1
|
Alexander ET, Gilmour SK. Immunomodulatory role of thrombin in cancer progression. Mol Carcinog 2022; 61:527-536. [PMID: 35338515 DOI: 10.1002/mc.23398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Coagulation proteases and the generation of thrombin are increased in tumors. In addition, chemotherapeutic agents commonly used to treat malignant cancers can exacerbate cancer-associated thromboses. Thrombin can modify tumor cell behavior directly through the activation of protease-activated receptors (PAR) or indirectly by generating fibrin matrices. In addition to its role in generating fibrin to promote hemostasis, thrombin acts directly on multiple effector cells of the immune system impacting both acute and chronic inflammatory processes. Thrombin-mediated release of interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 leads to the accumulation of multiple tumor-infiltrating immunosuppressive cell populations including myeloid derived suppresser cells, M2-like macrophages, and T regulatory cells. Ablation of PAR-1 from the tumor microenvironment, but not the tumor, has been shown to dramatically reduce tumor growth and metastasis in multiple tumor models. Thrombin-activated platelets release immunosuppressive cytokines including transforming growth factor-β that can inhibit natural killer cell activity, helping tumor cells to evade host immunosurveillance. Taken together, there is strong evidence that thrombin influences cancer progression via multiple mechanisms, including the tumor immune response, with thrombin emerging as a target for novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Eric T Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| |
Collapse
|
2
|
Young gastric cancer patient with high CA19-9 complicated by Trousseau syndrome. Clin J Gastroenterol 2021; 15:85-89. [PMID: 34731429 DOI: 10.1007/s12328-021-01541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
A 47-year-old Japanese woman presented with epigastric discomfort and anorexia. Upper endoscopy showed type 4 advanced gastric cancer in the gastric antrum with stenosis of the pyloric portion. Abdominopelvic CT revealed peritoneal dissemination, and stage IV advanced gastric cancer was diagnosed. Laparoscopic gastrojejunostomy and enterostomy were performed. Trousseau syndrome occurred 7 days post-surgery. Despite appropriate treatment, the patient developed a pulmonary embolism 13 days later and died 18 days post-surgery. Even in young cancer patients without lifestyle disease complications, it is important to pay attention to Trousseau syndrome as part of cancer management.
Collapse
|
3
|
Hirahara N, Tajima Y, Fujii Y, Kaji S, Kawabata Y, Hyakudomi R, Yamamoto T, Taniura T. Controlling Nutritional Status (CONUT) as a prognostic immunonutritional biomarker for gastric cancer after curative gastrectomy: a propensity score-matched analysis. Surg Endosc 2019; 33:4143-4152. [PMID: 30838449 DOI: 10.1007/s00464-019-06723-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In clinical practice, it is not unusual to treat oncologic patients whose tumor markers are within normal range, even with advanced cancer. The Controlling Nutritional Status (CONUT) score could provide a useful nutritional and immunological prognostic biomarker for cancer patients. In this study, we assessed the prognostic value of the CONUT score for patients with gastric cancer, including a subgroup analysis with stratification based on serum carcinoembryonic antigen (CEA) level. METHODS We retrospectively reviewed the medical records of 368 consecutive patients who underwent curative laparoscopy-assisted gastrectomy. The prognostic value of the CONUT score was compared between patients with a low (≤ 2) and high (≥ 3) score, with propensity score matching (PSM) used to control for biasing covariates (Depth of tumor, Lymph node metastasis, pathological TNM (pTNM) stage). RESULTS Overall survival (OS) among all patients was independently predicted by the tumor stage (hazard ratio (HR): 2.231, p = 0.001), the CONUT score (HR: 2.254, p = 0.001), and serum CEA level (HR: 1.821, p = 0.025). Among patients with a normal preoperative serum CEA level, tumor stage (HR: 2.350, p = 0.007), and the CONUT score (HR: 1.990, p = 0.028) were independent prognostic factors of OS. In the high serum CEA level group, tumor size (HR: 2.930, p = 0.015) and the CONUT score (HR: 3.707, p = 0.004) were independent prognostic factors of OS. CONCLUSIONS It is advantageous to use both CEA level and the CONUT score to assess the prognosis of patients with gastric cancer, which reflect both tumor-related factors and host-related factors, respectively.
