1
|
Platonova AA, Aleksandrova PV, Alekseeva AI, Kudryavtseva SP, Zotov AK, Zaytsev KI, Dolganov KB, Reshetov IV, Kurlov VN, Dolganova IN. Feasibility of Monitoring Tissue Properties During Microcirculation Disorder Using a Compact Fiber-Based Probe With Sapphire Tip. JOURNAL OF BIOPHOTONICS 2024; 17:e202400368. [PMID: 39354878 DOI: 10.1002/jbio.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.
Collapse
Affiliation(s)
- Alina A Platonova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Polina V Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Anna I Alekseeva
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Sophya P Kudryavtseva
- Sechenov First Moscow State Medical University, N.V. Sklifosovskiy Institute of Clinical Medicine, Moscow, Russia
| | - Arsen K Zotov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill B Dolganov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Igor V Reshetov
- Sechenov First Moscow State Medical University, Institute for Cluster Oncology, Moscow, Russia
| | - Vladimir N Kurlov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Irina N Dolganova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
2
|
Kumar A, Dige M, Niranjan SK, Ahlawat S, Arora R, Kour A, Vijh RK. Whole genome resequencing revealed genomic variants and functional pathways related to adaptation in Indian yak populations. Anim Biotechnol 2024; 35:2282723. [PMID: 38006247 DOI: 10.1080/10495398.2023.2282723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The present study aims to identify genomic variants through a whole genome sequencing (WGS) approach and uncover biological pathways associated with adaptation and fitness in Indian yak populations. A total of 30 samples (10 from each population) were included from Arunachali, Himachali and Ladakhi yak populations. WGS analysis revealed a total of 32171644, 27260825, and 32632460 SNPs and 4865254, 4429941, and 4847513 Indels in the Arunachali, Himachali, and Ladakhi yaks, respectively. Genes such as RYR2, SYNE2, BOLA, HF1, and the novel transcript ENSBGRG00000011079 were found to have the maximum number of high impact variants in all three yak populations, and might play a major role in local adaptation. Functional enrichment analysis of genes harboring high impact SNPs revealed overrepresented pathways related to response to stress, immune system regulation, and high-altitude adaptation. This study provides comprehensive information about genomic variants and their annotation in Indian yak populations, thus would serve as a data resource for researchers working on the yaks. Furthermore, it could be well exploited for better yak conservation strategies by estimating population genetics parameters viz., effective population size, inbreeding, and observed and expected heterozygosity.
Collapse
Affiliation(s)
- Amod Kumar
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Mahesh Dige
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Saket Kumar Niranjan
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Sonika Ahlawat
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Reena Arora
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | - Aneet Kour
- ICAR-National Research Centre on Yak, Dirang, India
| | - Ramesh Kumar Vijh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| |
Collapse
|
3
|
Zhang M, Dai G, Zhang Y, Lu P, Wang H, Li Y, Rui Y. Enhancing osteogenic differentiation of diabetic tendon stem/progenitor cells through hyperoxia: Unveiling ROS/HIF-1α signalling axis. J Cell Mol Med 2024; 28:e70127. [PMID: 39467998 PMCID: PMC11518821 DOI: 10.1111/jcmm.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic calcific tendinopathy is the leading cause of chronic pain, mobility restriction, and tendon rupture in patients with diabetes. Tendon stem/progenitor cells (TSPCs) have been implicated in the development of diabetic calcified tendinopathy, but the molecular mechanisms remain unclear. This study found that diabetic tendons have a hyperoxic environment, characterized by increased oxygen delivery channels and carriers. In hyperoxic environment, TSPCs showed enhanced osteogenic differentiation and increased levels of reactive oxygen species (ROS). Additionally, hypoxia-inducible factor-1a (HIF-1a), a protein involved in regulating cellular responses to hyperoxia, was decreased in TSPCs by the ubiquitin-proteasome system. By intervening with antioxidant N-acetyl-L-cysteine (NAC) and overexpressing HIF-1a, we discovered that blocking the ROS/HIF-1a signalling axis significantly inhibited the osteogenic differentiation ability of TSPCs. Animal experiments further confirmed that hyperoxic environment could cause calcification in the Achilles tendon tissue of rats, while NAC intervention prevented calcification. These findings demonstrate that hyperoxia in diabetic tendons promotes osteogenic differentiation of TSPCs through the ROS/HIF-1a signalling axis. This study provides a new theoretical basis and research target for preventing and treating diabetic calcified tendinopathy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Guan‐Chun Dai
