1
|
Vasconcelos RO, Bolgan M, Matos AB, Van-Dunem SP, Penim J, Amorim MCP. Characterization of the vocal behavior of the miniature and transparent fish model, Danionella cerebruma). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:781-789. [PMID: 38289152 DOI: 10.1121/10.0024346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Danionella cerebrum has recently been proposed as a promising model to investigate the structure and function of the adult vertebrate brain, including the development of vocal-auditory neural pathways. This genetically tractable and transparent cypriniform is highly vocal, but limited information is available on its acoustic behavior and underlying biological function. Our main goal was to characterize the acoustic repertoire and diel variation in sound production of D. cerebrum, as well as to investigate the relationship between vocal behavior and reproduction. Sound recordings demonstrated high vocal activity, with sounds varying from short sequences of pulses known as "bursts" (comprising up to 15 pulses) to notably longer sounds, termed "long bursts", which extended up to 349 pulses with over 2.7 s. Vocal activity peaked at midday and it was very low at night with only a few bursts. While the number of pulses was higher during the daytime, the interpulse interval was longer at night. In addition, calling time was positively associated with the number of viable eggs, suggesting that acoustic communication is important for reproduction. These preliminary findings reveal the potential of using D. cerebrum to investigate vocal plasticity and the implications for sexual selection and reproduction in a novel vertebrate model for neuroscience.
Collapse
Affiliation(s)
- Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao, Special Administrative Region, China
- Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- EPCV - Department of Life Sciences, Lusófona University, Lisbon, Portugal
| | - Marta Bolgan
- Ocean Science Consulting Limited, Dunbar, United Kingdom
| | - André B Matos
- Institute of Science and Environment, University of Saint Joseph, Macao, Special Administrative Region, China
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sheila P Van-Dunem
- EPCV - Department of Life Sciences, Lusófona University, Lisbon, Portugal
| | - Jorge Penim
- EPCV - Department of Life Sciences, Lusófona University, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Clara P Amorim
- Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Dy AES, Kashio A, Fujimoto C, Kinoshita M, Kikkawa YS, Hoshi Y, Igarashi K, Uranaka T, Iwasaki S, Yamasoba T. Vestibular Imaging and Function in Patients With Inner Ear Malformation Presenting With Profound Hearing Loss. OTO Open 2022; 6:2473974X221128912. [PMID: 36187437 PMCID: PMC9516417 DOI: 10.1177/2473974x221128912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022] Open
Abstract
Objective Vestibular impairment has been observed in patients with congenital hearing
loss, but little is known about the vestibular anatomy and function of those
in this group with inner ear malformations. This study aims to investigate
the association between vestibulocochlear anatomy and vestibular function
test results in children with inner ear malformations. Study Design Case series with chart review. Setting Pediatric patients with inner ear malformations presenting with bilateral
profound hearing loss at a tertiary hospital from 1999 to 2017. Methods Ears were classified into subgroups based on anatomic abnormalities seen on
computed tomography imaging. Cervical vestibular evoked myogenic potential
(cVEMP), rotatory chair, and caloric test results were obtained and
collated. Descriptive and inferential statistics were calculated. Results Of 82 ears, 29.3% had incomplete partition type II malformation, the most
common type. The second-most common type was isolated vestibular organ
anomaly (20.7%), which is not included in currently accepted categories.
Most ears exhibited abnormal vestibular function. Abnormal vestibule volume
was associated with a nonreactive cVEMP (P < .001).
Radiologically abnormal lateral semicircular canals were associated with
abnormal caloric and rotatory chair results (P <
.001). Conclusion With a relatively large number of cases of isolated vestibular organ anomaly
not only in our study but also in previous publications, we suggest that
this category be added to the subsets of inner ear malformations. Abnormal
vestibule volume was significantly associated with a nonreactive cVEMP
finding. The majority of patients with hearing loss secondary to inner ear
malformations have abnormal vestibular function test results.