Collapse
Affiliation(s)
- Noriyuki Hirahara
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yusuke Fujii
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Shunsuke Kaji
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yasunari Kawabata
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Ryoji Hyakudomi
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Tetsu Yamamoto
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Takahito Taniura
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
4
|
Yang Y, Stang A, Schweickert PG, Lanman NA, Paul EN, Monia BP, Revenko AS, Palumbo JS, Mullins ES, Elzey BD, Janssen EM, Konieczny SF, Flick MJ. Thrombin Signaling Promotes Pancreatic Adenocarcinoma through PAR-1-Dependent Immune Evasion. Cancer Res 2019; 79:3417-3430. [PMID: 31048498 DOI: 10.1158/0008-5472.can-18-3206] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with robust activity of the coagulation system. To determine mechanisms by which clotting factors influence PDAC tumor progression, we generated and characterized C57Bl/6-derived KPC (KRasG12D, TRP53R172H ) cell lines. Tissue factor (TF) and protease-activated receptor-1 (PAR-1) were highly expressed in primary KPC pancreatic lesions and KPC cell lines similar to expression profiles observed in biopsies of patients with PDAC. In allograft studies, tumor growth and metastatic potential were significantly diminished by depletion of TF or Par-1 in cancer cells or by genetic or pharmacologic reduction of the coagulation zymogen prothrombin in mice. Notably, PAR-1-deleted KPC cells (KPC-Par-1KO) failed to generate sizable tumors, a phenotype completely rescued by restoration of Par-1 expression. Expression profiling of KPC and KPC-Par-1KO cells indicated that thrombin-PAR-1 signaling significantly altered immune regulation pathways. Accordingly, KPC-Par-1KO cells failed to form tumors in immune-competent mice but displayed robust tumor growth comparable to that observed with control KPC cells in immune-compromised NSG mice. Immune cell depletion studies indicated that CD8 T cells, but not CD4 cells or natural killer cells, mediated elimination of KPC-Par-1KO tumor cells in C57Bl/6 mice. These results demonstrate that PDAC is driven by activation of the coagulation system through tumor cell-derived TF, circulating prothrombin, and tumor cell-derived PAR-1 and further indicate that one key mechanism of thrombin/PAR-1-mediated tumor growth is suppression of antitumor immunity in the tumor microenvironment. SIGNIFICANCE: The tissue factor-thrombin-PAR-1 signaling axis in tumor cells promotes PDAC growth and disease progression with one key mechanism being suppression of antitumor immunity in the microenvironment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biological Science and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Amanda Stang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Patrick G Schweickert
- Department of Biological Science and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Nadia A Lanman
- Department of Biological Science and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Erin N Paul
- Department of Biological Science and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Brett P Monia
- Ionis Pharmaceuticals, Inc., Antisense Drug Discovery, Carlsbad, California
| | - Alexey S Revenko
- Ionis Pharmaceuticals, Inc., Antisense Drug Discovery, Carlsbad, California
| | - Joseph S Palumbo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Eric S Mullins
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Stephen F Konieczny
- Department of Biological Science and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana.
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio.
| |
Collapse
|
5
|
López JI, Pulido R, Lawrie CH, Angulo JC. Loss of PD-L1 (SP-142) expression characterizes renal vein tumor thrombus microenvironment in clear cell renal cell carcinoma. Ann Diagn Pathol 2018; 34:89-93. [PMID: 29661736 DOI: 10.1016/j.anndiagpath.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
Immunotherapy is a promising tool in the treatment of patients with advancer renal cancer, in particular the blockage of immune checkpoint inhibitors. Clear cell renal cell carcinoma is an example of heterogeneous neoplasm and this particular characteristic is responsible of many therapeutic failures so far. Since variations in the local microenvironment across a tumor may conditionate the effect of this new therapy, a deeper knowledge of this issue seems advisable for any treatment success. We have analyzed the PD-L1 (SP142) expression in three different areas in the tumor and in two areas in the renal vein/caval thrombi in 39 advanced clear cell renal cell carcinomas to determine the extent and potential clinical significance of this regional variability. A statistically significant decrease in PD-L1 expression has been detected between the main tumor and its thrombus faction (p < 0.0001). Also, we have observed a high variability in the PD-L1 positivity across the three different areas of the main tumor tested, with only three cases being uniformly positive in all tested areas. In conclusion, PD-L1 expression display a highly variable distribution in clear cell renal cell carcinomas and this particularity should be kept in mind when selecting the tumor samples to be tested for immunotherapy.
Collapse
Affiliation(s)
- José I López
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain; Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain; Department of Medical-Surgical Specialties, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain; IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| | - Charles H Lawrie
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain; Molecular Oncology, Biodonostia Research Institute, Donostia-San Sebastián, Spain; Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Radcliffe Department of Medicine, University of Oxford, UK
| | - Javier C Angulo
- Service of Urology, University Hospital of Getafe, Getafe, Madrid, Spain; Clinical Department, European University of Madrid, Laureate Universities, Madrid, Spain
| |
Collapse
|
6
|
Smoktunowicz N, Platé M, Stern AO, D'Antongiovanni V, Robinson E, Chudasama V, Caddick S, Scotton CJ, Jarai G, Chambers RC. TGFβ upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells. Oncotarget 2018; 7:65471-65484. [PMID: 27566553 PMCID: PMC5323169 DOI: 10.18632/oncotarget.11472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/06/2016] [Indexed: 12/13/2022] Open
Abstract
The major high-affinity thrombin receptor, proteinase activated receptor-1 (PAR-1) is expressed at low levels by the normal epithelium but is upregulated in many types of cancer, including lung cancer. The thrombin-PAR-1 signalling axis contributes to the activation of latent TGFβ in response to tissue injury via an αvβ6 integrin-mediated mechanism. TGFβ is a pleiotropic cytokine that acts as a tumour suppressor in normal and dysplastic cells but switches into a tumour promoter in advanced tumours. In this study we demonstrate that TGFβ is a positive regulator of PAR-1 expression in A549 lung adenocarcinoma cells, which in turn increases the sensitivity of these cells to thrombin signalling. We further demonstrate that this effect is Smad3-, ERK1/2- and Sp1-dependent. We also show that TGFβ-mediated PAR-1 upregulation is accompanied by increased expression of integrin αv and β6 subunits. Finally, TGFβ pre-stimulation promotes increased migratory potential of A549 to thrombin. These data have important implications for our understanding of the interplay between coagulation and TGFβ signalling responses in lung cancer.