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Yuan‐Wei Zhang
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Pan‐Pan Lu
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Hao Wang
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Ying‐Juan Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| | - Yun‐Feng Rui
- Department of Orthopedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- School of MedicineSoutheast UniversityNanjingPeople's Republic of China
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingChina
- Trauma Center, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingPeople's Republic of China
| |
Collapse
|
4
|
Acosta-Iborra B, Gil-Acero AI, Sanz-Gómez M, Berrouayel Y, Puente-Santamaría L, Alieva M, del Peso L, Jiménez B. Bhlhe40 Regulates Proliferation and Angiogenesis in Mouse Embryoid Bodies under Hypoxia. Int J Mol Sci 2024; 25:7669. [PMID: 39062912 PMCID: PMC11277088 DOI: 10.3390/ijms25147669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Knowledge of the molecular mechanisms that underlie the regulation of major adaptive responses to an unbalanced oxygen tension is central to understanding tissue homeostasis and disease. Hypoxia-inducible transcription factors (HIFs) coordinate changes in the transcriptome that control these adaptive responses. Here, we focused on the functional role of the transcriptional repressor basic-helix-loop-helix family member e40 (Bhlhe40), which we previously identified in a meta-analysis as one of the most consistently upregulated genes in response to hypoxia across various cell types. We investigated the role of Bhlhe40 in controlling proliferation and angiogenesis using a gene editing strategy in mouse embryonic stem cells (mESCs) that we differentiated in embryoid bodies (EBs). We observed that hypoxia-induced Bhlhe40 expression was compatible with the rapid proliferation of pluripotent mESCs under low oxygen tension. However, in EBs, hypoxia triggered a Bhlhe40-dependent cell cycle arrest in most progenitor cells and endothelial cells within vascular structures. Furthermore, Bhlhe40 knockout increased the basal vascularization of the EBs in normoxia and exacerbated the hypoxia-induced vascularization, supporting a novel role for Bhlhe40 as a negative regulator of blood vessel formation. Our findings implicate Bhlhe40 in mediating key functional adaptive responses to hypoxia, such as proliferation arrest and angiogenesis.
Collapse
Affiliation(s)
- Bárbara Acosta-Iborra
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ana Isabel Gil-Acero
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Marta Sanz-Gómez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Yosra Berrouayel
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- Biocomputing Unit, Instituto Aragonés de Ciencias de la Salud, San Juan Bosco, 50009 Zaragoza, Spain
| | - Maria Alieva
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Luis del Peso
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| | - Benilde Jiménez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| |
Collapse
|
5
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
6
|
Xia Y, Duan S, Han C, Jing C, Xiao Z, Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front Oncol 2022; 12:1089446. [PMID: 36591450 PMCID: PMC9798000 DOI: 10.3389/fonc.2022.1089446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is an important component of tumor microenvironment and plays a pivotal role in cancer progression. With the distinctive physiochemical properties and biological effects, various nanoparticles targeting hypoxia had raised great interest in cancer imaging, drug delivery, and gene therapy during the last decade. In the current review, we provided a comprehensive view on the latest progress of novel stimuli-responsive nanomaterials targeting hypoxia-tumor microenvironment (TME), and their applications in cancer diagnosis and therapy. Future prospect and challenges of nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yifei Xia
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shao Duan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaozhe Han
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengwei Jing
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Xiao
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| | - Chao Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| |
Collapse
|
7
|
Ahmed HH, Aglan HA, Beherei HH, Mabrouk M, Mahmoud NS. The promising role of hypoxia-resistant insulin-producing cells in ameliorating diabetes mellitus in vivo. Future Sci OA 2022; 8:FSO811. [PMID: 36248064 PMCID: PMC9540411 DOI: 10.2144/fsoa-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
