1
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
2
|
Meng X, Du L, Xu S, Zhou L, Chen B, Li Y, Chen C, Ye H, Zhang J, Tian G, Bai X, Dong T, Lin W, Sun M, Zhou K, Liu Y, Zhang W, Duan S. Periodontitis exacerbates pulmonary hypertension by promoting IFNγ + T cell infiltration in mice. Int J Oral Sci 2024; 16:27. [PMID: 38548721 PMCID: PMC10978940 DOI: 10.1038/s41368-024-00291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/01/2024] Open
Abstract
Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ+) T cells and aggravating the progression of pulmonary hypertension. In addition, we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis, and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγ neutralizing antibodies. Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.
Collapse
Affiliation(s)
- Xiaoqian Meng
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Linjuan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lujun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Boyan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yulin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chumao Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huilin Ye
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Guocai Tian
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuebing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjun Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kecong Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wuchang Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Shengzhong Duan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Chai Y, Gu X, Zhang H, Xu X, Chen L. Phoenixin 20 ameliorates pulmonary arterial hypertension via inhibiting inflammation and oxidative stress. Aging (Albany NY) 2024; 16:5027-5037. [PMID: 38517365 PMCID: PMC11006497 DOI: 10.18632/aging.205468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/15/2023] [Indexed: 03/23/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.
Collapse
Affiliation(s)
- Yaqin Chai
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xing Gu
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - HongJun Zhang
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xinting Xu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lizhan Chen
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| |
Collapse
|
4
|
Sanges S, Sobanski V, Lamblin N, Hachulla E, Savale L, Montani D, Launay D. Pulmonary hypertension in connective tissue diseases: What every CTD specialist should know - but is afraid to ask! Rev Med Interne 2024; 45:26-40. [PMID: 37925256 DOI: 10.1016/j.revmed.2023.10.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
Pulmonary hypertension (PH) is a possible complication of connective tissue diseases (CTDs), especially systemic sclerosis (SSc), systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). It is defined by an elevation of the mean pulmonary arterial pressure above 20mmHg documented during a right heart catheterization (RHC). Due to their multiorgan involvement, CTDs can induce PH by several mechanisms, that are sometimes intricated: pulmonary vasculopathy (group 1) affecting arterioles (pulmonary arterial hypertension, PAH) and possibly venules (pulmonary veno-occlusive-like disease), left-heart disease (group 2), chronic lung disease (group 3) and/or chronic thromboembolic PH (group 4). PH suspicion is often raised by clinical manifestations (dyspnea, fatigue), echocardiographic data (increased peak tricuspid regurgitation velocity), isolated decrease in DLCO in pulmonary function tests, and/or unexplained elevation of BNP/NT-proBNP. Its formal diagnosis always requires a hemodynamic confirmation by RHC. Strategies for PH screening and RHC referral have been extensively investigated for SSc-PAH but data are lacking in other CTDs. Therapeutic management of PH depends of the underlying mechanism(s): PAH-approved therapies in group 1 PH (with possible use of immunosuppressants, especially in case of SLE or MCTD); management of an underlying left-heart disease in group 2 PH; management of an underlying chronic lung disease in group 3 PH; anticoagulation, pulmonary endartectomy, PAH-approved therapies and/or balloon pulmonary angioplasty in group 4 PH. Regular follow-up is mandatory in all CTD-PH patients.
Collapse
Affiliation(s)
- S Sanges
- Université de Lille, U1286, INFINITE, Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; CHU de Lille, Département de Médecine Interne et Immunologie Clinique, 59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), 59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), 59000 Lille, France.
| | - V Sobanski
- Université de Lille, U1286, INFINITE, Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; CHU de Lille, Département de Médecine Interne et Immunologie Clinique, 59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), 59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), 59000 Lille, France
| | - N Lamblin
- CHU de Lille, Service de Cardiologie, 59000 Lille, France; Institut Pasteur de Lille, Inserm U1167, 59000 Lille, France
| | - E Hachulla
- Université de Lille, U1286, INFINITE, Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; CHU de Lille, Département de Médecine Interne et Immunologie Clinique, 59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), 59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), 59000 Lille, France
| | - L Savale
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - D Montani
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - D Launay
- Université de Lille, U1286, INFINITE, Institute for Translational Research in Inflammation, 59000 Lille, France; Inserm, 59000 Lille, France; CHU de Lille, Département de Médecine Interne et Immunologie Clinique, 59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), 59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), 59000 Lille, France
| |
Collapse
|
5
|
Condliffe R, Durrington C, Hameed A, Lewis RA, Venkateswaran R, Gopalan D, Dorfmüller P. Clinical-radiological-pathological correlation in pulmonary arterial hypertension. Eur Respir Rev 2023; 32:230138. [PMID: 38123231 PMCID: PMC10731450 DOI: 10.1183/16000617.0138-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by the presence of a mean pulmonary arterial pressure >20 mmHg. Current guidelines describe five groups of PH with shared pathophysiological and clinical features. In this paper, the first of a series covering all five PH classification groups, the clinical, radiological and pathological features of pulmonary arterial hypertension (PAH) will be reviewed. PAH may develop in the presence of associated medical conditions or a family history, following exposure to certain medications or drugs, or may be idiopathic in nature. Although all forms of PAH share common histopathological features, the presence of certain pulmonary arterial abnormalities, such as plexiform lesions, and extent of co-existing pulmonary venous involvement differs between the different subgroups. Radiological investigations are key to diagnosing the correct form of PH and a systematic approach to interpretation, especially of computed tomography, is essential.
Collapse
Affiliation(s)
- Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- These authors contributed equally to this work
| | - Charlotte Durrington
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Robert A Lewis
- Department of Respiratory Medicine, Middlemore Hospital, Auckland, New Zealand
| | - Rajamiyer Venkateswaran
- Department of Heart and Lung Transplantation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
- These authors contributed equally to this work
| | - Peter Dorfmüller
- Department of Pathology, University Hospital of Giessen and Marburg, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
- These authors contributed equally to this work
| |
Collapse
|
6
|
Pullamsetti SS, Sitapara R, Osterhout R, Weiss A, Carter LL, Zisman LS, Schermuly RT. Pharmacology and Rationale for Seralutinib in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:12653. [PMID: 37628831 PMCID: PMC10454154 DOI: 10.3390/ijms241612653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disorder characterized by vascular remodeling and a consequent increase in pulmonary vascular resistance. The histologic hallmarks of PAH include plexiform and neointimal lesions of the pulmonary arterioles, which are composed of dysregulated, apoptosis-resistant endothelial cells and myofibroblasts. Platelet-derived growth factor receptors (PDGFR) α and β, colony stimulating factor 1 receptor (CSF1R), and mast/stem cell growth factor receptor kit (c-KIT) are closely related kinases that have been implicated in PAH progression. In addition, emerging data indicate significant crosstalk between PDGF signaling and the bone morphogenetic protein receptor type 2 (BMPR2)/transforming growth factor β (TGFβ) receptor axis. This review will discuss the importance of the PDGFR-CSF1R-c-KIT signaling network in PAH pathogenesis, present evidence that the inhibition of all three nodes in this kinase network is a potential therapeutic approach for PAH, and highlight the therapeutic potential of seralutinib, currently in development for PAH, which targets these pathways.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Lung Vascular Epigenetics, Center for Infection and Genomics of the Lung (CIGL), Justus-Liebig-Universität Gießen, Aulweg 132, 35392 Giessen, Germany;
| | | | | | - Astrid Weiss
- UGMLC Pulmonale Pharmakotherapie, Biomedizinisches Forschungszentrum Seltersberg (BFS), Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392 Giessen, Germany;
| | | | | | - Ralph Theo Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
7
|
Solinas S, Boucly A, Beurnier A, Kularatne M, Grynblat J, Eyries M, Dorfmüller P, Sitbon O, Humbert M, Montani D. Diagnosis and management of pulmonary veno-occlusive disease. Expert Rev Respir Med 2023; 17:635-649. [PMID: 37578057 DOI: 10.1080/17476348.2023.2247989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Pulmonary veno-occlusive disease (PVOD) is an orphan disease and uncommon etiology of pulmonary arterial hypertension (PAH) characterized by substantial small pulmonary vein and capillary involvement. AREAS COVERED PVOD, also known as 'PAH with features of venous/capillary involvement' in the current ESC/ERS classification. EXPERT OPINION In recent years, particular risk factors for PVOD have been recognized, including genetic susceptibilities and environmental factors (such as exposure to occupational organic solvents, chemotherapy, and potentially tobacco). The discovery of biallelic mutations in the EIF2AK4 gene as the cause of heritable PVOD has been a breakthrough in understanding the molecular basis of PVOD. Venous and capillary involvement (PVOD-like) has also been reported to be relatively common in connective tissue disease-associated PAH (especially systemic sclerosis), and in rare pulmonary diseases like sarcoidosis and pulmonary Langerhans cell granulomatosis. Although PVOD and pulmonary arterial hypertension (PAH) exhibit similarities, including severe precapillary PH, it is essential to differentiate between them since PVOD has a worse prognosis and requires specific management. Indeed, PVOD patients are characterized by poor response to PAH-approved drugs, which can lead to pulmonary edema and clinical deterioration. Due to the lack of effective treatments, early referral to a lung transplantation center is crucial.