Collapse
Affiliation(s)
- Natalia Smoktunowicz
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Alejandro Ortiz Stern
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Vanessa D'Antongiovanni
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Eifion Robinson
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, UK
| | - Chris J Scotton
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Gabor Jarai
- Novartis Institutes of Biomedical Research, Horsham, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| |
Collapse
|
7
|
Chen X, Xie T, Fang J, Xue W, Tong H, Kang H, Wang S, Yang Y, Xu M, Zhang W. Quantitative in vivo imaging of tissue factor expression in glioma using dynamic contrast-enhanced MRI derived parameters. Eur J Radiol 2017; 93:236-242. [DOI: 10.1016/j.ejrad.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
|
8
|
Unruh D, Schwarze SR, Khoury L, Thomas C, Wu M, Chen L, Chen R, Liu Y, Schwartz MA, Amidei C, Kumthekar P, Benjamin CG, Song K, Dawson C, Rispoli JM, Fatterpekar G, Golfinos JG, Kondziolka D, Karajannis M, Pacione D, Zagzag D, McIntyre T, Snuderl M, Horbinski C. Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol 2016; 132:917-930. [PMID: 27664011 PMCID: PMC5640980 DOI: 10.1007/s00401-016-1620-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1) is common in gliomas, and produces D-2-hydroxyglutarate (D-2-HG). The full effects of IDH1 mutations on glioma biology and tumor microenvironment are unknown. We analyzed a discovery cohort of 169 World Health Organization (WHO) grade II-IV gliomas, followed by a validation cohort of 148 cases, for IDH1 mutations, intratumoral microthrombi, and venous thromboemboli (VTE). 430 gliomas from The Cancer Genome Atlas were analyzed for mRNAs associated with coagulation, and 95 gliomas in a tissue microarray were assessed for tissue factor (TF) protein. In vitro and in vivo assays evaluated platelet aggregation and clotting time in the presence of mutant IDH1 or D-2-HG. VTE occurred in 26-30 % of patients with wild-type IDH1 gliomas, but not in patients with mutant IDH1 gliomas (0 %). IDH1 mutation status was the most powerful predictive marker for VTE, independent of variables such as GBM diagnosis and prolonged hospital stay. Microthrombi were far less common within mutant IDH1 gliomas regardless of WHO grade (85-90 % in wild-type versus 2-6 % in mutant), and were an independent predictor of IDH1 wild-type status. Among all 35 coagulation-associated genes, F3 mRNA, encoding TF, showed the strongest inverse relationship with IDH1 mutations. Mutant IDH1 gliomas had F3 gene promoter hypermethylation, with lower TF protein expression. D-2-HG rapidly inhibited platelet aggregation and blood clotting via a novel calcium-dependent, methylation-independent mechanism. Mutant IDH1 glioma engraftment in mice significantly prolonged bleeding time. Our data suggest that mutant IDH1 has potent antithrombotic activity within gliomas and throughout the peripheral circulation. These findings have implications for the pathologic evaluation of gliomas, the effect of altered isocitrate metabolism on tumor microenvironment, and risk assessment of glioma patients for VTE.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA
| | | | - Laith Khoury
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Cheddhi Thomas
- Department of Pathology, New York University, New York, NY, USA
| | - Meijing Wu
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Li Chen
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Rui Chen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Yinxing Liu
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | | | - Christina Amidei
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Priya Kumthekar
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | - John G Golfinos
- Department of Neurosurgery, New York University, New York, NY, USA
| | | | | | - Donato Pacione
- Department of Neurosurgery, New York University, New York, NY, USA
| | - David Zagzag
- Department of Pathology, New York University, New York, NY, USA
- Department of Neurosurgery, New York University, New York, NY, USA
| | - Thomas McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Matija Snuderl
- Department of Pathology, New York University, New York, NY, USA
| | - Craig Horbinski
- Department of Neurosurgery, Northwestern University, Tarry 2-705, 300 East Superior Street, Chicago, IL, 60611, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Ish-Shalom E, Meirow Y, Sade-Feldman M, Kanterman J, Wang L, Mizrahi O, Klieger Y, Baniyash M. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications. THE JOURNAL OF IMMUNOLOGY 2015; 196:156-67. [PMID: 26608909 DOI: 10.4049/jimmunol.1402877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.
Collapse
Affiliation(s)
- Eliran Ish-Shalom
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Moshe Sade-Feldman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Julia Kanterman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Lynn Wang
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | | | - Yair Klieger
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Michal Baniyash
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| |
Collapse
|
10
|
Abstract
The hemostatic system is often subverted in patients with cancer, resulting in life-threatening venous thrombotic events. Despite the multifactorial and complex etiology of cancer-associated thrombosis, changes in the expression and activity of cancer-derived tissue factor (TF) - the principle initiator of the coagulation cascade - are considered key to malignant hypercoagulopathy and to the pathophysiology of thrombosis. However, many of the molecular and cellular mechanisms coupling the hemostatic degeneration to malignancy remain largely uncharacterized. In this review we discuss some of the tumor-intrinsic and tumor-extrinsic mechanisms that may contribute to the prothrombotic state of cancer, and we bring into focus the potential for circulating tumor cells (CTCs) in advancing our understanding of the field. We also summarize the current status of anti-coagulant therapy for the treatment of thrombosis in patients with cancer.