Collapse
Affiliation(s)
- Alexander Edward S. Dy
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Otolaryngology–Head and Neck Surgery, St Luke’s Medical Center, Quezon City, Philippines
| | - Akinori Kashio
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yayoi S. Kikkawa
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Otolaryngology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Yujiro Hoshi
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Igarashi
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Uranaka
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Iwasaki
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Nagoya City University, Nagoya, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
De Schutter E, Roelandt R, Riquet FB, Van Camp G, Wullaert A, Vandenabeele P. Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends Cell Biol 2021; 31:500-513. [PMID: 33771452 DOI: 10.1016/j.tcb.2021.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The gasdermin (GSDM) family has evolved as six gene clusters (GSDMA-E and Pejvakin, PJVK), and GSDM proteins are characterized by a unique N-terminal domain (N-GSDM). With the exception of PJVK, the N-GSDM domain is capable of executing plasma membrane permeabilization. Depending on the cell death modality, several protease- and kinase-dependent mechanisms directly regulate the activity of GSDME and GSDMD, the two most widely expressed and best-studied GSDMs. We provide an overview of all GSDMs in terms of biological function, tissue expression, activation, regulation, and structure. In-depth phylogenetic analysis reveals that GSDM genes show many gene duplications and deletions, suggesting that strong evolutionary forces and a unique position of the PJVK gene are associated with the occurrence of complex inner-ear development in vertebrates.
Collapse
Affiliation(s)
- Elke De Schutter
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Ria Roelandt
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Université de Lille, Lille, France
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Antwerp, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Antwerp, Belgium
| | - Andy Wullaert
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Methusalem program Cell Death Activity Regulation in Inflammation and Cancer (CEDAR-IC), Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Breitzler L, Lau IH, Fonseca PJ, Vasconcelos RO. Noise-induced hearing loss in zebrafish: investigating structural and functional inner ear damage and recovery. Hear Res 2020; 391:107952. [DOI: 10.1016/j.heares.2020.107952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
|
5
|
Chaves PP, Valdoria CM, Amorim MCP, Vasconcelos RO. Ontogenetic development of the inner ear saccule and utricle in the Lusitanian toadfish: Potential implications for auditory sensitivity. Hear Res 2017; 353:112-121. [DOI: 10.1016/j.heares.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
|
6
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
7
|
Duncan JS, Fritzsch B. Evolution of Sound and Balance Perception: Innovations that Aggregate Single Hair Cells into the Ear and Transform a Gravistatic Sensor into the Organ of Corti. Anat Rec (Hoboken) 2012; 295:1760-74. [DOI: 10.1002/ar.22573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/20/2023]
|
8
|
Duncan JS, Fritzsch B. Transforming the vestibular system one molecule at a time: the molecular and developmental basis of vertebrate auditory evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:173-86. [PMID: 22399402 DOI: 10.1007/978-1-4614-1704-0_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia's mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane. Another important step in the evolution of an auditory system was the evolution of a unique set of "auditory neurons" that apparently evolved from vestibular neurons. Evolution of mammalian auditory (spiral ganglion) neurons coincides with GATA3 being a transcription factor found selectively in the auditory afferents. For the auditory information to be processed, the CNS required a dedicated center for auditory processing, the auditory nuclei. It is not known whether the auditory nucleus is ontogenetically related to the vestibular or electroreceptive nuclei, two sensory systems found in aquatic but not in amniotic vertebrates, or a de-novo formation of the rhombic lip in line with other novel hindbrain structures such as pontine nuclei. Like other novel hindbrain structures, the auditory nuclei express exclusively the bHLH gene Atoh1, and loss of Atoh1 results in loss of most of this nucleus in mice. Only after the basilar papilla, organ of Corti evolved could efferent neurons begin to modulate their activity. These auditory efferents most likely evolved from vestibular efferent neurons already present. The most simplistic interpretation of available data suggest that the ear, sensory neurons, auditory nucleus, and efferent neurons have been transformed by altering the developmental genetic modules necessary for their development into a novel direction conducive for sound extraction, conduction, and processing.