Collapse
Affiliation(s)
- Sabina Solinas
- School of Medicine, Université Paris- Saclay, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hopital Bicetre, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Athénaïs Boucly
- School of Medicine, Université Paris- Saclay, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hopital Bicetre, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Antoine Beurnier
- School of Medicine, Université Paris- Saclay, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, ERN-LUNG, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mithum Kularatne
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, Canada
| | - Julien Grynblat
- School of Medicine, Université Paris- Saclay, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Mélanie Eyries
- Sorbonne Université, Departement de genetique, Assistance Publique- Hopitaux de Paris, Hopital Pitié-Salpetriere, Paris, France
- INSERM UMRS 1166, ICAN- Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Peter Dorfmüller
- Department of Pathology, University of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, Giessen, Germany
| | - Olivier Sitbon
- School of Medicine, Université Paris- Saclay, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hopital Bicetre, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- School of Medicine, Université Paris- Saclay, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hopital Bicetre, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris- Saclay, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hopital Bicetre, Paris, France
- INSERM UMRS 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
8
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Cardoneanu A, Burlui AM, Macovei LA, Bratoiu I, Richter P, Rezus E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022; 10:318. [PMID: 35203527 PMCID: PMC8869570 DOI: 10.3390/biomedicines10020318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic sclerosis (SS) is a chronic autoimmune disorder, which has both cutaneous and systemic clinical manifestations. The disease pathogenesis includes a triad of manifestations, such as vasculopathy, autoimmunity, and fibrosis. Interleukin-6 (IL-6) has a special role in SS development, both in vascular damage and in the development of fibrosis. In the early stages, IL-6 participates in vascular endothelial activation and apoptosis, leading to the release of damage-associated molecular patterns (DAMPs), which maintain inflammation and autoimmunity. Moreover, IL-6 plays an important role in the development of fibrotic changes by mediating the transformation of fibroblasts into myofibroblasts. All of these are associated with disabling clinical manifestations, such as skin thickening, pulmonary fibrosis, pulmonary arterial hypertension (PAH), heart failure, and dysphagia. Tocilizumab is a humanized monoclonal antibody that inhibits IL-6 by binding to the specific receptor, thus preventing its proinflammatory and fibrotic actions. Anti-IL-6 therapy with Tocilizumab is a new hope for SS patients, with data from clinical trials supporting the favorable effect, especially on skin and lung damage.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
10
|
Rampa DR, Murugesan P, Chao H, Feng H, Dai W, Lee D, Pekcec A, Doods H, Wu D. Reversal of pulmonary arterial hypertension and neointimal formation by kinin B1 receptor blockade. Respir Res 2021; 22:281. [PMID: 34717626 PMCID: PMC8557528 DOI: 10.1186/s12931-021-01875-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background This study examined whether BI113823, a novel selective kinin B1 receptor antagonist can reverse established pulmonary arterial hypertension (PAH), prevent right heart failure and death, which is critical for clinical translation. Methods Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Three weeks later, when PAH was well established, the rats received daily treatment of BI113823 or vehicle for 3 weeks. Results Treatment with BI113823 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values of mean pulmonary arterial pressure (mPAP). BI113823 therapy reversed pulmonary vascular remodeling, pulmonary arterial neointimal formation, and heart and lung fibrosis, reduced right ventricular pressure, right heart hypertrophy, improved cardiac output, and prevented right heart failure and death. Treatment with BI113823 reduced TNF-α and IL-1β, and macrophages recruitment in bronchoalveolar lavage, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen (PCNA) in the perivascular areas, and reduced expression of iNOS, B1 receptors, matrix metalloproteinase (MMP)-2 and MMP-9 proteins, and the phosphorylation of ERK1/2 and AKT in lung. Treatment with BI113823 reduced mRNA expression of ANP, BNP, βMHC, CGTF, collange-I and IV in right heart, compared to vehicle treated controls. In human monocytes cultures, BI113823 reduced LPS-induced TNF-α production, MMP-2 and MMP-9 expression, and reduced TNF-α-induced monocyte migration. Conclusions We conclude that BI113823 reverses preexisting severe experimental pulmonary hypertension via inhibition of macrophage infiltration, cytokine production, as well as down regulation of matrix metalloproteinase proteins.
Collapse
Affiliation(s)
- Dileep Reddy Rampa
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Priya Murugesan
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiying Feng
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea.,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Wenxin Dai
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Dongwon Lee
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Anton Pekcec
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea. .,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
11
|
Siegert E, Uruha A, Goebel HH, Preuße C, Casteleyn V, Kleefeld F, Alten R, Burmester GR, Schneider U, Höppner J, Hahn K, Dittmayer C, Stenzel W. Systemic sclerosis-associated myositis features minimal inflammation and characteristic capillary pathology. Acta Neuropathol 2021; 141:917-927. [PMID: 33864496 PMCID: PMC8113184 DOI: 10.1007/s00401-021-02305-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
Systemic sclerosis represents a chronic connective tissue disease featuring fibrosis, vasculopathy and autoimmunity, affecting skin, multiple internal organs, and skeletal muscles. The vasculopathy is considered obliterative, but its pathogenesis is still poorly understood. This may partially be due to limitations of conventional transmission electron microscopy previously being conducted only in single patients. The aim of our study was therefore to precisely characterize immune inflammatory features and capillary morphology of systemic sclerosis patients suffering from muscle weakness. In this study, we identified 18 individuals who underwent muscle biopsy because of muscle weakness and myalgia in a cohort of 367 systemic sclerosis patients. We performed detailed conventional and immunohistochemical analysis and large-scale electron microscopy by digitizing entire sections for in-depth ultrastructural analysis. Muscle biopsies of 12 of these 18 patients (67%) presented minimal features of myositis but clear capillary alteration, which we termed minimal myositis with capillary pathology (MMCP). Our study provides novel findings in systemic sclerosis-associated myositis. First, we identified a characteristic and specific morphological pattern termed MMCP in 67% of the cases, while the other 33% feature alterations characteristic of other overlap syndromes. This is also reflected by a relatively homogeneous clinical picture among MMCP patients. They have milder disease with little muscle weakness and a low prevalence of interstitial lung disease (20%) and diffuse skin involvement (10%) and no cases of either pulmonary arterial hypertension or renal crisis. Second, large-scale electron microscopy, introducing a new level of precision in ultrastructural analysis, revealed a characteristic capillary morphology with basement membrane thickening and reduplications, endothelial activation and pericyte proliferation. We provide open-access pan-and-zoom analysis to our datasets, enabling critical discussion and data mining. We clearly highlight characteristic capillary pathology in skeletal muscles of systemic sclerosis patients.
Collapse
Affiliation(s)
- Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Akinori Uruha
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Vincent Casteleyn
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Felix Kleefeld
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rieke Alten
- Schlosspark-Klinik, Heubnerweg 2, 14059, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kathrin Hahn
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany.