AIM This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against diabetes in vivo. MATERIALS & METHODS Mesenchymal stem cells (MSCs) differentiation into IPCs in the presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential. RESULTS MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue architecture. CONCLUSION The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs that could be an inspirational strategy for curing diabetes.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
8
|
Simulated hypoxia modulates P2X7 receptor function in mice peritoneal macrophages. Int Immunopharmacol 2022; 110:109062. [PMID: 35863257 DOI: 10.1016/j.intimp.2022.109062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
The inflammatory focus is similar to the tumor microenvironment, which contains a complex milieu with immune cells and macrophages. The accumulation of cells promotes local pH and O2 tension decline (hypoxia). Local O2 tension decline activates hypoxia-inducible factor α and β (HIF-1α and HIF-1β adenosine triphosphate (ATP) release. ATP activates the P2X7 receptor and modulates ischemic/hypoxic conditions. Similarly, α1α may regulate P2X7 receptor expression in the hypoxic microenvironment. Therefore, we investigated P2X7 receptor function under simulated hypoxic conditions by pretreating peritoneal macrophages with mitochondrial electron transport chain complex inhibitors (simulated hypoxia). Treatment with mitochondrial electron transport chain complex inhibitors until three hours of exposure did not cause LDH release. Additionally, mitochondrial electron transport chain complex inhibitors increased ATP-induced P2X7 receptor function without being able to directly activate this receptor. Other P2 receptor subtypes do not appear to participate in this mechanism. Simulated hypoxia augmented HIF-1α levels and suppressed HIF-1α and P2X7 receptor antagonists. Similarly, simulated hypoxia increased ATP-induced dye uptake and inhibited HIF-1α antagonists. Another factor activated in simulated hypoxic conditions was the intracellular P2X7 receptor regulator PIP2. Treatment with HIF-1α agonists increased PIP2 levels and reversed the effects of HIF-1α and P2X7 receptor antagonists. Additionally, the improved ATP-induced dye uptake caused by the simulated hypoxia stimulus was inhibited by P2X7 receptor and PIP2 antagonists. Therefore, simulated hypoxia may augment P2X7 receptor activity for a pathway dependent on HIF-1α and PIP2 activation.
Collapse
|
9
|
Garcés-Lázaro I, Kotzur R, Cerwenka A, Mandelboim O. NK Cells Under Hypoxia: The Two Faces of Vascularization in Tumor and Pregnancy. Front Immunol 2022; 13:924775. [PMID: 35769460 PMCID: PMC9234265 DOI: 10.3389/fimmu.2022.924775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental conditions greatly shape the phenotype and function of immune cells. Specifically, hypoxic conditions that exist within tissues and organs have been reported to affect both the adaptive and the innate immune system. Natural killer (NK) cells belong to the innate immune system. They are among the first immune cells responding to infections and are involved in tumor surveillance. NK cells produce cytokines that shape other innate and adaptive immune cells, and they produce cytolytic molecules leading to target cell killing. Therefore, they are not only involved in steady state tissue homeostasis, but also in pathogen and tumor clearance. Hence, understanding the role of NK cells in pathological and physiological immune biology is an emerging field. To date, it remains incompletely understood how the tissue microenvironment shapes NK cell phenotype and function. In particular, the impact of low oxygen concentrations in tissues on NK cell reactivity has not been systematically dissected. Here, we present a comprehensive review focusing on two highly compelling hypoxic tissue environments, the tumor microenvironment (pathological) and the decidua (physiological) and compare their impact on NK cell reactivity.
Collapse
Affiliation(s)
- Irene Garcés-Lázaro
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rebecca Kotzur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Adelheid Cerwenka, ; Ofer Mandelboim,
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- *Correspondence: Adelheid Cerwenka, ; Ofer Mandelboim,
| |
Collapse
|
10
|
Chang WL, Su YH. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo. Dev Biol 2022; 484:63-74. [DOI: 10.1016/j.ydbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
|
11
|
Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021; 9:biomedicines9121942. [PMID: 34944758 PMCID: PMC8698563 DOI: 10.3390/biomedicines9121942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.