Collapse
Affiliation(s)
- Jeremy S Duncan
- Department of Biology, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
9
|
Kopecky B, Fritzsch B. Regeneration of Hair Cells: Making Sense of All the Noise. Pharmaceuticals (Basel) 2011; 4:848-879. [PMID: 21966254 PMCID: PMC3180915 DOI: 10.3390/ph4060848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022] Open
Abstract
Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
10
|
Chatterjee S, Kraus P, Lufkin T. A symphony of inner ear developmental control genes. BMC Genet 2010; 11:68. [PMID: 20637105 PMCID: PMC2915946 DOI: 10.1186/1471-2156-11-68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/16/2010] [Indexed: 01/21/2023] Open
Abstract
The inner ear is one of the most complex and detailed organs in the vertebrate body and provides us with the priceless ability to hear and perceive linear and angular acceleration (hence maintain balance). The development and morphogenesis of the inner ear from an ectodermal thickening into distinct auditory and vestibular components depends upon precise temporally and spatially coordinated gene expression patterns and well orchestrated signaling cascades within the otic vesicle and upon cellular movements and interactions with surrounding tissues. Gene loss of function analysis in mice has identified homeobox genes along with other transcription and secreted factors as crucial regulators of inner ear morphogenesis and development. While otic induction seems dependent upon fibroblast growth factors, morphogenesis of the otic vesicle into the distinct vestibular and auditory components appears to be clearly dependent upon the activities of a number of homeobox transcription factors. The Pax2 paired-homeobox gene is crucial for the specification of the ventral otic vesicle derived auditory structures and the Dlx5 and Dlx6 homeobox genes play a major role in specification of the dorsally derived vestibular structures. Some Micro RNAs have also been recently identified which play a crucial role in the inner ear formation.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | | | | |
Collapse
|
11
|
Fritzsch B, Beisel KW, Hansen LA. The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 2007; 28:1181-93. [PMID: 17120192 PMCID: PMC3901523 DOI: 10.1002/bies.20502] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
12
|
Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain Res 2006; 1111:95-104. [PMID: 16904081 DOI: 10.1016/j.brainres.2006.07.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/30/2006] [Accepted: 07/01/2006] [Indexed: 02/02/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function through the RNA interference (RNAi) pathway and post-transcriptionally regulate gene expression in eukaryotic organisms. While miRNAs are known to affect cellular proliferation, differentiation, and morphological development, neither their expression nor roles in mammalian inner ear development have been characterized. We have investigated the extent of miRNA expression at various time points throughout maturation of the postnatal mouse inner ear by microarray analysis. Approximately one third of known miRNAs are detected in the inner ear, and their expression persists to adulthood. Expression of such miRNAs is validated by quantitative PCR and northern blot analysis. Further analysis by in situ hybridization demonstrates that certain miRNAs exhibit cell-specific expression patterns in the mouse inner ear. Notably, we demonstrate that miRNAs previously associated with mechanosensory cells in zebrafish are also expressed in hair cells of the auditory and vestibular endorgans. Our results demonstrate that miRNA expression is abundant in the mammalian inner ear and that certain miRNAs are evolutionarily associated with mechanosensory cell development and/or function. The data suggest that miRNAs contribute substantially to genetic programs intrinsic to development and function of the mammalian inner ear and that specific miRNAs might influence formation of sensory epithelia from the primitive otic neuroepithelium.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Ear, Inner/cytology
- Ear, Inner/growth & development
- Ear, Inner/metabolism
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/growth & development
- Hair Cells, Auditory/metabolism
- Labyrinth Supporting Cells/cytology
- Labyrinth Supporting Cells/metabolism
- Mice
- MicroRNAs/analysis
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Organ of Corti/cytology
- Organ of Corti/growth & development
- Organ of Corti/metabolism
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- Michael D Weston
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, Nebraska, NE 68178, USA
| | | | | | | | | |
Collapse
|
13
|
Manji SSM, Sørensen BS, Klockars T, Lam T, Hutchison W, Dahl HHM. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear. J Neurosci Res 2006; 83:181-90. [PMID: 16342203 DOI: 10.1002/jnr.20721] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted noncoding RNA. Real-time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining in the nuclei of type I spiral ganglion cells and in cerebellum near the dorsal vestibular region of the cochlea. In embryonic mouse head sections, Meg3/Gtl2 RNA expression was observed in the otocyst, brain, eye, cartilage, connective tissue, and muscle. Meg3/Gtl2 RNA expression increased in the developing otocyst and localized to the spiral ganglion, stria vascularis, Reissner's membrane, and greater epithelial ridge (GER) in the cochlear duct. RT-PCR analysis performed on cell lines derived from the organ of Corti, representing neural, supporting, and hair cells, showed significantly elevated levels of Meg3/Gtl2 expression in differentiated neural cells. We propose that Meg3/Gtl2 RNA functions as a noncoding regulatory RNA in the inner ear and that it plays a role in pattern specification and differentiation of cells during otocyst development, as well as in the maintenance of a number of terminally differentiated cochlear cell types.