- Leibniz ScienceCampus Chronic Inflammation, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Zamanian RT, Badesch D, Chung L, Domsic RT, Medsger T, Pinckney A, Keyes-Elstein L, D'Aveta C, Spychala M, White RJ, Hassoun PM, Torres F, Sweatt AJ, Molitor JA, Khanna D, Maecker H, Welch B, Goldmuntz E, Nicolls MR. Safety and Efficacy of B-Cell Depletion with Rituximab for the Treatment of Systemic Sclerosis-associated Pulmonary Arterial Hypertension: A Multicenter, Double-Blind, Randomized, Placebo-controlled Trial. Am J Respir Crit Care Med 2021; 204:209-221. [PMID: 33651671 PMCID: PMC8650794 DOI: 10.1164/rccm.202009-3481oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rationale: Systemic sclerosis (SSc)-pulmonary arterial hypertension (PAH) is one of the most prevalent and deadly forms of PAH. B cells may contribute to SSc pathogenesis. Objectives: We investigated the safety and efficacy of B-cell depletion for SSc-PAH. Methods: In an NIH-sponsored, multicenter, double-blinded, randomized, placebo-controlled, proof-of-concept trial, 57 patients with SSc-PAH on stable-dose standard medical therapy received two infusions of 1,000 mg rituximab or placebo administered 2 weeks apart. The primary outcome measure was the change in 6-minute-walk distance (6MWD) at 24 weeks. Secondary endpoints included safety and invasive hemodynamics. We applied a machine learning approach to predict drug responsiveness. Measurements and Main Results: We randomized 57 subjects from 2010 to 2018. In the primary analysis, using data through Week 24, the adjusted mean change in 6MWD at 24 weeks favored the treatment arm but did not reach statistical significance (23.6 ± 11.1 m vs. 0.5 ± 9.7 m; P = 0.12). Although a negative study, when data through Week 48 were also considered, the estimated change in 6MWD at Week 24 was 25.5 ± 8.8 m for rituximab and 0.4 ± 7.4 m for placebo (P = 0.03). Rituximab treatment appeared to be safe and well tolerated. Low levels of RF (rheumatoid factor), IL-12, and IL-17 were sensitive and specific as favorable predictors of a rituximab response as measured by an improved 6MWD (receiver operating characteristic area under the curve, 0.88-0.95). Conclusions: B-cell depletion therapy is a potentially effective and safe adjuvant treatment for SSc-PAH. Future studies in these patients can confirm whether the identified biomarkers predict rituximab responsiveness. Clinical trial registered with www.clinicaltrails.gov (NCT01086540).
Collapse
Affiliation(s)
- Roham T Zamanian
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | - David Badesch
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lorinda Chung
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Division of Rheumatology and Immunology, Stanford University, Stanford University School of Medicine, Stanford, California
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas Medsger
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Carla D'Aveta
- Rho Federal Systems Division, Durham, North Carolina
| | | | - R James White
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Fernando Torres
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, Texas
| | - Andrew J Sweatt
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | - Jerry A Molitor
- Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, Minnesota
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan
| | - Holden Maecker
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Beverly Welch
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; and
| | - Ellen Goldmuntz
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; and
| | - Mark R Nicolls
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
13
|
Klouda T, Yuan K. Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:351-372. [PMID: 33788202 DOI: 10.1007/978-3-030-63046-1_19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery hypertension (PAH) is a devastating cardiopulmonary disease characterized by vascular remodeling and obliteration of the precapillary pulmonary arterioles. Alterations in the structure and function of pulmonary vessels result in the resistance of blood flow and can progress to right-sided heart failure, causing significant morbidity and mortality. There are several types of PAH, and the disease can be familial or secondary to an underlying medical condition such as a connective tissue disorder or infection. Regardless of the cause, the exact pathophysiology and cellular interactions responsible for disease development and progression are largely unknown.There is significant evidence to suggest altered immune and vascular cells directly participate in disease progression. Inflammation has long been hypothesized to play a vital role in the development of PAH, as an altered or skewed immune response favoring a proinflammatory environment that can lead to the infiltration of cells such as lymphocytes, macrophages, and neutrophils. Current treatment strategies focus on the dilation of partially occluded vessels; however, such techniques have not resulted in an effective strategy to reverse or prevent vascular remodeling. Therefore, current studies in human and animal models have attempted to understand the underlying pathophysiology of pulmonary hypertension (PH), specifically focusing on the inflammatory cascade predisposing patients to disease so that better therapeutic targets can be developed to potentially reverse or prevent disease progression.The purpose of this chapter is to provide a comprehensive review of the expanding literature on the inflammatory process that participates in PH development while highlighting important and current studies in both animal and human models. While our primary focus will be on cells found in the adaptive and innate immune system, we will review all potential causes of PAH, including cells of the endothelium, pulmonary lymphatics, and genetic mutations predisposing patients. In addition, we will discuss current therapeutic options while highlighting potential future treatments and the questions that still remain unanswered.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Batool M, Berghausen EM, Zierden M, Vantler M, Schermuly RT, Baldus S, Rosenkranz S, Ten Freyhaus H. The six-transmembrane protein Stamp2 ameliorates pulmonary vascular remodeling and pulmonary hypertension in mice. Basic Res Cardiol 2020; 115:68. [PMID: 33188479 PMCID: PMC7666299 DOI: 10.1007/s00395-020-00826-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Six-transmembrane protein of prostate (Stamp2) protects from diabetes and atherosclerosis in mice via anti-inflammatory mechanisms. As chronic inflammation is a hallmark of pulmonary arterial hypertension (PAH), we investigated the role of Stamp2. Stamp2 expression was substantially reduced in the lung of humans with idiopathic PAH, as well as in experimental PAH. In Stamp2-deficient mice, hypoxia modestly aggravated pulmonary vascular remodeling and right ventricular pressure compared to WT. As endothelial cell (EC) and pulmonary arterial smooth muscle cell (PASMC) phenotypes drive remodeling in PAH, we explored the role of Stamp2. Knock-down of Stamp2 in human EC neither affected apoptosis, viability, nor release of IL-6. Moreover, Stamp2 deficiency in primary PASMC did not alter mitogenic or migratory properties. As Stamp2 deficiency augmented expression of inflammatory cytokines and numbers of CD68-positive cells in the lung, actions of Stamp2 in macrophages may drive vascular remodeling. Thus, PASMC responses were assessed following treatment with conditioned media of primary Stamp2−/− or WT macrophages. Stamp2−/− supernatants induced PASMC proliferation and migration stronger compared to WT. A cytokine array revealed CXCL12, MCP-1 and IL-6 as most relevant candidates. Experiments with neutralizing antibodies confirmed the role of these cytokines in driving Stamp2’s responses. In conclusion, Stamp2 deficiency aggravates pulmonary vascular remodeling via cross-talk between macrophages and PASMC. Despite a substantial pro-inflammatory response, the hemodynamic effect of Stamp2 deficiency is modest suggesting that additional mechanisms apart from inflammation are necessary to induce severe PAH.
Collapse
Affiliation(s)
- Mehreen Batool
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Eva M Berghausen
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Mario Zierden
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Marius Vantler
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Stephan Baldus
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Stephan Rosenkranz
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Henrik Ten Freyhaus
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany.
| |
Collapse
|
15
|
Alexeyev M, Geurts AM, Annamdevula NS, Francis CM, Leavesley SJ, Rich TC, Taylor MS, Lin MT, Balczon R, Knighten JM, Alvarez DF, Stevens T. Development of an endothelial cell-restricted transgenic reporter rat: a resource for physiological studies of vascular biology. Am J Physiol Heart Circ Physiol 2020; 319:H349-H358. [PMID: 32589443 PMCID: PMC7473926 DOI: 10.1152/ajpheart.00276.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Aron M Geurts
- Genome Editing Rat Resource Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naga S Annamdevula
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Silas Josiah Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | | | - Diego F Alvarez
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
16
|
Exosomes in Systemic Sclerosis: Messengers Between Immune, Vascular and Fibrotic Components? Int J Mol Sci 2019; 20:ijms20184337. [PMID: 31487964 PMCID: PMC6770454 DOI: 10.3390/ijms20184337] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/18/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease, characterized by vasculopathy and fibrosis of the skin and internal organs. This disease is still considered incurable and is associated with a high risk of mortality, which is related to fibrotic events. An early diagnosis is useful for preventing complications, and targeted therapies reduce disease progression and ameliorate patients’ quality of life. Nevertheless, there are no validated biomarkers for early diagnosis with predictive prognostic value. Exosomes are membrane vesicles, transporting proteins and nucleic acids that may be delivered to target cells, which influences cellular behavior. They play important roles in cell–cell communication, both in physiological and pathological conditions, and may be useful as circulating biomarkers. Recent evidences suggest a role for these microvesicles in the three main aspects related to the pathogenesis of SSc (immunity, vascular damage, and fibrosis). Moreover, exosomes are of particular interest in the field of nano-delivery and are used as biological carriers. In this review, we report the latest information concerning SSc pathogenesis, clinical aspects of SSc, and current approaches to the treatment of SSc. Furthermore, we indicate a possible role of exosomes in SSc pathogenesis and suggest their potential use as diagnostic and prognostic biomarkers, as well as therapeutic tools.