Collapse
|
12
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
13
|
Liu W, Yuan Y, Liu D. Extracellular Vesicles from Adipose-Derived Stem Cells Promote Diabetic Wound Healing via the PI3K-AKT-mTOR-HIF-1α Signaling Pathway. Tissue Eng Regen Med 2021; 18:1035-1044. [PMID: 34542841 PMCID: PMC8599548 DOI: 10.1007/s13770-021-00383-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Impaired potential of hypoxia-mediated angiogenesis lead poor healing of diabetic wounds. Previous studies have shown that extracellular vesicles from adipose derived stem cells (ADSC-EVs) accelerate wound healing with unelucidated mechanism. However, it is not yet clear about the underlying mechanism of ADSC-EVs in regulating the hypoxia-related PI3K/AKT/mTOR signaling pathway of vascular endothelial cells in diabetic wounds. Therefore, in this study, human derived ADSC-EVs (hADSC-EVs) isolated from adipose tissue were co-cultured with advanced glycosylation end product (AGE) treated human umbilical vein endothelial cells (HUVECs) in vitro and local injected into the wounds of diabetic rats. METHODS In vitro, the therapeutic potential of hADSC-EVs on AGE-treated HUVECs was evaluated by cell counting kit-8, scratching, and tube formation assay. Subsequently, the effects of hADSC-EVs on the PI3K/AKT/mTOR/HIF-1α signaling pathway were also assayed by qRT-PCR and western blot. In vivo, the effect of hADSC-EVs on diabetic wound healing in rats were also assayed by closure kinetics, Masson staining and HIF-1α-CD31 immunofluorescence. RESULTS hADSC-EVs were spherical in shape with an average particle size of 198.1 ± 91.5 nm, and were positive for CD63, CD9 and TSG101. hADSC-EVs promoted the expression of PI3K-AKT-mTOR-HIF-1α signaling pathway of AGEs treated HUVECs with improved the potential of proliferation, migration and tube formation, and improve the healing and angiogenesis of diabetic wound in rats. However, the effect of hADSC-EVs described above can be blocked by PI3K-AKT inhibitor both in vitro and vivo. CONCLUSION Our findings indicated that hADSC-EVs accolated the healing of diabetic wounds by promoting HIF-1α-mediated angiogenesis in the PI3K-AKT-mTOR depend manner.
Collapse
Affiliation(s)
- Wenjian Liu
- Institute of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- Department of Burns and Plastics, JiangXi Provincial Corps Hospital of Chinese People's Armed Police Forces, Nanchang, 330001, People's Republic of China
| | - Yu Yuan
- Institute of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- First Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Dewu Liu
- Institute of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
14
|
Marzo T, La Mendola D. The Effects on Angiogenesis of Relevant Inorganic Chemotherapeutics. Curr Top Med Chem 2021; 21:73-86. [PMID: 33243124 DOI: 10.2174/1568026620666201126163436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a key process allowing the formation of blood vessels. It is crucial for all the tissues and organs, ensuring their function and growth. Angiogenesis is finely controlled by several mechanisms involving complex interactions between pro- or antiangiogenic factors, and an imbalance in this control chain may result in pathological conditions. Metals as copper, zinc and iron cover an essential role in regulating angiogenesis, thus therapies having physiological metals as target have been proposed. In addition, some complexes of heavier metal ions (e.g., Pt, Au, Ru) are currently used as established or experimental anticancer agents targeting genomic or non-genomic targets. These molecules may affect the angiogenic mechanisms determining different effects that have been only poorly and non-systematically investigated so far. Accordingly, in this review article, we aim to recapitulate the impact on the angiogenic process of some reference anticancer drugs, and how it is connected to the overall pharmacological effects. In addition, we highlight how the activity of these drugs can be related to the role of biological essential metal ions. Overall, this may allow a deeper description and understanding of the antineoplastic activity of both approved or experimental metal complexes, providing important insights for the synthesis of new inorganic drugs able to overcome resistance and recurrence phenomena.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| |
Collapse
|
15
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
16
|
Chaudhary A, Bag S, Banerjee P, Chatterjee J. Wound healing efficacy of Jamun honey in diabetic mice model through reepithelialization, collagen deposition and angiogenesis. J Tradit Complement Med 2020; 10:529-543. [PMID: 33134129 PMCID: PMC7588338 DOI: 10.1016/j.jtcme.2019.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential.