Collapse
Affiliation(s)
- Shehnaaz S M Manji
- Gene Identification and Expression, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Sekerková G, Zheng L, Mugnaini E, Bartles JR. Differential expression of espin isoforms during epithelial morphogenesis, stereociliogenesis and postnatal maturation in the developing inner ear. Dev Biol 2006; 291:83-95. [PMID: 16413524 PMCID: PMC2586395 DOI: 10.1016/j.ydbio.2005.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/02/2005] [Accepted: 12/06/2005] [Indexed: 01/23/2023]
Abstract
The espins are a family of multifunctional actin cytoskeletal proteins. They are present in hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction. Here, we demonstrate that the different espin isoforms are expressed in complex spatiotemporal patterns during inner ear development. Espin 3 isoforms were prevalent in the epithelium of the otic pit, otocyst and membranous labyrinth as they underwent morphogenesis. This espin was down-regulated ahead of hair cell differentiation and during neuroblast delamination. Espin also accumulated in the epithelium of branchial clefts and pharyngeal pouches and during branching morphogenesis in other embryonic epithelial tissues, suggesting general roles for espins in epithelial morphogenesis. Espin reappeared later in inner ear development in differentiating hair cells. Its levels and compartmentalization to stereocilia increased during the formation and maturation of stereociliary bundles. Late in embryonic development, espin was also present in a tail-like process that emanated from the hair cell base. Increases in the levels of espin 1 and espin 4 isoforms correlated with stereocilium elongation and maturation in the vestibular system and cochlea, respectively. Our results suggest that the different espin isoforms play specific roles in actin cytoskeletal regulation during epithelial morphogenesis and hair cell differentiation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation
- Cochlea/embryology
- Cochlea/growth & development
- Cochlea/metabolism
- Cytoskeleton/metabolism
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/metabolism
- Epithelium/embryology
- Epithelium/growth & development
- Epithelium/metabolism
- Hair Cells, Auditory/embryology
- Hair Cells, Auditory/growth & development
- Hair Cells, Auditory/metabolism
- Lacrimal Apparatus/embryology
- Lacrimal Apparatus/growth & development
- Lacrimal Apparatus/metabolism
- Lung/embryology
- Lung/growth & development
- Lung/metabolism
- Mice
- Microfilament Proteins/metabolism
- Morphogenesis
- Protein Isoforms/metabolism
- Rats
- Rats, Sprague-Dawley
- Vestibule, Labyrinth/embryology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
15
|
Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Jones K, Lee J, Fritzsch B. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 2006; 234:633-50. [PMID: 16145671 PMCID: PMC1343505 DOI: 10.1002/dvdy.20551] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We investigated whether co-expression of Neurog 1 and Atoh 1 in common neurosensory precursors could explain the loss of hair cells in Neurog 1 null mice. Analysis of terminal mitosis, using BrdU, supports previous findings regarding timing of exit from cell cycle. Specifically, we show that cell cycle exit occurs in spiral sensory neurons in a base-to-apex progression followed by cell cycle exit of hair cells in the organ of Corti in an apex-to-base progression, with some overlap of cell cycle exit in the apex for both hair cells and spiral sensory neurons. Hair cells in Neurog 1 null mice show cell cycle exit in an apex-to-base progression about 1-2 days earlier. Atoh 1 is expressed in an apex-to-base progression rather then a base-to-apex progression as in wildtype littermates. We tested the possible expression of Atoh1 in neurosensory precursors using two Atoh 1-Cre lines. We show Atoh 1-Cre mediated beta-galactosidase expression in delaminating sensory neuron precursors as well as undifferentiated epithelial cells at E11 and E12.5. PCR analysis shows expression of Atoh 1 in the otocyst as early as E10.5, prior to any histology-based detection techniques. Combined, these data suggest that low levels of Atoh 1 exist much earlier in precursors of hair cells and sensory neurons, possibly including neurosensory precursors. Analysis of Atoh 1-Cre expression in E18.5 embryos and P31 mice reveal beta-galactosidase stain in all hair cells but also in vestibular and cochlear sensory neurons and some supporting cells. A similar expression of Atoh 1-LacZ exists in postnatal and adult vestibular and cochlear sensory neurons, and Atoh 1 expression in vestibular sensory neurons is confirmed with RT-PCR. We propose that the absence of NEUROG 1 protein leads to loss of sensory neuron formation through a phenotypic switch of cycling neurosensory precursors from sensory neuron to hair cell fate. Neurog 1 null mice show a truncation of clonal expansion of hair cell precursors through temporally altered terminal mitosis, thereby resulting in smaller sensory epithelia.