Collapse
|
17
|
Interleukin-6 in pulmonary artery hypertension. J LAB MED 2019. [DOI: 10.1515/labmed-2018-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Interleukin (IL)-6 is a pleiotropic cytokine, playing an important role in various pathological conditions, such as inflammatory, infectious, and neoplastic disorders. The casual relationship between IL-6 levels and development of pulmonary artery hypertension (PAH) has been elusive. Based on comprehensive retrieval of pertinent literature of recent two decades, this article aims to give an overview of the impact of IL-6 on PAH development in view of both clinical and experimental aspects. Results showed that IL-6 was overexpressed in all types of PAH in both human and animal models. The elevated IL-6 levels were closely related to right ventricular (RV) dysfunction and predicted poor prognosis and mortality of PAH patients. Several IL-6-regulated signaling pathways including transforming growth factor (TGF)-β/bone morphogenetic protein signaling pathway are involved in PAH development. IL-6 antagonizing agents are effective in ameliorating the symptoms and improving the RV function of PAH patients.
Collapse
|
18
|
Mercurio V, Bianco A, Campi G, Cuomo A, Diab N, Mancini A, Parrella P, Petretta M, Hassoun PM, Bonaduce D. New Drugs, Therapeutic Strategies, and Future Direction for the Treatment of Pulmonary Arterial Hypertension. Curr Med Chem 2019; 26:2844-2864. [DOI: 10.2174/0929867325666180201095743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
Despite recent advances in Pulmonary Arterial Hypertension (PAH) treatment, this condition is still characterized by an extremely poor prognosis. In this review, we discuss the use of newly-approved drugs for PAH treatment with already known mechanisms of action (macitentan), innovative targets (riociguat and selexipag), and novel therapeutic approaches with initial up-front combination therapy. Secondly, we describe new potential signaling pathways and investigational drugs with promising role in the treatment of PAH.
Collapse
Affiliation(s)
- Valentina Mercurio
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Anna Bianco
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Giacomo Campi
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Alessandra Cuomo
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Nermin Diab
- University of Ottawa, Department of Medicine, Ottawa, ON, Canada
| | - Angela Mancini
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Paolo Parrella
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Mario Petretta
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| | - Paul M. Hassoun
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Domenico Bonaduce
- Federico II University, Department of Translational Medical Sciences, Naples, Italy
| |
Collapse
|
19
|
García-Martín A, Garrido-Rodríguez M, Navarrete C, Caprioglio D, Palomares B, DeMesa J, Rollland A, Appendino G, Muñoz E. Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis. Biochem Pharmacol 2019; 163:321-334. [PMID: 30825431 DOI: 10.1016/j.bcp.2019.02.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Cannabinoids acting as dual PPARγ/CB2 agonists, such as VCE-004.8 and Ajulemic acid (AjA), have been shown to alleviate skin fibrosis and inflammation in SSc models. Since both compounds are being tested in humans, we compared their activities in the bleomycin (BLM) SSc model. Specifically, the pharmacotranscriptomic signature of the compounds was determined by RNA-Seq changes in the skin of BLM mice treated orally with AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds down-regulated the expression of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in vasculogenesis. Additionally, we found 28 specific genes with translation potential by comparing with a list of human scleroderma genes. Immunohistochemical analysis revealed that both compounds prevented fibrosis, collagen accumulation and Tenascin C (TNC) expression. The endothelial CD31+/CD34+ cells and telocytes were reduced in BLM mice and restored only by EHP-101 treatment. Finally, differences were found in plasmatic biomarker analysis; EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPARγ/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases. EHP-101 demonstrated unique mechanisms of action related to the pathophysiology of SSc that could be beneficial in the treatment of this complex disease without current therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Belén Palomares
- Maimonides Biomedical Research Institute of Córdoba, Spain; Departament of Cellular Biology, Physiology and Immunology, University of Córdoba, Spain; Universitary Hospital Reina Sofía, Córdoba, Spain
| | - Jim DeMesa
- Emerald Health Pharmaceuticals, San Diego, CA, USA
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Spain; Departament of Cellular Biology, Physiology and Immunology, University of Córdoba, Spain; Universitary Hospital Reina Sofía, Córdoba, Spain.
| |
Collapse
|
20
|
van Uden D, Boomars K, Kool M. Dendritic Cell Subsets and Effector Function in Idiopathic and Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Front Immunol 2019; 10:11. [PMID: 30723471 PMCID: PMC6349774 DOI: 10.3389/fimmu.2019.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease characterized by an incurable condition of the pulmonary vasculature, leading to increased pulmonary vascular resistance, elevated pulmonary arterial pressure resulting in progressive right ventricular failure and ultimately death. PAH has different underlying causes. In approximately 30–40% of the patients no underlying risk factor or cause can be found, so-called idiopathic PAH (IPAH). Patients with an autoimmune connective tissue disease (CTD) can develop PAH [CTD-associated PAH (CTD-PAH)], suggesting a prominent role of immune cell activation in PAH pathophysiology. This is further supported by the presence of tertiary lymphoid organs (TLOs) near pulmonary blood vessels in IPAH and CTD-PAH. TLOs consist of myeloid cells, like monocytes and dendritic cells (DCs), T-cells, and B-cells. Next to their T-cell activating function, DCs are crucial for the preservation of TLOs. Multiple DC subsets can be found in steady state, such as conventional DCs (cDCs), including type 1 cDCs (cDC1s), and type 2 cDCs (cDC2s), AXL+Siglec6+ DCs (AS-DCs), and plasmacytoid DCs (pDCs). Under inflammatory conditions monocytes can differentiate into monocyte-derived-DCs (mo-DCs). DC subset distribution and activation status play an important role in the pathobiology of autoimmune diseases and most likely in the development of IPAH and CTD-PAH. DCs can contribute to pathology by activating T-cells (production of pro-inflammatory cytokines) and B-cells (pathogenic antibody secretion). In this review we therefore describe the latest knowledge about DC subset distribution, activation status, and effector functions, and polymorphisms involved in DC function in IPAH and CTD-PAH to gain a better understanding of PAH pathology.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Karin Boomars
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
21
|
Cha SA, Park BM, Kim SH. Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:447-456. [PMID: 29962859 PMCID: PMC6019878 DOI: 10.4196/kjpp.2018.22.4.447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) (576 µg/kg/day) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor (AT2R) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as TNF-α, MCP-1, IL-1β, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl-2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via AT2R.
Collapse
Affiliation(s)
- Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
22
|
Voelkel NF, Bogaard HJ. Adding complexity to plexogenic arteriopathy. Eur Respir J 2018; 48:1553-1555. [PMID: 27903686 DOI: 10.1183/13993003.01867-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/07/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Norbert F Voelkel
- School of Pharmacology, Virginia Commonwealth University, Richmond, VA, USA
| | - Harm Jan Bogaard
- Dept of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Batton KA, Austin CO, Bruno KA, Burger CD, Shapiro BP, Fairweather D. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol Sex Differ 2018; 9:15. [PMID: 29669571 PMCID: PMC5907450 DOI: 10.1186/s13293-018-0176-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023] Open
Abstract
Registry data worldwide indicate an overall female predominance for pulmonary arterial hypertension (PAH) of 2–4 over men. Genetic predisposition accounts for only 1–5% of PAH cases, while autoimmune diseases and infections are closely linked to PAH. Idiopathic PAH may include patients with undiagnosed autoimmune diseases based on the relatively high presence of autoantibodies in this group. The two largest PAH registries to date report a sex ratio for autoimmune connective tissue disease-associated PAH of 9:1 female to male, highlighting the need for future studies to analyze subgroup data according to sex. Autoimmune diseases that have been associated with PAH include female-dominant systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and thyroiditis as well as male-dominant autoimmune diseases like myocarditis which has been linked to HIV-associated PAH. The sex-specific association of PAH to certain infections and autoimmune diseases suggests that sex hormones and inflammation may play an important role in driving the pathogenesis of disease. However, there is a paucity of data on sex differences in inflammation in PAH, and more research is needed to better understand the pathogenesis underlying PAH in men and women. This review uses data on sex differences in PAH and PAH-associated autoimmune diseases from registries to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Kyle A Batton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charles D Burger
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brian P Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
24
|
Costa J, Zhu Y, Cox T, Fawcett P, Shaffer T, Alapati D. Inflammatory Response of Pulmonary Artery Smooth Muscle Cells Exposed to Oxidative and Biophysical Stress. Inflammation 2018; 41:1250-1258. [DOI: 10.1007/s10753-018-0772-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Coghlan JG, Denton CP. Aggressive combination therapy for treatment of systemic sclerosis-associated pulmonary hypertension. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2018; 3:30-38. [DOI: 10.1177/2397198318758422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension is an important complication of systemic sclerosis with high mortality but should be regarded as a treatable manifestation of the disease. Management draws on experience from other forms of pulmonary arterial hypertension and benefits from an increasing number of licenced therapies. Outcome is variable but recent clinical trials suggest that combination therapies used early in the disease may be associated with better outcomes. This is important because previous clinical trials using short-term gain in exercise capacity did not show significant benefit compared to that observed for idiopathic or heritable forms of pulmonary arterial hypertension. Thus, it is important to identify cases as early as possible and to manage cases that are in a high-risk group using early combination therapy. This review summarises the most recent analyses of clinical trial data, with a focus on those patients with SSc-associated pulmonary arterial hypertension and provides the evidence base that supports current treatment recommendations for aggressive pulmonary arterial hypertension occurring in systemic sclerosis, including the early use of combination pulmonary arterial hypertension–specific drugs in appropriate cases.