Collapse
|
11
|
Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:831314. [PMID: 26240829 PMCID: PMC4512830 DOI: 10.1155/2015/831314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/31/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
In this work an integrated approach was used to identify functional miRNAs regulating gene pathway cross-talk in breast cancer (BC). We first integrated gene expression profiles and biological pathway information to explore the underlying associations between genes differently expressed among normal and BC samples and pathways enriched from these genes. For each pair of pathways, a score was derived from the distribution of gene expression levels by quantifying their pathway cross-talk. Random forest classification allowed the identification of pairs of pathways with high cross-talk. We assessed miRNAs regulating the identified gene pathways by a mutual information analysis. A Fisher test was applied to demonstrate their significance in the regulated pathways. Our results suggest interesting networks of pathways that could be key regulatory of target genes in BC, including stem cell pluripotency, coagulation, and hypoxia pathways and miRNAs that control these networks could be potential biomarkers for diagnostic, prognostic, and therapeutic development in BC. This work shows that standard methods of predicting normal and tumor classes such as differentially expressed miRNAs or transcription factors could lose intrinsic features; instead our approach revealed the responsible molecules of the disease.
Collapse
|
12
|
Chen K, Li Z, Jiang P, Zhang X, Zhang Y, Jiang Y, He Y, Li X. Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma. Oncol Rep 2014; 32:755-63. [PMID: 24920554 DOI: 10.3892/or.2014.3245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022] Open
Abstract
The metastasis-related molecules CD133, CD44v6 and human tissue factor (TF) have been shown to be associated with tumor invasion and metastasis. This study aimed to determine whether co-expression of these three molecules was associated with metastasis and overall prognosis in pancreatic carcinoma. We analyzed the expression profiles of these three molecules by immunohistochemistry and evaluated the relationship of their expression profiles with metastasis and prognosis in 109 pancreatic carcinomas. The results showed that the expression levels of CD133, CD44v6 and TF were increased in pancreatic carcinoma. Co-expression of CD133, CD44v6 and TF (tri-expression) was also detected in pancreatic carcinoma. Clinical analysis showed that individual expression of CD133, CD44v6 or TF was associated with vessel invasion, lymph node metastasis and liver metastasis, while tri-expression was associated with lymph node metastasis. Survival analysis showed that patients with co-expression of CD133 and TF or tri-expression had lower and the lowest overall survival rates, respectively. Univariate analysis showed that T-factor, lymph node metastasis, TNM stage, and individual levels or tri-expression of CD133, CD44v6 and TF were survival risk factors. Multivariate analysis showed that tri-expression of CD133, CD44v6 and TF was an independent predictor of survival. These results suggest that overexpression of CD133, CD44v6 and TF is associated with pancreatic carcinoma metastasis. Tri-expression of these three molecules may be a useful predictor for pancreatic carcinoma prognosis.
Collapse
Affiliation(s)
- Kai Chen
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peng Jiang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xi Zhang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yujun Zhang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yan Jiang
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu He
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
13
|
Khan S, Bennit HF, Wall NR. The emerging role of exosomes in survivin secretion. Histol Histopathol 2014; 30:43-50. [PMID: 25020159 DOI: 10.14670/hh-30.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Factors released by tumor cells themselves contribute in creating an environment mostly favorable but sometimes detrimental to the tumor. Survivin, one of the key members of the inhibitor of apoptosis (IAP) family of proteins, has been shown in the cytoplasm, mitochondria, nucleus, and most recently in the extracellular space, transported via small membrane bound vesicles called exosomes. Exosomes are secreted from hematopoietic, non-hematopoietic, tumor, and non-tumor cells, shuttling essential molecules such as proteins, RNAs, and microRNAs, all believed to be important for cell-cell and cell-extracellular communication. In this review, we discuss exosomal Survivin and its role in modifying the tumor microenvironment.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
14
|
Turpin B, Miller W, Rosenfeldt L, Kombrinck K, Flick MJ, Steinbrecher KA, Harmel-Laws E, Mullins ES, Shaw M, Witte DP, Revenko A, Monia B, Palumbo JS. Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Res 2014; 74:3020-3030. [PMID: 24710407 DOI: 10.1158/0008-5472.can-13-3276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The established association between inflammatory bowel disease and colorectal cancer underscores the importance of inflammation in colon cancer development. On the basis of evidence that hemostatic proteases are powerful modifiers of both inflammatory pathologies and tumor biology, gene-targeted mice carrying low levels of prothrombin were used to directly test the hypothesis that prothrombin contributes to tumor development in colitis-associated colon cancer (CAC). Remarkably, imposing a modest 50% reduction in circulating prothrombin in fII+/- mice, a level that carries no significant bleeding risk, dramatically decreased adenoma formation following an azoxymethane/dextran sodium sulfate challenge. Similar results were obtained with pharmacologic inhibition of prothrombin expression or inhibition of thrombin proteolytic activity. Detailed longitudinal analyses showed that the role of thrombin in tumor development in CAC was temporally associated with the antecedent inflammatory colitis. However, direct studies of the antecedent colitis showed that mice carrying half-normal prothrombin levels were comparable to control mice in mucosal damage, inflammatory cell infiltration, and associated local cytokine levels. These results suggest that thrombin supports early events coupled to inflammation-mediated tumorigenesis in CAC that are distinct from overall inflammation-induced tissue damage and inflammatory cell trafficking. That prothrombin is linked to early events in CAC was strongly inferred by the observation that prothrombin deficiency dramatically reduced the formation of very early, precancerous aberrant crypt foci. Given the importance of inflammation in the development of colon cancer, these studies suggest that therapeutic interventions at the level of hemostatic factors may be an effective means to prevent and/or impede colitis-associated colon cancer progression.
