1
|
The foraging Gene Is Involved in the Presence of Wings and Explorative Behaviours in Parthenogenetic Females of the Aphid Myzus persicae. Life (Basel) 2022; 12:life12030369. [PMID: 35330120 PMCID: PMC8951518 DOI: 10.3390/life12030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
The foraging gene (for) encodes for a cyclic guanosine monophosphate (cGMP)-dependent protein kinase involved in behavioural plasticity in aphids and in other insects. In this paper, we analysed the complete for sequence in eight clones of the peach potato aphid Myzus persicae, reporting the presence of nonsense and frameshift mutations in three studied clones characterized by a reduced number of winged females and by the absence of exploratory behaviours. Quantitative PCR experiments evidenced similar results in clones possessing for genes with a conserved coding sequence, but low expression levels. The comparison of the for transcriptional level in Myzus persicae persicae and Myzus persicae nicotianae showed very different expression in the two studied M. p. nicotianae clones so that our data did not support a previous hypothesis suggesting that a differential for expression was related to ecological specialization of M. p. nicotianae. In view of its role in both the dispersal of winged females and exploratory behaviours, the screening of the for sequences could be useful for predicting invasions of cultivated areas by peach potato aphids.
Collapse
|
2
|
Kayyal M, Javkar T, Firoz Mian M, Binyamin D, Koren O, McVey Neufeld KA, Forsythe P. Sex dependent effects of post-natal penicillin on brain, behavior and immune regulation are prevented by concurrent probiotic treatment. Sci Rep 2020; 10:10318. [PMID: 32587382 PMCID: PMC7316860 DOI: 10.1038/s41598-020-67271-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the need to consider potential long-term effects of antibiotics on the health of children. In addition to being associated with immune and metabolic diseases, there is evidence that early-life antibiotic exposure can affect neurodevelopment. Here we investigated the effect of low dose of penicillin V on mice when administered for 1 week immediately prior to weaning. We demonstrated that exposure to the antibiotic during the pre-weaning period led to long-term changes in social behaviour, but not anxiety-like traits, in male mice only. The change in behaviour of males was associated with decreased hippocampal expression of AVPR1A and AVPR1B while expression of both receptors was increased in females. Spleens of male mice also showed an increase in the proportion of activated dendritic cells and a corresponding decrease in regulatory T cells with penicillin exposure. All changes in brain, behaviour and immune cell populations, associated with penicillin exposure, were absent in mice that received L. rhamnosus JB-1 supplementation concurrent with the antibiotic. Our study indicates that post-natal exposure to a clinically relevant dose of antibiotic has long-term, sex dependent effects on the CNS and may have implications for the development of neuropsychiatric disorders. Importantly, we also provide further evidence that probiotic based strategies may be of use in counteracting detrimental effects of early-life antibiotics on neurodevelopment.
Collapse
Affiliation(s)
- Marya Kayyal
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Tanvi Javkar
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Canada
| | - M Firoz Mian
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Dana Binyamin
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karen-Anne McVey Neufeld
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Canada.
| |
Collapse
|
3
|
Tchabovsky AV, Savinetskaya LE, Ovchinnikova NL, Safonova A, Ilchenko ON, Sapozhnikova SR, Vasilieva NA. Sociability and pair-bonding in gerbils: a comparative experimental study. Curr Zool 2019; 65:363-373. [PMID: 31413709 PMCID: PMC6688578 DOI: 10.1093/cz/zoy078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/23/2017] [Indexed: 11/14/2022] Open
Abstract
In a study of gerbils with contrasting social and mating systems (group-living monogamous Mongolian gerbil Meriones unguiculatus, solitary nonterritorial promiscuous midday jird M. meridianus, and solitary territorial promiscuous pale gerbil Gerbillus perpallidus), we employed partner preference tests (PPTs) to assess among-species variation in sociability and pair-bonding patterns and tested whether the nature of contact between individuals: direct contact (DC) versus nondirect contact (NDC) affected our results. We measured male preferences as the time: 1) spent alone, 2) with familiar (partner), and 3) unfamiliar (stranger) female in the 3-chambered apparatus. Gerbil species differed strongly in sociability and male partner preferences. The time spent alone was a reliable indicator of species sociability independent of the nature of contact, whereas the pattern and level of between-species differences in male partner preferences depended on contact type: DC PPTs, unlike NDC-tests, discriminated well between monogamous and promiscuous species. In the DC-tests, stranger-directed aggression and stranger avoidance were observed both in the highly social monogamous M. unguiculatus and the solitary territorial promiscuous G. perpallidus, but not in the nonterritorial promiscuous M. meridianus. In M. unguiculatus, stranger avoidance in the DC-tests increased the time spent with the partner, thus providing evidence of a partner preference that was not found in the NDC-tests, whereas in G. perpallidus, stranger avoidance increased the time spent alone. This first comparative experimental study of partner preferences in gerbils provides new insights into the interspecific variation in gerbil sociality and mating systems and sheds light on behavioral mechanisms underlying social fidelity and pair-bonding.