Collapse
Affiliation(s)
- JG Coghlan
- Royal Free London NHS Foundation Trust, London - UK
| | | |
Collapse
|
26
|
Kuebler WM, Bonnet S, Tabuchi A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893218757596. [PMID: 29480134 PMCID: PMC5865459 DOI: 10.1177/2045893218757596] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions, respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury, smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| | | | - Arata Tabuchi
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| |
Collapse
|
27
|
Zhou C, Crockett ES, Batten L, McMurtry IF, Stevens T. Pulmonary vascular dysfunction secondary to pulmonary arterial hypertension: insights gained through retrograde perfusion. Am J Physiol Lung Cell Mol Physiol 2018; 314:L835-L845. [PMID: 29345199 DOI: 10.1152/ajplung.00201.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we tested the hypothesis that severe pulmonary arterial hypertension impairs retrograde perfusion. To test this hypothesis, pulmonary arterial hypertension was induced in Fischer rats using a single injection of Sugen 5416 followed by 3 wk of exposure to 10% hypoxia and then 2 wk of normoxia. This Sugen 5416 and hypoxia regimen caused severe pulmonary arterial hypertension, with a Fulton index of 0.73 ± 0.07, reductions in both the pulmonary arterial acceleration time and pulmonary arterial acceleration to pulmonary arterial ejection times ratio, and extensive medial hypertrophy and occlusive neointimal lesions. Whereas the normotensive circulation accommodated large increases in forward and retrograde flow, the hypertensive circulation did not. During forward flow, pulmonary artery and double occlusion pressures rose sharply at low perfusion rates, resulting in hydrostatic edema. Pulmonary arterial hypertensive lungs possessed an absolute intolerance to retrograde perfusion, and they rapidly developed edema. Retrograde perfusion was not rescued by maximal vasodilation. Retrograde perfusion was preserved in lungs from animals treated with Sugen 5416 and hypoxia for 1 and 3 wk, in lungs from animals with a milder form of hypoxic hypertension, and in normotensive lungs subjected to high outflow pressures. Thus impaired retrograde perfusion coincides with development of severe pulmonary arterial hypertension, with advanced structural defects in the microcirculation.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Edward S Crockett
- Department Pharmacology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Lynn Batten
- Department of Pediatrics, University of South Alabama , Mobile, Alabama
| | - Ivan F McMurtry
- Department Pharmacology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| |
Collapse
|
28
|
Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018; 79:178-187. [PMID: 29330110 DOI: 10.1016/j.humimm.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
The pathogenesis of many diseases is influenced by environmental factors which can affect human genome and be inherited from generation to generation. Adverse environmental stimuli are recognized through the epigenetic regulatory complex, leading to gene expression alteration, which in turn culminates in disease outcomes. Three epigenetic regulatory mechanisms modulate the manifestation of a gene, namely DNA methylation, histone changes, and microRNAs. Both epigenetics and genetics have been implicated in the pathogenesis of systemic sclerosis (SSc) disease. Genetic inheritance rate of SSc is low and the concordance rate in both monozygotic (MZ) and dizygotic (DZ) twins is little, implying other possible pathways in SSc pathogenesis scenario. Here, we provide an extensive overview of the studies regarding different epigenetic events which may offer insights into the pathology of SSc. Furthermore, epigenetic-based interventions to treat SSc patients were discussed.
Collapse
Affiliation(s)
- Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sobhani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Almodovar S, Swanson J, Giavedoni LD, Kanthaswamy S, Long CS, Voelkel NF, Edwards MG, Folkvord JM, Connick E, Westmoreland SV, Luciw PA, Flores SC. Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 2017; 31:206-222. [PMID: 29256819 DOI: 10.1089/vim.2017.0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,2 Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Jessica Swanson
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Luis D Giavedoni
- 3 Department of Virology and Immunology, and Southwest National Primate Research Center, Texas Biomedical Research Institute , San Antonio, Texas
| | - Sreetharan Kanthaswamy
- 4 School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University , Arizona
| | - Carlin S Long
- 5 Department of Medicine, University of California , San Francisco, San Francisco, California
| | - Norbert F Voelkel
- 6 Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University , Richmond, Virginia
| | - Michael G Edwards
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Joy M Folkvord
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Elizabeth Connick
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Susan V Westmoreland
- 8 New England Primate Research Center , Division of Comparative Pathology, Southborough, Massachusetts
| | - Paul A Luciw
- 9 Center for Comparative Medicine, University of California , Davis, Davis, California
| | - Sonia C Flores
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
30
|
Tan X, Juan FG, Shah AQ. Involvement of endothelial progenitor cells in the formation of plexiform lesions in broiler chickens: possible role of local immune/inflammatory response. J Zhejiang Univ Sci B 2017; 18:59-69. [PMID: 28070997 DOI: 10.1631/jzus.b1600500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plexiform lesions (PLs), which are often accompanied by perivascular infiltrates of mononuclear cells, represent the hallmark lesions of pulmonary arteries in humans suffering from severe pulmonary arterial hypertension (PAH). Endothelial progenitor cells (EPCs) have been recently implicated in the formation of PLs in human patients. PLs rarely develop in rodent animal models of PAH but can develop spontaneously in broiler chickens. The aim of the present study was to confirm the presence of EPCs in the PLs in broilers. The immune mechanisms involved in EPC dysfunction were also evaluated. Lungs were collected from commercial broilers at 1 to 4 weeks of age. The right/total ventricle ratios indicated normal pulmonary arterial pressures for all sampled birds. Immunohistochemistry was performed to determine the expressions of EPC markers (CD133 and VEGFR-2) and proangiogenic molecule hepatocyte growth factor (HGF) in the lung samples. An EPC/lymphocyte co-culture system was used to investigate the functional changes of EPCs under the challenge of immune cells. PLs with different cellular composition were detected in the lungs of broilers regardless of age, and they were commonly surrounded by moderate to dense perivascular mononuclear cell infiltrates. Immunohistochemical analyses revealed the presence of CD133+ and VEGFR-2+ cells in PLs. These structures also exhibited a strong expression of HGF. Lymphocyte co-culture enhanced EPC apoptosis and completely blocked HGF-stimulated EPC survival and in vitro tube formation. Taken together, this work provides evidence for the involvement of EPCs in the development of PLs in broilers. It is suggested that the local immune cell infiltrate might serve as a contributor to EPC dysfunction by inducing EPC death and limiting their response to angiogenic stimuli. Broiler chickens may be valuable for investigating reversibility of plexogenic arteriopathy using gene-modified inflammation-resistant EPCs.