Collapse
Affiliation(s)
- Brian Turpin
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Whitney Miller
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Keith Kombrinck
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Matthew J Flick
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Kris A Steinbrecher
- Divisions of Gastroenterology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Eleana Harmel-Laws
- Divisions of Gastroenterology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Eric S Mullins
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Maureen Shaw
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - David P Witte
- Pathology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Alexey Revenko
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Brett Monia
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| |
Collapse
|
15
|
Saleiban A, Faxälv L, Claesson K, Jönsson JI, Osman A. miR-20b regulates expression of proteinase-activated receptor-1 (PAR-1) thrombin receptor in melanoma cells. Pigment Cell Melanoma Res 2014; 27:431-41. [PMID: 24405508 DOI: 10.1111/pcmr.12217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/07/2014] [Indexed: 01/07/2023]
Abstract
The proteinase-activated receptor 1 (PAR-1) plays a central role in melanoma progression and its expression level is believed to correlate with the degree of cancer invasiveness. Here, we show that PAR-1 is post-transcriptionally regulated by miR-20b microRNA in human melanoma cells. PAR-1 was found to be expressed in metastatic melanoma cells but was barely detectable in primary melanoma. By transducing primary melanoma cells with a lentivirus containing a 3'-UTR construct of PAR-1 mRNA, we could show that endogenous melanoma microRNAs interacted with PAR-1 3'-UTR and silenced a fused luciferase reporter. Transfection of an inhibitor against miR-20b into primary melanoma cells reversed this process. Finally, transfection of miR-20b mimic into metastatic melanoma cells caused downregulation of the luciferase reporter. We conclude that miR-20b regulates expression of melanoma PAR-1 receptor, which may explain the differential expression of PAR-1 observed in human melanoma.
Collapse
Affiliation(s)
- Amina Saleiban
- Division of Microbiology and Molecular Medicine, Faculty of Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
16
|
Suleiman L, Négrier C, Boukerche H. Protein S: A multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 2013; 88:637-54. [PMID: 23958677 DOI: 10.1016/j.critrevonc.2013.07.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023] Open
Abstract
Since its discovery in 1970, protein S (PS) has emerged as a key vitamin K-dependent natural anticoagulant protein at the crossroads of multiple biological processes, including coagulation, apoptosis, atherosclerosis, angiogenesis/vasculogenesis, and cancer progression. Following the binding to a unique family of protein tyrosine kinase receptors referred to as Tyro-3, Axl and Mer (TAM) receptors, PS can lead to regulation of coagulation, phagocytosis of apoptotic cells, cell survival, activation of innate immunity, vessel integrity and angiogenesis, and local invasion and metastasis. Because of these dynamics and multiple functions of PS, which are largely lost following invalidation of the mouse PROS1 gene, this molecule is currently intensively studied in biomedical research. The purpose of this review is to provide a brief chronicle of the discovery and current understanding of the mechanisms of PS signaling, and how PS and their signaling partners regulate various cellular functions, with a particular focus on TAM receptors.
Collapse
Affiliation(s)
- Lutfi Suleiman
- University Claude Bernard, Lyon I, INSERM, Department of Onco-Haematology, EA 4174, France
| | | | | |
Collapse
|
17
|
Collier MEW, Mah PM, Xiao Y, Maraveyas A, Ettelaie C. Microparticle-associated tissue factor is recycled by endothelial cells resulting in enhanced surface tissue factor activity. Thromb Haemost 2013; 110:966-76. [PMID: 23945646 DOI: 10.1160/th13-01-0055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/16/2013] [Indexed: 01/04/2023]
Abstract
In this study the uptake of tissue factor (TF)-positive microparticles by endothelial cells and the recycling of the TF component were examined. Human dermal blood endothelial cells (HDBEC) were incubated with microparticles derived from cancer cell lines for up to 6 hours. Measurement of HDBEC cell surface TF antigen revealed two distinct peaks at 30 and 180-240 minutes post-incubation with TF-positive, but not TF-deficient microparticles. However, only the second peak was concurrent with high TF activity as determined by a chromogenic thrombin-generation assay. Annexin V-labelling of HDBEC showed phosphatidylserine exposure following 90 minutes incubation with microparticles, which explains the high TF activity associated with the second antigen peak. Analysis of TF mRNA levels revealed no de novo expression of TF mRNA in response to microparticles, and pre-incubation of cells with cycloheximide did not prevent the appearance of TF. However, blocking endocytosis with a dynamin inhibitor prolonged the disappearance and prevented the reappearance of TF antigen on the cell surface. Incubation of HDBEC with microparticles containing TF-GFP revealed the early co-localisation of TF with Rab4 and Rab5, followed by co-localisation with the late endosomal/trans-Golgi network marker Rab9, and the recycling endosome marker Rab11. siRNA-mediated suppression of Rab11 reduced the reappearance of TF on the cell surface. These data suggest a mechanism by which TF-containing microparticles are internalised by endothelial cells and the TF moiety recycled to the cell surface. Together with the exposure of phosphatidylserine, this is capable of inducing a substantial increase in the procoagulant potential of the surface of endothelial cells.