Collapse
Affiliation(s)
- V. Matei
- Creighton University, Dept. Biomed. Sci., Omaha, NE, 68178
| | - S. Pauley
- Creighton University, Dept. Biomed. Sci., Omaha, NE, 68178
| | - S. Kaing
- Dept of Molecular Biology, Harvard University, Boston, MA
| | - D. Rowitch
- Dept of Molecular Biology, Harvard University, Boston, MA
| | - K. W. Beisel
- Creighton University, Dept. Biomed. Sci., Omaha, NE, 68178
| | - K. Morris
- Creighton University, Dept. Biomed. Sci., Omaha, NE, 68178
| | - K. Jones
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309
| | - J. Lee
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309
| | - B. Fritzsch
- Creighton University, Dept. Biomed. Sci., Omaha, NE, 68178
- Corresponding Author: Bernd Fritzsch, Ph.D., Creighton University, Dept. Biomed. Sciences, Omaha, NE, 68178, Tel: 402-280-2915, Fax: 402-280-5556,
| |
Collapse
|
16
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
17
|
Morris KA, Snir E, Pompeia C, Koroleva IV, Kachar B, Hayashizaki Y, Carninci P, Soares MB, Beisel KW. Differential expression of genes within the cochlea as defined by a custom mouse inner ear microarray. J Assoc Res Otolaryngol 2005; 6:75-89. [PMID: 15735932 PMCID: PMC2504641 DOI: 10.1007/s10162-004-5046-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 11/19/2004] [Indexed: 11/24/2022] Open
Abstract
Microarray analyses have contributed greatly to the rapid understanding of functional genomics through the identification of gene networks as well as gene discovery. To facilitate functional genomics of the inner ear, we have developed a mouse inner-ear-pertinent custom microarray chip (CMA-IE1). Nonredundant cDNA clones were obtained from two cDNA library resources: the RIKEN subtracted inner ear set and the NIH organ of Corti library. At least 2000 cDNAs unique to the inner ear were present on the chip. Comparisons were performed to examine the relative expression levels of these unique cDNAs within the organ of Corti, lateral wall, and spiral ganglion. Total RNA samples were obtained from the three cochlear-dissected fractions from adult CF-1 mice. The total RNA was linearly amplified, and a dendrimer-based system was utilized to enhance the hybridization signal. Differentially expressed genes were verified by comparison to known gene expression patterns in the cochlea or by correlation with genes and gene families deduced to be present in the three tissue types. Approximately 22-25% of the genes on the array had significant levels of expression. A number of differentially expressed genes were detected in each tissue fraction. These included genes with known functional roles, hypothetical genes, and various unknown or uncharacterized genes. Four of the differentially expressed genes found in the organ of Corti are linked to deafness loci. None of these are hypothetical or unknown genes.
Collapse
Affiliation(s)
- Ken A. Morris
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178 USA
| | - Einat Snir
- Pediatrics-Genetics, Iowa University, Iowa, IA 52242 USA
| | - Celine Pompeia
- Section on Structural Cell Biology, NIDCD/NIH, Bethesda, MD 20892 USA
| | | | - Bechara Kachar
- Section on Structural Cell Biology, NIDCD/NIH, Bethesda, MD 20892 USA
| | - Yoshihide Hayashizaki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, Tsukuba, Japan
| | - Piero Carninci
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, Tsukuba, Japan
| | | | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178 USA
| |
Collapse
|
18
|
Abstract
Cochlear hair cells of the inner ear are mechanosensory transducers critical for sound reception in mammals. A mouse with a specific expression of Cre recombinase activity in hair cells is essential for hair cell-specific gene targeting. Here we report a transgenic mouse in which Cre activity is detected in inner hair cells, not in supporting cells, in the cochlea. The Cre activity was visualized with both X-gal staining and beta-galactosidase immunostaining in progeny of a cross between our Cre line and the reporter ROSA26R line. In inner hair cells, the Cre activity started at postnatal day 14 and was maintained throughout adulthood. Starting at postnatal day 50, a few outer hair cells in the outermost row of cochlear apical and middle turns displayed the Cre activity. In vestibular hair cells and spiral ganglia, the Cre activity was also detected. Cre activity was present in cells widely distributed throughout brain, testis, and retina, but was absent in many other tissues such as kidney, heart, liver, and intestine. This Cre mouse line can thus be used for conditional gene targeting in mature inner hair cells of the cochlea. genesis 39:173-177, 2004.