Collapse
Affiliation(s)
- Xun Tan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan-Guo Juan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ali Q Shah
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Breitling S, Hui Z, Zabini D, Hu Y, Hoffmann J, Goldenberg NM, Tabuchi A, Buelow R, Dos Santos C, Kuebler WM. The mast cell–B cell axis in lung vascular remodeling and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 312:L710-L721. [DOI: 10.1152/ajplung.00311.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023] Open
Abstract
Over past years, a critical role for the immune system and, in particular, for mast cells in the pathogenesis of pulmonary hypertension (PH) has emerged. However, the way in which mast cells promote PH is still poorly understood. Here, we investigated the mechanisms by which mast cells may contribute to PH, specifically focusing on the interaction between the innate and adaptive immune response and the role of B cells and autoimmunity. Experiments were performed in Sprague-Dawley rats and B cell-deficient JH-KO rats in the monocrotaline, Sugen/hypoxia, and the aortic banding model of PH. Hemodynamics, cell infiltration, IL-6 expression, and vascular remodeling were analyzed. Gene array analyses revealed constituents of immunoglobulins as most prominently regulated mast cell-dependent genes in the lung in experimental PH. IL-6 was shown to link mast cells to B cells, as 1) IL-6 was upregulated and colocalized with mast cells and was reduced by mast-cell stabilizers and 2) IL-6 or mast cell blockade reduced B cells in lungs of monocrotaline-treated rats. A functional role for B cells in PH was demonstrated in that either blocking B cells by an anti-CD20 antibody or B-cell deficiency in JH-KO rats attenuated right ventricular systolic pressure and vascular remodeling in experimental PH. We here identify a mast cell–B cell axis driven by IL-6 as a critical immune pathway in the pathophysiology of PH. Our results provide novel insights into the role of the immune system in PH, which may be therapeutically exploited by targeted immunotherapy.
Collapse
Affiliation(s)
- Siegfried Breitling
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Zhang Hui
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Diana Zabini
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Julia Hoffmann
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Neil M. Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Buelow
- Open Monoclonal Technology, Incorporated, Palo Alto, California
| | - Claudia Dos Santos
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
32
|
Glycoprotein 130 Inhibitor Ameliorates Monocrotaline-Induced Pulmonary Hypertension in Rats. Can J Cardiol 2016; 32:1356.e1-1356.e10. [DOI: 10.1016/j.cjca.2016.02.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
|
33
|
Santos-Ribeiro D, Mendes-Ferreira P, Maia-Rocha C, Adão R, Leite-Moreira AF, Brás-Silva C. Pulmonary arterial hypertension: Basic knowledge for clinicians. Arch Cardiovasc Dis 2016; 109:550-561. [PMID: 27595464 DOI: 10.1016/j.acvd.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Pulmonary arterial hypertension is a progressive syndrome based on diverse aetiologies, which is characterized by a persistent increase in pulmonary vascular resistance and overload of the right ventricle, leading to heart failure and death. Currently, none of the available treatments is able to cure pulmonary arterial hypertension; additional research is therefore needed to unravel the associated pathophysiological mechanisms. This review summarizes current knowledge related to this disorder, and the several experimental animal models that can mimic pulmonary arterial hypertension and are available for translational research.
Collapse
Affiliation(s)
- Diana Santos-Ribeiro
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Adão
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carmen Brás-Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Cardiovascular Research and Development Centre, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
34
|
Pogoriler JE, Rich S, Archer SL, Husain AN. Persistence of complex vascular lesions despite prolonged prostacyclin therapy of pulmonary arterial hypertension. Histopathology 2016; 61:597-609. [PMID: 22748137 DOI: 10.1111/j.1365-2559.2012.04246.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Continuous infusion of prostacyclin analogues improves survival in advanced pulmonary arterial hypertension. In addition to its vasodilatory effects, prostacyclin has the potential to decrease inflammation, thrombosis, and smooth muscle proliferation. The aim of this retrospective study was to determine whether pathological data support the ability of prostanoids to prevent progression of vascular disease. METHODS AND RESULTS Twenty-two autopsied patients with World Health Organization category 1 pulmonary arterial hypertension (primarily idiopathic and connective tissue disease-associated) were divided into those who received long-term prostacyclin (n = 12, PG-long, mean treatment 3.9 years) and those who received 0-1 month of prostacyclin (n = 10, PG-short). Surprisingly, PG-long patients had larger plexiform lesions (P < 0.05), with no decrease in medial and intimal thicknesses as compared with PG-short patients. Plexiform lesion size and density increased with increasing treatment time. Also, PG-long patients had fewer platelet thrombi and more frequent acute diffuse alveolar haemorrhage. Quantification of macrophages and T cells revealed no differences in inflammatory infiltrates. CONCLUSION Although long-term prostacyclin therapy may have an antithrombotic effect in addition to its vasodilatory actions, it was not associated with the prevention of advanced vascular lesions. The mechanism by which prostacyclin analogues improve survival in pulmonary arterial hypertension remains uncertain.
Collapse
Affiliation(s)
- Jennifer E Pogoriler
- Department of PathologySection of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
35
|
Pogoriler JE, Rich S, Archer SL, Husain AN. Persistence of complex vascular lesions despite prolonged prostacyclin therapy of pulmonary arterial hypertension. Histopathology 2016. [PMID: 22748137 DOI: 10/1111/j.1365-2259.2012.04246.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Continuous infusion of prostacyclin analogues improves survival in advanced pulmonary arterial hypertension. In addition to its vasodilatory effects, prostacyclin has the potential to decrease inflammation, thrombosis, and smooth muscle proliferation. The aim of this retrospective study was to determine whether pathological data support the ability of prostanoids to prevent progression of vascular disease. METHODS AND RESULTS Twenty-two autopsied patients with World Health Organization category 1 pulmonary arterial hypertension (primarily idiopathic and connective tissue disease-associated) were divided into those who received long-term prostacyclin (n = 12, PG-long, mean treatment 3.9 years) and those who received 0-1 month of prostacyclin (n = 10, PG-short). Surprisingly, PG-long patients had larger plexiform lesions (P < 0.05), with no decrease in medial and intimal thicknesses as compared with PG-short patients. Plexiform lesion size and density increased with increasing treatment time. Also, PG-long patients had fewer platelet thrombi and more frequent acute diffuse alveolar haemorrhage. Quantification of macrophages and T cells revealed no differences in inflammatory infiltrates. CONCLUSION Although long-term prostacyclin therapy may have an antithrombotic effect in addition to its vasodilatory actions, it was not associated with the prevention of advanced vascular lesions. The mechanism by which prostacyclin analogues improve survival in pulmonary arterial hypertension remains uncertain.