Collapse
Affiliation(s)
- M E W Collier
- Dr. Camille Ettelaie, Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK, Tel.: +44 1482 465528, Fax: +44 1482 465458, E-mail:
| | | | | | | | | |
Collapse
|
18
|
Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Res 2011; 71:6561-6. [PMID: 22009534 PMCID: PMC3206157 DOI: 10.1158/0008-5472.can-11-1432] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients.
Collapse
Affiliation(s)
- Maya Zigler
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
19
|
Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'. Semin Immunopathol 2011; 33:455-67. [PMID: 21318413 DOI: 10.1007/s00281-011-0250-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 01/01/2023]
Abstract
Cancer cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids. MVs are generated via diverse biological mechanisms triggered by pathways involved in oncogenic transformation, microenvironmental stimulation, cellular activation, stress, or death. Vesiculation events occur either at the plasma membrane (ectosomes, shed vesicles) or within endosomal structures (exosomes). MVs are increasingly recognized as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells. Such processes may occur both locally and systemically, contributing to the formation of microenvironmental fields and niches. The bioactive cargo of MVs may include growth factors and their receptors, proteases, adhesion molecules, signalling molecules, as well as DNA, mRNA, and microRNA (miRs) sequences. Tumour cells emit large quantities of MVs containing procoagulant, growth regulatory and oncogenic cargo (oncosomes), which can be transferred throughout the cancer cell population and to non-transformed stromal cells, endothelial cells and possibly to the inflammatory infiltrates (oncogenic field effect). These events likely impact tumour invasion, angiogenesis, metastasis, drug resistance, and cancer stem cell hierarchy. Ongoing studies explore the molecular mechanisms and mediators of MV-based intercellular communication (cancer vesiculome) with the hope of using this information as a possible source of therapeutic targets and disease biomarkers in cancer.
Collapse
|
20
|
Mitroulis I, Kambas K, Anyfanti P, Doumas M, Ritis K. The multivalent activity of the tissue factor–thrombin pathway in thrombotic and non-thrombotic disorders as a target for therapeutic intervention. Expert Opin Ther Targets 2010; 15:75-89. [DOI: 10.1517/14728222.2011.532788] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 2010; 123:1603-11. [PMID: 20445011 DOI: 10.1242/jcs.064386] [Citation(s) in RCA: 721] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microvesicles are generated by the outward budding and fission of membrane vesicles from the cell surface. Recent studies suggest that microvesicle shedding is a highly regulated process that occurs in a spectrum of cell types and, more frequently, in tumor cells. Microvesicles have been widely detected in various biological fluids including peripheral blood, urine and ascitic fluids, and their function and composition depend on the cells from which they originate. By facilitating the horizontal transfer of bioactive molecules such as proteins, RNAs and microRNAs, they are now thought to have vital roles in tumor invasion and metastases, inflammation, coagulation, and stem-cell renewal and expansion. This Commentary summarizes recent literature on the properties and biogenesis of microvesicles and their potential role in cancer progression.
Collapse
|
22
|
Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10:138-46. [PMID: 20094048 PMCID: PMC2944775 DOI: 10.1038/nrc2791] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.
Collapse
Affiliation(s)
- Jason M Butler
- Hideki Kobayashi and Shahin Rafii are at the Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
23
|
Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. ACTA ACUST UNITED AC 2009; 206:1913-27. [PMID: 19667060 PMCID: PMC2737159 DOI: 10.1084/jem.20082297] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients.
