispersive X-ray spectroscopy (EDS). Based on above analysis, the enhanced removal mechanism for Cr(VI) in MCDI was found to be consisted of ion adsorption onto electrode surface, the redox reaction of Cr(VI) into Cr(III) and precipitation, which was demonstrated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Chengyi Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shanshan Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
46
|
Banerjee S, Kamila B, Barman S, Joshi SR, Mandal T, Halder G. Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:271-282. [PMID: 30583101 DOI: 10.1016/j.jenvman.2018.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
A bioremedial approach was investigated on the removal of Cr(VI) from aqueous solution using a novel chromium reducing bacteria isolated from coalmine wastewater. Cr(VI) removal efficacy of the bacterium was determined in a series of batch studies under the influence of various parameters viz., pH (1-7), temperature (20-40 °C), initial metal concentration (1-150 mg/L), agitation speed (80-150 rpm) and substrate concentration (1-5 mg/L). Oxygen involvement in the removal process was determined by different incubation conditions. Substrate consumption and its resultant biomass generation were considered for determining the viability of the microbe under varied metal concentration. The microbial isolate survived in Cr(VI) tainted solution with initial concentration of 1-140 mg/L, among which maximum remediation was found in 60 mg/L Cr(VI) loaded solution. The bacterial species also survived in other metal solution viz., Fe(II), As(V), Cu(II), Pb(II), Zn(II), Mg(II), Mn(II) apart from Cr(VI). Multiple approaches were tested to facilitate understanding of the bacterial Cr(VI) removal mechanism. The bacteria accumulated metal ions in the exponential growth phase both on and within the cell. Underlying latent factors which governed the bacterial growth and its removal activity was determined with the classical Monod equation. The isolated bacterium also survived in the bimetallic solutions with significant removal of Cr(VI). The microbial species isolated from mining area was identified as Pseudomonas brenneri by 16s rRNA molecular characterization. Hence, the isolated novel bacterium illustrated promising involvement towards bio-treatment of Cr(VI) laden wastewater.
Collapse
Affiliation(s)
- Soumya Banerjee
- Department of Chemical Engg, National Institute of Technology Durgapur, West Bengal, India
| | - Biswajit Kamila
- Department of Chemical Engg, Calcutta University, West Bengal, India
| | | | - S R Joshi
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Tamal Mandal
- Department of Chemical Engg, National Institute of Technology Durgapur, West Bengal, India
| | - Gopinath Halder
- Department of Chemical Engg, National Institute of Technology Durgapur, West Bengal, India.
| |
Collapse
|
47
|
Kaur H, Rajor A, Kaleka AS. Role of Phycoremediation to Remove Heavy Metals from Sewage Water: Review Article. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jest.2019.1.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Uçurum M, Özdemir A, Teke Ç, Serencam H, İpek M. Optimization of Adsorption Parameters for Ultra-Fine Calcite Using a Box-Behnken Experimental Design. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractRemoval of heavy metals from wastewater is a significant issue because it prevents environmental-based concerns and impacts a large number of diseases and disorders. Many low-cost natural materials have been offered recently as possible precursors to commercial synthetic adsorbents. Ultra-fine calcite, one of these natural materials, has been investigated as a potential commercial adsorbent. Response surface designs are effective experimental techniques to investigate the heavy metal adsorption capacity of ultra-fine calcite. In the present study, one such response surface design, Box-Behnken, is used in order to optimize adsorption factors, such as pH level, initial metal concentration, stirring rate and adsorption time, and to determine the heavy metal capacity of this adsorbent. Our results show that the proposed methodology is an effective approach to optimizing the adsorption process and to maximize the heavy metal capacity.
Collapse
Affiliation(s)
- Metin Uçurum
- Bayburt University, Industrial Engineering Department, 69000Bayburt, Turkey
| | - Akın Özdemir
- Bayburt University, Industrial Engineering Department, 69000Bayburt, Turkey
| | - Çağatay Teke
- Sakarya University, Institute of Natural Sciences, 54187Sakarya, Turkey
| | - Hüseyin Serencam
- Bayburt University, Food Engineering Department, 69000Bayburt, Turkey
| | - Mümtaz İpek
- Sakarya University, Industrial Engineering Department, 54187Sakarya, Turkey
| |
Collapse
|
49
|
Jobby R, Jha P, Yadav AK, Desai N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. CHEMOSPHERE 2018; 207:255-266. [PMID: 29803157 DOI: 10.1016/j.chemosphere.2018.05.050] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 05/18/2023]
Abstract
Chromium (VI) is one of the most common environmental contaminant due to its tremendous industrial applications. It is non-biodegradable as it is a heavy metal, and hence, of major concern. Therefore, it is pertinent that the remediation method should be such that brings chromium within permissible limits before the effluent is discharged. Several different strategies are adopted by microorganisms for Cr (VI) removal mostly involving biosorption and biotransformation or both. These mechanisms are based on the surface nature of the biosorbent and the availability of reductants. This review article focuses on chromium pollution problem, its chemistry, sources, effects, remediation strategies by biological agents and detailed chromium detoxification mechanism in microbial cell. A summary of applied in situ and ex situ chromium bioremediation technologies is also listed. This can be helpful for developing technologies to be more efficient for Cr (VI) removal thereby bridging the gap between laboratory findings and industrial application for chromium remediation.
Collapse
Affiliation(s)
- Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206 India.
| | - Pamela Jha
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206 India
| | - Anoop Kumar Yadav
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206 India
| | - Nitin Desai
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206 India
| |
Collapse
|
50
|
A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|