Collapse
Affiliation(s)
- Jennifer E Pogoriler
- Department of PathologySection of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
36
|
Dabral S, Tian X, Kojonazarov B, Savai R, Ghofrani HA, Weissmann N, Florio M, Sun J, Jonigk D, Maegel L, Grimminger F, Seeger W, Savai Pullamsetti S, Schermuly RT. Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J 2016; 48:1137-1149. [PMID: 27471204 DOI: 10.1183/13993003.00773-2015] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/06/2016] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by excessive pulmonary vascular remodelling involving deregulated proliferation of cells in intima, media as well as adventitia. Pulmonary arterial endothelial cell (PAEC) hyperproliferation and survival underlies the endothelial pathobiology of the disease.The indispensable involvement of Notch1 in the arterial endothelial phenotype and angiogenesis provides intriguing prospects for its involvement in the pathogenesis of PAH.We observed an increased expression of Notch1 in lungs of idiopathic PAH (IPAH) patients and hypoxia/SU5416 (SUHx) rats compared with healthy subjects. In vitro loss- and gain-of-function studies demonstrated that Notch1 increased proliferation of human PAECs (hPAECs) via downregulation of p21 and inhibited apoptosis via Bcl-2 and Survivin. Inhibition of Notch signalling using the γ-secretase inhibitor dibenzazepine dose-dependently decreased proliferation and migration of hPAECs. Notably, Notch1 expression and transcriptional activity were increased under hypoxia in hPAECs and knockdown of Notch1 inhibited hypoxia-induced proliferation of the cells. Furthermore, in vivo treatment with a γ-secretase inhibitor (AMG2008827) significantly reduced the right ventricular systolic pressure and right heart hypertrophy in SUHx rats.Here, we conclude that Notch1 plays a critical role in PAH and Notch inhibitors may be a promising therapeutic option for PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Xia Tian
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Monica Florio
- Cardiometabolic Disorders, Amgen, Thousand Oaks, CA, USA
| | - Jan Sun
- Department of Oncology Research, Amgen, Thousand Oaks, CA, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Lavinia Maegel
- Institute of Pathology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
37
|
Zhou C, Townsley MI, Alexeyev M, Voelkel NF, Stevens T. Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry. Am J Physiol Lung Cell Mol Physiol 2016; 311:L560-9. [PMID: 27422996 DOI: 10.1152/ajplung.00057.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022] Open
Abstract
Here, we tested the hypothesis that animals with severe pulmonary arterial hypertension (PAH) display increased sensitivity to vascular permeability induced by activation of store-operated calcium entry. To test this hypothesis, wild-type and transient receptor potential channel 4 (TRPC4) knockout Fischer 344 rats were given a single injection of Semaxanib (SU5416; 20 mg/kg) followed by 3 wk of exposure to hypoxia (10% oxygen) and a return to normoxia (21% oxygen) for an additional 2-3 wk. This Semaxanib/hypoxia/normoxia (i.e., SU5416/hypoxia/normoxia) treatment caused PAH, as evidenced by development of right ventricular hypertrophy, pulmonary artery medial hypertrophy, and occlusive lesions within precapillary arterioles. Pulmonary artery pressure was increased fivefold in Semaxanib/hypoxia/normoxia-treated animals compared with untreated, Semaxanib-treated, and hypoxia-treated controls, determined by isolated perfused lung studies. Thapsigargin induced a dose-dependent increase in permeability that was dependent on TRPC4 in the normotensive perfused lung. This increase in permeability was accentuated in PAH lungs but not in Semaxanib- or hypoxia-treated lungs. Fluid accumulated in large perivascular cuffs, and although alveolar fluid accumulation was not seen in histological sections, Evans blue dye conjugated to albumin was present in bronchoalveolar lavage fluid of hypertensive but not normotensive lungs. Thus PAH is accompanied by a TRPC4-dependent increase in the sensitivity to edemagenic agents that activate store-operated calcium entry.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - Mary I Townsley
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Department of Internal Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - Norbert F Voelkel
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Department of Internal Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| |
Collapse
|
38
|
Voelkel NF, Tamosiuniene R, Nicolls MR. Challenges and opportunities in treating inflammation associated with pulmonary hypertension. Expert Rev Cardiovasc Ther 2016; 14:939-51. [PMID: 27096622 DOI: 10.1080/14779072.2016.1180976] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inflammatory cells are present in the lungs from patients with many, if not all, forms of severe pulmonary hypertension. AREAS COVERED Historically the first inflammatory cell identified in the pulmonary vascular lesions was the mast cell. T and B lymphocytes, as well as macrophages, are present in and around the pulmonary arterioles and many patients have elevated blood levels of interleukin 1 and 6; some patients show elevated levels of leukotriene B4. An overlap between collagen-vascular disease-associated pulmonary arterial hypertension (PAH) and idiopathic PAH exists, yet only a few studies have been designed that evaluate the effect of anti-inflammatory treatments. Here we review the pertinent data that connect PAH and inflammation/autoimmune dysregulation and evaluate experimental models of severe PAH with an emphasis on the Sugen/athymic rat model of severe PAH. Expert commentary: We postulate that there are several inflammatory phenotypes and predict that there will be several anti-inflammatory treatment strategies for severe PAH.
Collapse
Affiliation(s)
- Norbert F Voelkel
- a School of Pharmacy , Virginia Commonwealth University , Richmond , VA , USA
| | - Rasa Tamosiuniene
- b Pulmonary and Critical Care Medicine Division , Stanford University , Palo Alto , CA , USA
| | - Mark R Nicolls
- b Pulmonary and Critical Care Medicine Division , Stanford University , Palo Alto , CA , USA
| |
Collapse
|
39
|
Ferrante A, Ciccia F, Guggino G, Colomba D, Triolo G. Tocilizumab therapy for unresponsive pulmonary arterial hypertension in a patient with Takayasu arteritis. Scand J Rheumatol 2016; 45:251-2. [DOI: 10.3109/03009742.2015.1105291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A Ferrante
- Biomedical Department of Internal Medicine, Section of Rheumatology, University of Palermo, Palermo, Italy
| | - F Ciccia
- Biomedical Department of Internal Medicine, Section of Rheumatology, University of Palermo, Palermo, Italy
| | - G Guggino
- Biomedical Department of Internal Medicine, Section of Rheumatology, University of Palermo, Palermo, Italy
| | - D Colomba
- Biomedical Department of Internal Medicine, Section of Cardioangiology, University of Palermo, Italy
| | - G Triolo
- Biomedical Department of Internal Medicine, Section of Rheumatology, University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Patrick A Link
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
41
|
Zhao YD, Peng J, Granton E, Lin K, Lu C, Wu L, Machuca T, Waddell TK, Keshavjee S, de Perrot M. Pulmonary vascular changes 22 years after single lung transplantation for pulmonary arterial hypertension: a case report with molecular and pathological analysis. Pulm Circ 2015; 5:739-43. [PMID: 26697185 DOI: 10.1086/683692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study was undertaken to characterize the molecular and pathological mechanisms of pulmonary vascular remodeling in a patient who developed chronic lung allograft dysfunction and recurrent pulmonary hypertension (PH) 22 years after undergoing a right single lung transplantation for pulmonary arterial hypertension (PAH). Histopathologic examination of the explanted lungs at the time of retransplantation showed characteristics of diffuse vascular remodeling combined with features of acute and chronic thromboemboli and evidence of bronchiolitis obliterans in the right lung allograft. In contrast, the native left lung demonstrated pulmonary arterial changes in keeping with PAH associated with disseminated pulmonary ossification. Real-time polymerase chain reaction and Western blot-performed on the first lung allograft, the native lung, and the new donor lung-demonstrated increased expression of apoptotic-related gene and protein levels in the lung allograft compared with the native PAH lung and the donor lung. Localization of cell apoptosis determined by triple immunostaining for caspase 3, CD31, and smooth muscle actin was positive in the pulmonary endothelial cells but not the smooth muscle cells of the lung allograft, while no positive staining was detected for cell death in the native PAH lung. The presence of PH in the lung allograft 22 years after transplantation was associated with upregulation of apoptotic markers and evidence of apoptotic endothelial cell death compared with the native lung and donor lung.
Collapse
Affiliation(s)
- Yidan D Zhao
- University Health Network, Toronto, Ontario, Canada
| | - Jenny Peng
- University Health Network, Toronto, Ontario, Canada
| | | | - Kathleen Lin
- University Health Network, Toronto, Ontario, Canada
| | - Catherine Lu
- University Health Network, Toronto, Ontario, Canada
| | - Licun Wu
- University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells. Respir Res 2015; 16:114. [PMID: 26382031 PMCID: PMC4574531 DOI: 10.1186/s12931-015-0262-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/18/2015] [Indexed: 01/30/2023] Open
Abstract
Background Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-κB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis. Methods Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-κB (p65 and phospho-IKK-α/β) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10−8–10−6 M) and IKK2 (NF-κB) inhibition (AS602868, 0–3 μM (0-3×10−6 M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-κB activation was measured by TransAm assay. Results Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-κB activation and in IL-6 and CXCL8 release from PASMC. Conclusions Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-κB. Future PAH therapies may involve targeting these important inflammatory pathways.
Collapse
|
43
|
Murugesan P, Hildebrandt T, Bernlöhr C, Lee D, Khang G, Doods H, Wu D. Inhibition of kinin B1 receptors attenuates pulmonary hypertension and vascular remodeling. Hypertension 2015; 66:906-12. [PMID: 26303291 DOI: 10.1161/hypertensionaha.115.05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
Abstract
This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Priya Murugesan
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Tobias Hildebrandt
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Christian Bernlöhr
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Gilson Khang
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Henri Doods
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.)
| | - Dongmei Wu
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea (P.M., D.L., G.K., D.W.); Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (T.H., C.B., H.D.); and Department of Research, Mount Sinai Medical Center, Miami Beach, FL (D.W.).
| |
Collapse
|
44
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
45
|
Overexpression of Endothelin-1 Leads to More Severe Pulmonary Complex Vascular Lesions Associated with the Human Immunodeficiency Virus. Arch Med Res 2015; 46:228-32. [PMID: 25892606 DOI: 10.1016/j.arcmed.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/06/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Despite increase in survival of HIV patients due to highly active antiretroviral therapy (HAART), non-infectious complications are still prevalent such as presentation of lung vasculopathy, even in asymptomatic patients. Endothelin-1 (ET-1) is a potent vasoconstrictor that causes pulmonary vasculopathy. Participation of this protein in the pulmonary circulation in HIV patients has not been elucidated. In this work we studied the presence and expression of ET-1 in pulmonary complex vascular lesions associated with human immunodeficiency virus (PCVL/HIV). METHODS We used immunohistochemistry and immunochemiluminescence (imagej) to determine the different degrees of expression of ET-1 in PCVL/HIV in comparison with non-PCVL/HIV. Reagents used were anti-endothelin-1 and an automated system. All data are presented as mean and standard deviation (SD). Differences were analyzed with one-way ANOVA; p < 0.05 was accepted as statistically significant. RESULTS Lung tissues from 56 patients who died from complications of HIV pulmonary infection and with PCVL were studied. Histological evidence of pulmonary vasculopathy was shown as different types (proliferative, obliterative and plexiform). A statistically significant increase in ET-1 expression was observed in all PCVL/HIV tissue samples and is associated directly with different grades of severity of endothelial dysfunction. CONCLUSIONS ET-1 has a relevant role in the pathogenesis of pulmonary vasculopathy in acquired immunodeficiency syndrome (AIDS) patients. It is necessary to determine in the future the participation of ET-1 and other mechanisms involved in PCVL/HIV.