Collapse
Key Words
- Angiogenesis
- DAB, 3,3′-Diaminobenzidine
- DBM, Diabetic mice
- DMEM, Dulbecco’s Modified Eagle Medium
- Diabetic wound
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial–mesenchymal transition
- H&E, Hematoxylin and Eosin
- HIF 1 α, Hypoxia-inducible factor 1 α
- IHC, Immuno-histochemistry
- JH, Jamun honey
- Jamun honey
- MH, Manuka honey
- PI, Povidine Iodine
- Reepithelialization
- STZ, Streptozotocin
- VEGF, Vascular endothelial growth factor
- VG, van Gieson’s
- Wound closure
Collapse
Affiliation(s)
- Amrita Chaudhary
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Swarnendu Bag
- Histopathology Lab, Hospital Phase 2, Tata Medical Center, New Town, Kolkata, West Bengal, 700160, India
| | - Provas Banerjee
- Banerjees’ Biomedical Research Foundation, Birbhum, Sainthia, 731234, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
17
|
Zhang Y, Hu Y, Wang X, Jiang Q, Zhao H, Wang J, Ju Z, Yang L, Gao Y, Wei X, Bai J, Zhou Y, Huang J. Population Structure, and Selection Signatures Underlying High-Altitude Adaptation Inferred From Genome-Wide Copy Number Variations in Chinese Indigenous Cattle. Front Genet 2020; 10:1404. [PMID: 32117428 PMCID: PMC7033542 DOI: 10.3389/fgene.2019.01404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Copy number variations (CNVs) have been demonstrated as crucial substrates for evolution, adaptation and breed formation. Chinese indigenous cattle breeds exhibit a broad geographical distribution and diverse environmental adaptability. Here, we analyzed the population structure and adaptation to high altitude of Chinese indigenous cattle based on genome-wide CNVs derived from the high-density BovineHD SNP array. We successfully detected the genome-wide CNVs of 318 individuals from 24 Chinese indigenous cattle breeds and 37 yaks as outgroups. A total of 5,818 autosomal CNV regions (683 bp-4,477,860 bp in size), covering ~14.34% of the bovine genome (UMD3.1), were identified, showing abundant CNV resources. Neighbor-joining clustering, principal component analysis (PCA), and population admixture analysis based on these CNVs support that most Chinese cattle breeds are hybrids of Bos taurus taurus (hereinafter to be referred as Bos taurus) and Bos taurus indicus (Bos indicus). The distribution patterns of the CNVs could to some extent be related to the geographical backgrounds of the habitat of the breeds, and admixture among cattle breeds from different districts. We analyzed the selective signatures of CNVs positively involved in high-altitude adaptation using pairwise Fst analysis within breeds with a strong Bos taurus background (taurine-type breeds) and within Bos taurus×Bos indicus hybrids, respectively. CNV-overlapping genes with strong selection signatures (at top 0.5% of Fst value), including LETM1 (Fst = 0.490), TXNRD2 (Fst = 0.440), and STUB1 (Fst = 0.420) within taurine-type breeds, and NOXA1 (Fst = 0.233), RUVBL1 (Fst = 0.222), and SLC4A3 (Fst=0.154) within hybrids, were potentially involved in the adaptation to hypoxia. Thus, we provide a new profile of population structure from the CNV aspects of Chinese indigenous cattle and new insights into high-altitude adaptation in cattle.
Collapse
Affiliation(s)
- Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaochao Wei
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiachen Bai
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,Engineering Center of Animal Breeding and Reproduction, Jinan, China
| |
Collapse
|
18
|
Potential molecular mechanisms underlying the effect of arsenic on angiogenesis. Arch Pharm Res 2019; 42:962-976. [PMID: 31701373 DOI: 10.1007/s12272-019-01190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Arsenic is a potent chemotherapeutic drug that is applied as a treatment for cancer; it exerts its functions through multiple pathways, including angiogenesis inhibition. As angiogenesis is a critical component of the progression of many diseases, arsenic is a feasible treatment option for patients with other angiogenic diseases, including rheumatoid arthritis and psoriasis, among others. However, arsenic is also a well-known carcinogen, demonstrating a pro-angiogenesis effect. This review will focus on the dual effects of arsenic on neovascularization and the relevant mechanisms underlying these effects, aiming to provide a rational understanding of arsenic treatment. In particular, we expect to provide a comprehensive overview of the current knowledge of the mechanisms by which arsenic influences angiogenesis.