Collapse
Affiliation(s)
- Grace M Thomas
- Institut National de Santé et de Recherche Médicale (INSERM) UMR911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, 13385 Marseille, France
| | | | | | | | | | | |
Collapse
|
24
|
Rak J, Milsom C, Magnus N, Yu J. Tissue factor in tumour progression. Best Pract Res Clin Haematol 2009; 22:71-83. [PMID: 19285274 DOI: 10.1016/j.beha.2008.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The linkage between activation of the coagulation system and cancer is well established, as is deregulation of tissue factor (TF) by cancer cells, their vascular stroma and cancer-associated inflammatory cells. TF is no longer perceived as an 'alternative' coagulation factor, but rather as a central trigger of the coagulation cascade and an important cell-associated signalling receptor activated by factor VIIa, and interacting with several other regulatory entities, most notably protease-activated receptors (PAR-1 and PAR-2). Preclinical studies revealed the role of oncogenic transformation and tumour micro-environment as TF regulators in cancer, along with the impact of this receptor on gene expression, tumour growth, metastasis, angiogenesis and, possibly, formation of the cancer stem cell niche. Increasing interest surrounds the shedding of TF-containing microvesicles from cancer cells, their entry into the circulation and their role in the intercellular transfer of TF activity, cancer coagulopathy and other processes. Recent data also suggest differential roles of cell autonomous versus global effects of TF in various settings. Questions are raised regarding the consequences of TF expression by tumour cells themselves and by their associated host stroma. Progress in these areas may soon begin to impact on clinical practice and, as such, raises several important questions. Can TF be exploited as a therapeutic target in cancer? Where and when may this be safe and beneficial? Is expression of TF in various disease settings useful as a biomarker of cancer progression or the associated hypercoagulability? What clinical questions related to TF are especially worthy of further exploration, at present and in the near future? Some of these developments and questions will be discussed in this chapter.
Collapse
Affiliation(s)
- Janusz Rak
- Montreal Children's Hospital Research Institute, 4060 Ste Catherine West, Montreal, QC, H3Z 3Z2, Canada
| | | | | | | |
Collapse
|
25
|
Milsom CC, Yu JL, Mackman N, Micallef J, Anderson GM, Guha A, Rak JW. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2009; 68:10068-76. [PMID: 19074872 DOI: 10.1158/0008-5472.can-08-2067] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ErbB oncogenes drive the progression of several human cancers. Our study shows that in human carcinoma (A431) and glioma (U373) cells, the oncogenic forms of epidermal growth factor receptor (EGFR; including EGFRvIII) trigger the up-regulation of tissue factor (TF), the transmembrane protein responsible for initiating blood coagulation and signaling through interaction with coagulation factor VIIa. We show that A431 cancer cells in culture exhibit a uniform TF expression profile; however, these same cells in vivo exhibit a heterogeneous TF expression and show signs of E-cadherin inactivation, which is coupled with multilineage (epithelial and mesenchymal) differentiation. Blockade of E-cadherin in vitro, leads to the acquisition of spindle morphology and de novo expression of vimentin, features consistent with epithelial-to-mesenchymal transition. These changes were associated with an increase in EGFR-dependent TF expression, and with enhanced stimulation of vascular endothelial growth factor production, particularly following cancer cell treatment with coagulation factor VIIa. In vivo, cells undergoing epithelial-to-mesenchymal transition exhibited an increased metastatic potential. Furthermore, injections of the TF-blocking antibody (CNTO 859) delayed the initiation of A431 tumors in immunodeficient mice, and reduced tumor growth, vascularization, and vascular endothelial growth factor expression. Collectively, our data suggest that TF is regulated by both oncogenic and differentiation pathways, and that it functions in tumor initiation, tumor growth, angiogenesis, and metastasis. Thus, TF could serve as a therapeutic target in EGFR-dependent malignancies.
Collapse
Affiliation(s)
- Chloe C Milsom
- Henderson Research Centre, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Menzies KE, Mackman N, Taubman MB. Role of Tissue Factor in Cancer. Cancer Invest 2009. [DOI: 10.1080/07357900802656665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Rak J, Yu J, Milsom C. Oncogene-Driven Hemostatic Changes in Cancer. Cancer Invest 2009. [DOI: 10.1080/07357900802656533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Napoleone E, Zurlo F, Latella MC, Amore C, Di Santo A, Iacoviello L, Donati MB, Lorenzet R. Paclitaxel downregulates tissue factor in cancer and host tumour-associated cells. Eur J Cancer 2008; 45:470-7. [PMID: 19046877 DOI: 10.1016/j.ejca.2008.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/17/2008] [Indexed: 11/29/2022]
Abstract
Paclitaxel, a microtubule-stabilising compound with potent anti-tumour activity, has been clinically used in a wide variety of malignancies. Tissue factor (TF) is often expressed by tumour-associated endothelial and inflammatory cells, as well as by cancer cells themselves, and it is considered a hallmark of cancer progression. We investigated whether paclitaxel could modulate TF in human mononuclear (MN) cells, human umbilical vein endothelial cells (HUVEC) and the metastatic breast carcinoma cell line MDA-MB-231. Cells were incubated with or without paclitaxel at 37 degrees C. At the end of incubation, cells were disrupted and tested for procoagulant activity by a one-stage clotting assay, for TF antigen levels by ELISA and TF mRNA by real-time RT-PCR. IL-6 and IL-1beta were tested by ELISA in conditioned medium. Both the strong TF activity and antigen constitutively expressed by MDA-MB-231 and the TF induced by LPS, TNF-alpha and IL-1beta in MN cells and HUVEC were significantly reduced by paclitaxel. In the presence of paclitaxel, lower TF mRNA levels were also detected. Since paclitaxel has been shown to induce the expression of inflammatory genes in monocytes and tumour cells, we tested whether paclitaxel could influence IL-6 and IL-1beta release from the cells used in this paper. Neither the constitutive expression of IL-6 and IL-1beta by MDA-MB-231 nor the basal and LPS-induced release from MN cells and HUVEC was affected. Our data support the hypothesis that the anti-tumour effects of paclitaxel may, at least in part, be mediated by the capacity of this drug to modulate the procoagulant potential of cancer and host cells.