Collapse
|
46
|
Wideman RF, Mason JG, Anthony NB, Cross D. Plexogenic arteriopathy in broiler lungs: Evaluation of line, age, and sex influences. Poult Sci 2015; 94:628-38. [PMID: 25681478 DOI: 10.3382/ps/pev018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plexiform lesions form in the terminal pulmonary arterioles of human patients suffering from prolonged pulmonary arterial hypertension. Plexiform lesions also develop in broiler lungs, but lesion incidences are not strongly correlated with sustained pulmonary hypertension as reflected by right to total ventricular weight (RVTV) ratios. The present study was conducted to assess plexiform lesion incidences in broiler lines that have been divergently selected for susceptibility or resistance to pulmonary hypertension. Broilers from susceptible (SUS) and resistant (RES) lines were reared together and only clinically healthy (nonascitic, noncyanotic) individuals were evaluated to minimize potential line differences in cardiopulmonary hemodynamics. The objective was to determine if an innate genetic predisposition for plexogenic arteriopathy would be exposed in SUS broilers when compared with RES broilers in the absence of extreme differences in cardiopulmonary hemodynamics. Broilers up to 12 wk age from the SUS and RES lines had essentially equivalent BW, indices of cardiopulmonary function (left ventricle + septum weight, total ventricle weight, and RVTV ratios), and lung volumes within a sex. Average RVTV ratios for broilers from both lines were indicative of normal pulmonary arterial pressures at all ages sampled. Nevertheless, plexiform lesions were detected in SUS and RES broiler lungs immediately posthatch and thereafter at all ages sampled. Lesion incidences were consistently low and did not differ between the lines within any of the sampling ages. This evidence demonstrates that plexiform lesions develop extremely rapidly in broiler chicks, apparently without the prerequisite for vascular stress caused by severe, prolonged pulmonary arterial hypertension. No innate genetic predisposition for complex vascular lesion development appeared to exist in the SUS line when compared with the RES line.
Collapse
Affiliation(s)
- R F Wideman
- University of Arkansas, Division of Agriculture, Fayetteville, AR 72701
| | - J G Mason
- University of Arkansas, Division of Agriculture, Fayetteville, AR 72701
| | - N B Anthony
- University of Arkansas, Division of Agriculture, Fayetteville, AR 72701
| | - D Cross
- University of Arkansas, Division of Agriculture, Fayetteville, AR 72701
| |
Collapse
|
47
|
L'Huillier AG, Posfay-Barbe KM, Pictet H, Beghetti M. Pulmonary Arterial Hypertension among HIV-Infected Children: Results of a National Survey and Review of the Literature. Front Pediatr 2015; 3:25. [PMID: 25905096 PMCID: PMC4387937 DOI: 10.3389/fped.2015.00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 01/07/2023] Open
Abstract
Since the advent of highly active anti-retroviral therapy, HIV-related mortality has decreased dramatically. As a consequence, patients are living longer, and HIV infection is becoming a chronic disease. Patients and caretakers have to deal with chronic complications of infection and treatment, such as cardiovascular diseases, which now represent an important health issue, even in the pediatric population. Prevalence of pulmonary arterial hypertension (PAH) in the adult HIV population is around 0.4-0.6%, which is around 1000- to 2500-fold more prevalent than in the general population. In recent adult PAH registries, HIV has been identified as the fourth cause of PAH, accounting for approximately 6-7% of cases. Therefore, regular screening is recommended in HIV-infected adults by many experts. If HIV-associated PAH is mainly reported in HIV-infected adults, pediatric cases have also been, albeit rarely, described. This scarcity may be due to a very low PAH prevalence, or due to the lack of systematic cardiovascular screening in pediatric patients. As PAH may manifest only years or decades after infection, a systematic screening should perhaps also be recommended to HIV-infected children. In this context, we retrospectively looked for PAH screening in children included in our national Swiss Mother and Child HIV cohort study. A questionnaire was sent to all pediatric infectious disease specialists taking care of HIV-infected children in the cohort. The questions tried to identify symptoms suggestive of cardiovascular risk factors and asked which screening test was performed. In the 71 HIV-infected children for which we obtained an answer, no child was known for PAH. However, only two had been screened for PAH, and the diagnosis was not confirmed. In conclusion, PAH in HIV-infected children is possibly underestimated due to lack of screening. Systematic echocardiographic evaluation should be performed in HIV-infected children.
Collapse
Affiliation(s)
- Arnaud Grégoire L'Huillier
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Geneva University Hospitals , Geneva , Switzerland
| | - Klara Maria Posfay-Barbe
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Geneva University Hospitals , Geneva , Switzerland
| | - Hiba Pictet
- Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Maurice Beghetti
- Pediatric Cardiology Unit, Department of Pediatrics, Geneva University Hospitals , Geneva , Switzerland
| |
Collapse
|
48
|
Inflammatory markers are elevated in Eisenmenger syndrome. Pediatr Cardiol 2014; 34:1791-6. [PMID: 23666048 DOI: 10.1007/s00246-013-0715-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/23/2013] [Indexed: 01/25/2023]
Abstract
Inflammation may be an important contributing factor to the progression of Eisenmenger syndrome (ES). Markers of systemic inflammation in ES have not been systematically studied. Inflammatory markers including high-sensitivity C-reactive protein (hs-CRP), interleukin-2 (IL-2), IL-6, and interferon-γ (IFN-γ) were measured in 42 consecutive ES patients (mean age, 24.3 ± 10.6 years) compared with their levels in 22 healthy control subjects. The patients were followed up for a mean duration of 16.3 ± 13.7 months. The levels of inflammatory markers were correlated with clinical and hemodynamic variables at baseline and the outcomes of death, hospitalization, and worsening World Health Organization (WHO) functional class at follow-up evaluation. Compared with the control subjects, ES patients showed a significant elevation in hs-CRP (2.99 ± 3.5 vs 1.1 ± 0.9 mg/dl; p = 0.002) and IFN-γ (41.3 ± 43.6 vs 10.4 ± 6.9 pg/ml; p < 0.001) levels. The levels of IL-2 and IL-6 also were elevated but did not differ significantly from those in the control subjects. The patients with hs-CRP levels higher than 3 mg/dl were significantly older (28.9 ± 10.6 vs 21.5 ± 9.8 years) and had a significantly shorter 6-min walk distance (421.5 ± 133.2 vs 493.3 ± 74.8 m). The levels of inflammatory markers did not correlate with baseline parameters or clinical outcomes. To conclude, the levels of hs-CRP and IFN-γ are significantly elevated in ES. Elevated hs-CRP in ES was associated with older age and shorter 6-min walk distance, but the levels of inflammatory markers were not predictive of clinical events.
Collapse
|
49
|
Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. Respir Res 2014; 15:47. [PMID: 24739042 PMCID: PMC4002553 DOI: 10.1186/1465-9921-15-47] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/08/2014] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is an “umbrella term” used for a spectrum of entities resulting in an elevation of the pulmonary arterial pressure. Clinical symptoms include dyspnea and fatigue which in the absence of adequate therapeutic intervention may lead to progressive right heart failure and death. The pathogenesis of pulmonary hypertension is characterized by three major processes including vasoconstriction, vascular remodeling and microthrombotic events. In addition accumulating evidence point to a cytokine driven inflammatory process as a major contributor to the development of pulmonary hypertension. This review summarizes the latest clinical and experimental developments in inflammation associated with pulmonary hypertension with special focus on Interleukin-6, and its role in vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | - Lars C Huber
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
50
|
Cool CD, Voelkel NF, Bull T. Viral infection and pulmonary hypertension: is there an association? Expert Rev Respir Med 2014; 5:207-16. [DOI: 10.1586/ers.11.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|