Collapse
Affiliation(s)
- Andrey V Tchabovsky
- Department of Vertebrate Zoology, A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia
| | - Ludmila E Savinetskaya
- Department of Vertebrate Zoology, A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia
| | - Natalia L Ovchinnikova
- Department of Vertebrate Zoology, A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia
| | - Alexandra Safonova
- Laboratory for Population Ecology, Lomonosov Moscow State University, Russia
| | | | | | - Nina A Vasilieva
- Department of Vertebrate Zoology, A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia
| |
Collapse
|
4
|
Bichet C, Lepetit D, Cohas A. Extrinsic and intrinsic constraints interact to drive extra-pair paternities in the Alpine marmot. J Evol Biol 2018; 31:1794-1802. [PMID: 30216586 DOI: 10.1111/jeb.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
Abstract
To reproduce, animals have to form pairs and large variations in the degree of mate switching are observed. Extrinsic and intrinsic factors can constrain individual's mate switching. Among intrinsic factors, genes involved in pair-bonding, such as Avpr-1a, receive increasing attention. The length of microsatellites present in the regulatory region of Avpr-1a determines the neural densities and distributions of the vasopressin receptors known to impact pair-bonding behaviours. For the first time, we investigated whether and how the genetic makeup at Avpr-1a, an intrinsic factor, and the social context, an extrinsic factor, experienced by wild Alpine marmot (Marmota marmota) females affect the proportion of extra-pair young. This proportion was positively correlated with the length of their Avpr-1a regulatory region but only when the social constraints were relaxed, that is when mature male subordinates were present. When ignoring the interactive effect between the length of their Avpr-1a regulatory region and the social constraints, the genetic makeup at Avpr-1a was not associated with the proportion of extra-pair young. Under natural conditions, the genetic regulation of pair-bonding could be hidden by extrinsic factors constraining mate choice.
Collapse
Affiliation(s)
- Coraline Bichet
- UMR-CNRS 5558, Laboratoire Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne, France.,Institut für Vogelforschung, 'Vogelwarte Helgoland' (Institute of Avian Research), Wilhelmshaven, Germany
| | - David Lepetit
- UMR-CNRS 5558, Laboratoire Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Aurélie Cohas
- UMR-CNRS 5558, Laboratoire Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
5
|
Rogers J. The behavioral genetics of nonhuman primates: Status and prospects. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165 Suppl 65:23-36. [PMID: 29380886 DOI: 10.1002/ajpa.23384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed.
Collapse
Affiliation(s)
- Jeffrey Rogers
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
6
|
Is Infidelity Biologically Determined? CURRENT SEXUAL HEALTH REPORTS 2016. [DOI: 10.1007/s11930-016-0084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Liu JJ, Lou F, Lavebratt C, Forsell Y. Impact of Childhood Adversity and Vasopressin receptor 1a Variation on Social Interaction in Adulthood: A Cross-Sectional Study. PLoS One 2015; 10:e0136436. [PMID: 26295806 PMCID: PMC4546684 DOI: 10.1371/journal.pone.0136436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Arginine vasopressin (AVP) plays a role in social behavior, through receptor AVPR1A. The promoter polymorphism AVPR1A RS3 has been associated with human social behaviors, and with acute response to stress. Here, the relationships between AVPR1A RS3, early-life stressors, and social interaction in adulthood were explored. Methods Adult individuals from a Swedish population-based cohort (n = 1871) were assessed for self-reported availability of social integration and social attachment and for experience of childhood adversities. Their DNA samples were genotyped for the microsatellite AVPR1A RS3. Results Among males, particularly those homozygous for the long alleles of AVPR1A RS3 were vulnerable to childhood adversity for their social attachment in adulthood. A similar vulnerability to childhood adversity among long allele carriers was found on adulthood social integration, but here both males and females were influenced. Limitation Data were self-reported and childhood adversity data were retrospective. Conclusions Early-life stress influenced the relationship between AVPR1A genetic variants and social interaction. For social attachment, AVPR1A was of importance in males only. The findings add to previous reports on higher acute vulnerability to stress in persons with long AVPR1A RS3 alleles and increased AVP levels.
Collapse
Affiliation(s)
- Jia Jia Liu
- School of Nursing, Shandong University, Jinan, 250012, China
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Fenglan Lou
- School of Nursing, Shandong University, Jinan, 250012, China
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Yvonne Forsell
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav 2012; 61:359-79. [PMID: 22245314 DOI: 10.1016/j.yhbeh.2011.12.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXT) are social hormones and mediate affiliative behaviors in mammals and as recently demonstrated, also in humans. There is intense interest in how these simple nonapeptides mediate normal and abnormal behavior, especially regarding disorders of the social brain such as autism that are characterized by deficits in social communication and social skills. The current review examines in detail the behavioral genetics of the first level of human AVP-OXT pathway genes including arginine vasopressin 1a receptor (AVPR1a), oxytocin receptor (OXTR), AVP (AVP-neurophysin II [NPII]) and OXT (OXT neurophysin I [NPI]), oxytocinase/vasopressinase (LNPEP), ADP-ribosyl cyclase (CD38) and arginine vasopressin 1b receptor (AVPR1b). Wherever possible we discuss evidence from a variety of research tracks including molecular genetics, imaging genomics, pharmacology and endocrinology that support the conclusions drawn from association studies of social phenotypes and detail how common polymorphisms in AVP-OXT pathway genes contribute to the behavioral hard wiring that enables individual Homo sapiens to interact successfully with conspecifics. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302, USA.