Collapse
Affiliation(s)
- Emanuela Napoleone
- Laboratory of Thrombosis and Cancer Research, Research Laboratories, John Paul II Center for High Technology Research and Education in Biomedical Sciences, Catholic University, Largo Gemelli, 1, 86100 Campobasso, CB, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rak J, Milsom C, Yu J. Vascular determinants of cancer stem cell dormancy--do age and coagulation system play a role? APMIS 2008; 116:660-76. [PMID: 18834410 DOI: 10.1111/j.1600-0463.2008.01058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inability of tumour-initiating cancer stem cells (CSCs) to bring about a net increase in tumour mass could be described as a source of tumour dormancy. While CSCs may be intrinsically capable of driving malignant growth, to do so they require compatible surroundings of supportive cells, growth factors, adhesion molecules and energy sources (e.g. glucose and oxygen), all of which constitute what may be referred to as a 'permissive' CSC niche. However, in some circumstances, the configuration of these factors could be incompatible with CSC growth (a 'non-permissive' niche) and lead to their death or dormancy. CSCs and their niches may also differ between adult and paediatric cancers. In this regard the various facets of the tumour-vascular interface could serve as elements of the CSC niche. Indeed, transformed cells with an increased tumour-initiating capability may preferentially reside in specific zones adjacent to tumour blood vessels, or alternatively originate from poorly perfused and hypoxic areas, to which they have adapted. CSCs themselves may produce increased amounts of angiogenic factors, or rely for this on their progeny or activated host stromal cells. It is likely that 'vascular' properties of tumour-initiating cells and those of their niches may diversify and evolve with tumour progression. The emerging themes in this area include the role of vascular (and bone marrow) aging, vascular and metabolic comorbidities (e.g. atherosclerosis) and the effects of the coagulation system (both at the local and systemic levels), all of which could impact the functionality of CSCs and their niches and affect tumour growth, dormancy and formation of occult as well as overt metastases. In this article we will discuss some of the vascular properties of CSCs relevant to tumour dormancy and progression, including: (i) the role of CSCs in regulating tumour vascular supply, i.e the onset and maintenance of tumour angiogenesis; (ii) the consequences of changing vascular demand (vascular dependence) of CSC and their progeny; (iii) the interplay between CSCs and the vascular system during the process of metastasis, and especially (iv) the impact of the coagulation system on the properties of CSC and their niches. We will use the oncogene-driven expression of tissue factor (TF) in cancer cells as a paradigm in this regard, as TF represents a common denominator of several vascular processes that commonly occur in cancer, most notably coagulation and angiogenesis. In so doing we will explore the therapeutic implications of targeting TF and the coagulation system to modulate the dynamics of tumour growth and tumour dormancy.
Collapse
Affiliation(s)
- Janusz Rak
- Montreal Children's Hospital, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
30
|
Pawlinski R, Mackman N. Use of mouse models to study the role of tissue factor in tumor biology. Semin Thromb Hemost 2008; 34:182-6. [PMID: 18645923 DOI: 10.1055/s-2008-1079258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade and plays an essential role in hemostasis. TF also contributes to many diseases, including cancer. The correlation between thrombosis and cancer has been recognized for more than a century. However, it is only in the past two decades that we have begun to understand the role of TF in tumor biology. TF expression is upregulated on both tumor and host cells in cancer patients as well as in the circulation. Clinical observations indicate a direct correlation between the levels of tumor cell TF expression and poor prognosis for cancer patients. The role of TF in tumor biology has been extensively studied using various mouse tumor models. It has been demonstrated that tumor cell TF contributes to tumor metastasis, growth, and angiogenesis. The role of host TF in tumor progression is less clear. Recently developed mouse models with altered levels of TF may be useful in further analysis of the role of host cell TF in cancer.
Collapse
Affiliation(s)
- Rafal Pawlinski
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Tissue factor is increasingly viewed as an integral part of the vicious circle that links the vascular system with cancer progression at multiple systemic, cellular and molecular levels. RECENT FINDINGS The emerging tenet in this area is that oncogenic events/pathways driving the malignant process also stimulate the expression of tissue factor by cancer cells and promote the release of tissue factor-containing microvesicles into the circulation. The combined effects of these changes likely contribute to cancer coagulopathy, cessation of tumour dormancy, aggressive growth, angiogenesis and metastasis, notably through a combination of procoagulant and signalling effects set in motion by tissue factor. As certain tumour-associated host cell types (inflammatory cells, endothelium) may also express tissue factor their contribution is plausible, though poorly understood. Interestingly, tissue factor could be 'shared' between various subsets of cancer and host cells due to intercellular transfer of tissue factor-containing microvesicles. It has recently been proposed that tissue factor may influence the interactions between tumour initiating (stem) cells and their growth or prometastatic niches. SUMMARY Whereas targeting tissue factor in cancer is appealing, the prospects in this regard will depend on the identification of disease specific indications, active agents and their safe regimens.
Collapse
|