Collapse
Affiliation(s)
- Mingyuan Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
19
|
Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development:specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 2005; 132:541-51. [PMID: 15634704 DOI: 10.1242/dev.01589] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lateral inhibition mediated by Notch is thought to generate the mosaic of hair cells and supporting cells in the inner ear, but the effects of the activated Notch protein itself have never been directly tested. We have explored the role of Notch signalling by transiently overexpressing activated Notch (NICD) in the chick otocyst. We saw two contrasting consequences, depending on the time and site of gene misexpression: (1)inhibition of hair-cell differentiation within a sensory patch; and (2)induction of ectopic sensory patches. We infer that Notch signalling has at least two functions during inner ear development. Initially, Notch activity can drive cells to adopt a prosensory character, defining future sensory patches. Subsequently, Notch signalling within each such patch mediates lateral inhibition, restricting the proportion of cells that differentiate as hair cells so as to generate the fine-grained mixture of hair cells and supporting cells.
Collapse
MESH Headings
- Animals
- Body Patterning
- Calcium-Binding Proteins
- Cell Differentiation
- Chick Embryo
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/embryology
- Hair Cells, Auditory/metabolism
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Membrane Proteins
- Organ of Corti
- Plasmids/genetics
- Proteins/metabolism
- Receptor, Notch1
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Serrate-Jagged Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Nicolas Daudet
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
20
|
Beisel KW, Wang-Lundberg Y, Maklad A, Fritzsch B. Development and evolution of the vestibular sensory apparatus of the mammalian ear. J Vestib Res 2005; 15:225-41. [PMID: 16614470 PMCID: PMC3901525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Herein, we will review molecular aspects of vestibular ear development and present them in the context of evolutionary changes and hair cell regeneration. Several genes guide the development of anterior and posterior canals. Although some of these genes are also important for horizontal canal development, this canal strongly depends on a single gene, Otx1. Otx1 also governs the segregation of saccule and utricle. Several genes are essential for otoconia and cupula formation, but protein interactions necessary to form and maintain otoconia or a cupula are not yet understood. Nerve fiber guidance to specific vestibular end-organs is predominantly mediated by diffusible neurotrophic factors that work even in the absence of differentiated hair cells. Neurotrophins, in particular Bdnf, are the most crucial attractive factor released by hair cells. If Bdnf is misexpressed, fibers can be redirected away from hair cells. Hair cell differentiation is mediated by Atoh1. However, Atoh1 may not initiate hair cell precursor formation. Resolving the role of Atoh1 in postmitotic hair cell precursors is crucial for future attempts in hair cell regeneration. Additional analyses are needed before gene therapy can help regenerate hair cells, restore otoconia, and reconnect sensory epithelia to the brain.