| |
Collapse
|
10
|
Avery L. Caenorhabditis elegans behavioral genetics: where are the knobs? BMC Biol 2010; 8:69. [PMID: 20504291 PMCID: PMC2882361 DOI: 10.1186/1741-7007-8-69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/25/2010] [Indexed: 01/17/2023] Open
Abstract
Thousands of behavioral mutants of Caenorhabditis elegans have been studied. I suggest a set of criteria by which some genes important in the evolution of behavior might be recognized, and identify neuropeptide signaling pathways as candidates.
Collapse
Affiliation(s)
- Leon Avery
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9148, USA.
| |
Collapse
|
11
|
Lucas C, Kornfein R, Chakaborty-Chatterjee M, Schonfeld J, Geva N, Sokolowski MB, Ayali A. The locust foraging gene. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:52-66. [PMID: 20422718 DOI: 10.1002/arch.20363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food-related behaviors and a specific gene family called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long-term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well-established phase-related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism.
Collapse
Affiliation(s)
- C Lucas
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Harony H, Wagner S. The Contribution of Oxytocin and Vasopressin to Mammalian Social Behavior: Potential Role in Autism Spectrum Disorder. Neurosignals 2010; 18:82-97. [DOI: 10.1159/000321035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 01/09/2023] Open
|
14
|
Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior. PLoS One 2009; 4:e6408. [PMID: 19641619 PMCID: PMC2713418 DOI: 10.1371/journal.pone.0006408] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background We conducted a large-scale transcriptomic profiling of selected regions of the central nervous system (CNS) across three species of honey bees, in foragers that were performing dance behavior to communicate to their nestmates the location, direction and profitability of an attractive floral resource. We used microarrays to measure gene expression in bees from Apis mellifera, dorsata and florea, species that share major traits unique to the genus and also show striking differences in biology and dance communication. The goals of this study were to determine the extent of regional specialization in gene expression and to explore the molecular basis of dance communication. Principal Findings This “snapshot” of the honey bee CNS during dance behavior provides strong evidence for both species-consistent and species-specific differences in gene expression. Gene expression profiles in the mushroom bodies consistently showed the biggest differences relative to the other CNS regions. There were strong similarities in gene expression between the central brain and the second thoracic ganglion across all three species; many of the genes were related to metabolism and energy production. We also obtained gene expression differences between CNS regions that varied by species: A. mellifera differed the most, while dorsata and florea tended to be more similar. Significance Species differences in gene expression perhaps mirror known differences in nesting habit, ecology and dance behavior between mellifera, florea and dorsata. Species-specific differences in gene expression in selected CNS regions that relate to synaptic activity and motor control provide particularly attractive candidate genes to explain the differences in dance behavior exhibited by these three honey bee species. Similarities between central brain and thoracic ganglion provide a unique perspective on the potential coupling of these two motor-related regions during dance behavior and perhaps provide a snapshot of the energy intensive process of dance output generation. Mushroom body results reflect known roles for this region in the regulation of learning, memory and rhythmic behavior.
Collapse
|
15
|
Ebstein RP, Israel S, Lerer E, Uzefovsky F, Shalev I, Gritsenko I, Riebold M, Salomon S, Yirmiya N. Arginine vasopressin and oxytocin modulate human social behavior. Ann N Y Acad Sci 2009; 1167:87-102. [PMID: 19580556 DOI: 10.1111/j.1749-6632.2009.04541.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, The Hebrew University of Jerusalem, Herzog Memorial Hospital, Givat Shaul, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Molecular basis for changes in behavioral state in ant social behaviors. Proc Natl Acad Sci U S A 2009; 106:6351-6. [PMID: 19332792 DOI: 10.1073/pnas.0809463106] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A hallmark of behavior is that animals respond to environmental change by switching from one behavioral state to another. However, information on the molecular underpinnings of these behavioral shifts and how they are mediated by the environment is lacking. The ant Pheidole pallidula with its morphologically and behaviorally distinct major and minor workers is an ideal system to investigate behavioral shifts. The physically larger majors are predisposed to defend the ant nest, whereas the smaller minors are the foragers. Despite this predisposition, majors are able to shift to foraging according to the needs of the colony. We show that the ant foraging (ppfor) gene, which encodes a cGMP-dependent protein kinase (PKG), mediates this shift. Majors have higher brain PKG activities than minors, and the spatial distribution of the PPFOR protein differs in these workers. Specifically, majors express the PPFOR protein in 5 cells in the anterior face of the ant brain, whereas minors do not. Environmental manipulations show that PKG is lower in the presence of a foraging stimulus and higher when defense is required. Finally, pharmacological activation of PKG increases defense and reduces foraging behavior. Thus, PKG signaling plays a critical role in P. pallidula behavioral shifts.
Collapse
|