Collapse
Affiliation(s)
- Kirk W. Beisel
- Creighton University, Omaha, NE and BTNRH, Omaha, NE, USA
| | | | - Adel Maklad
- Creighton University, Omaha, NE and BTNRH, Omaha, NE, USA
| | - Bernd Fritzsch
- Creighton University, Omaha, NE and BTNRH, Omaha, NE, USA
| |
Collapse
|
21
|
Fritzsch B, Beisel KW. Keeping sensory cells and evolving neurons to connect them to the brain: molecular conservation and novelties in vertebrate ear development. BRAIN, BEHAVIOR AND EVOLUTION 2004; 64:182-97. [PMID: 15353909 PMCID: PMC1242196 DOI: 10.1159/000079746] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The evolution of the mechanosensory cellular module and the molecular details that regulate its development has included morphological modifications of these cells as well as the formation of larger assemblies of mechanosensory cell aggregates among metazoans. This has resulted in a wide diversity of mechanosensory organs. The wide morphological diversity of organs, including the associated morphological modifications of the mechanosensory cells, suggests parallel evolution of these modules and their associated organs. This morphological diversity is in stark contrast to the molecular conservation of developmental modules across phyla. These molecular data suggest that the evolution of mechanosensory transduction might have preceded that of distinct cellular differentiation. However, once a molecular network governing development of specialized cells involved in mechanosensory transduction evolved, that molecular network was preserved across phyla. Present data suggest that at least the common ancestor of triploblastic organisms, perhaps even the common diploblastic ancestor of bilaterian metazoans, had molecular and cellular specializations for mechanosensation. It is argued that the evolution of multicellular organs dedicated to specific aspects of mechanosensation, such as gravity and sound perception, are evolutionary transformations that build on this conserved molecular network for cellular specialization, but reflect distinct morphological solutions. We propose that the sensory neurons, connecting the craniate ear with the brain, are a derived feature of craniates, and possibly chordates, that came about through diversification of the lineage forming mechanosensory cells during development. This evolutionarily late event suggests a heterochronic shift, so that sensory neurons develop in mammals prior to mechanosensory hair cells. However, sensory neuron development is connected to hair cell development, likely in a clonal relationship. The theme of cellular conservation is reiterated in two examples of chordate otic diversification: the evolution of the horizontal canal system and the evolution of the basilar papilla/cochlea. It is suggested that here again, cellular multiplication and formation of a special epithelium predates the functional transformation to an 'organ' system for horizontal angular acceleration and sound pressure reception, respectively. Overall, evolution of the vertebrate ear needs to be understood as an interplay between and utilization of two gene networks or modules. One is at the level of the molecularly and developmentally conserved mechanosensory cellular module. The other is an increased complexity in the morphology of both adult mechanosensory cells and organs by the addition of end-stage and novel features and associated gene networks to detect specific aspects of mechanosensory stimuli.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA.
| | | |
Collapse
|
22
|
RADDE-GALLWITZ KRISTEN, PAN LING, GAN LIN, LIN XI, SEGIL NEIL, CHEN PING. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 2004; 477:412-21. [PMID: 15329890 PMCID: PMC4158841 DOI: 10.1002/cne.20257] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several basic helix-loop-helix (bHLH) genes have been shown to be essential for the generation of the auditory sensory hair cells or the spiral ganglion (SG) neurons that innervate the hair cells in the cochlea, as well as a variety of cell types in the other nervous systems. However, it remains elusive what cellular context-dependent mechanisms confer the inner ear-specific neuronal or sensory competency/identities. We explored the possibility that one of the mechanisms responsible for generating cellular diversity in the nervous system through cooperative action of bHLH and LIM-homeodomain (LIM-HD) transcriptional factors might also contribute to the inner ear-specific sensory and/or neuronal competency. Here, we show that Islet1 (Isl1), a LIM-HD protein, is expressed early in the otocyst in the region that gives rise to both the auditory sensory organ, the organ of Corti, and SG neurons. Subsequently, the expression of Isl1 is maintained in SG neurons but is transitory in the sensory lineage. At embryonic day 12 (E12) in mice, the expression of Isl1 marks distinctively the ventral portion of the nascent cochlear epithelium encompassing the primordial organ of Corti. At E13, Isl1 is maintained at relatively high levels in the sensory primordium while down-regulated in the other regions of the cochlear duct. As the sensory epithelium starts to differentiate, it is down-regulated in the entire cochlear epithelium. The expression of Isl1 in the developing inner ear reveals an early and likely a common step in the development of both sensory and neuronal lineages of the inner ear, and suggests its potential role in the inner ear-specific sensory and neuronal cell development.
Collapse
Affiliation(s)
| | - LING PAN
- Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642
| | - LIN GAN
- Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642
| | - XI LIN
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - NEIL SEGIL
- Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057
| | - PING CHEN
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057
- Correspondence to: Ping Chen, Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA.
| |
Collapse
|
23
|
The Evolution of Central Pathways and Their Neural Processing Patterns. EVOLUTION OF THE VERTEBRATE AUDITORY SYSTEM 2004. [DOI: 10.1007/978-1-4419-8957-4_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|