Collapse
|
19
|
Thrivikraman G, Athirasala A, Gordon R, Zhang L, Bergan R, Keene DR, Jones JM, Xie H, Chen Z, Tao J, Wingender B, Gower L, Ferracane JL, Bertassoni LE. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat Commun 2019; 10:3520. [PMID: 31388010 PMCID: PMC6684598 DOI: 10.1038/s41467-019-11455-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/16/2019] [Indexed: 11/12/2022] Open
Abstract
Bone tissue, by definition, is an organic–inorganic nanocomposite, where metabolically active cells are embedded within a matrix that is heavily calcified on the nanoscale. Currently, there are no strategies that replicate these definitive characteristics of bone tissue. Here we describe a biomimetic approach where a supersaturated calcium and phosphate medium is used in combination with a non-collagenous protein analog to direct the deposition of nanoscale apatite, both in the intra- and extrafibrillar spaces of collagen embedded with osteoprogenitor, vascular, and neural cells. This process enables engineering of bone models replicating the key hallmarks of the bone cellular and extracellular microenvironment, including its protein-guided biomineralization, nanostructure, vasculature, innervation, inherent osteoinductive properties (without exogenous supplements), and cell-homing effects on bone-targeting diseases, such as prostate cancer. Ultimately, this approach enables fabrication of bone-like tissue models with high levels of biomimicry that may have broad implications for disease modeling, drug discovery, and regenerative engineering. Bone tissue is a complex organic-inorganic nanocomposite and strategies that replicate the characteristics of bone tissue are scarce. Here the authors demonstrate the deposition of nanoscale apatite in collagen embedded with mesenchymal, vascular and nerve cells, using a protein-guided biomineralization approach.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Limin Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | | | - James M Jones
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hua Xie
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Zhiqiang Chen
- Center for Electron Microscopy and Nanofabrication, Portland State University, Portland, OR, 97201, USA
| | - Jinhui Tao
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Brian Wingender
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32603, USA
| | - Laurie Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32603, USA
| | - Jack L Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97201, USA. .,Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA. .,Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA. .,Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
Kang JI, Park KM, Park KD. Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Ng HY, Lee KXA, Kuo CN, Shen YF. Bioprinting of artificial blood vessels. Int J Bioprint 2018; 4:140. [PMID: 33102918 PMCID: PMC7582013 DOI: 10.18063/ijb.v4i2.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Vascular networks have an important role to play in transporting nutrients, oxygen, metabolic wastes and maintenance of homeostasis. Bioprinting is a promising technology as it is able to fabricate complex, specific multi-cellular constructs with precision. In addition, current technology allows precise depositions of individual cells, growth factors and biochemical signals to enhance vascular growth. Fabrication of vascularized constructs has remained as a main challenge till date but it is deemed as an important stepping stone to bring organ engineering to a higher level. However, with the ever advancing bioprinting technology and knowledge of biomaterials, it is expected that bioprinting can be a viable solution for this problem. This article presents an overview of the biofabrication of vascular and vascularized constructs, the different techniques used in vascular engineering such as extrusion-based, droplet-based and laser-based bioprinting techniques, and the future prospects of bioprinting of artificial blood vessels.
Collapse
Affiliation(s)
- Hooi Yee Ng
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Kai-Xing Alvin Lee
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Che-Nan Kuo
- 3D Printing Medical Research Institute, Asia University, Taichung City, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Yu-Fang Shen
- 3D Printing Medical Research Institute, Asia University, Taichung City, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| |
Collapse
|
22
|
Wang CC, Yuan JR, Wang CF, Yang N, Chen J, Liu D, Song J, Feng L, Tan XB, Jia XB. Anti-inflammatory Effects of Phyllanthus emblica L on Benzopyrene-Induced Precancerous Lung Lesion by Regulating the IL-1β/miR-101/Lin28B Signaling Pathway. Integr Cancer Ther 2017; 16:505-515. [PMID: 27562754 PMCID: PMC5739133 DOI: 10.1177/1534735416659358] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/25/2016] [Accepted: 06/03/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Phyllanthus emblica L (PEL), a well-known medical plant, has been used in Asian countries for a long time. Increasing evidence suggests that it can prevent the tumorigenesis of cancer associated with nonresolving inflammation. However, the possible anti-inflammatory mechanism responsible for preventing tumorigenesis of precancerous lung lesions is not well elucidated. MATERIALS AND METHODS Male A/J mice were randomly divided into 5 groups with 10 mice in each group: (1) blank group (saline), (2) benzo(a)pyrene [B(a)P] group, (3) and (4) B(a)P + PEL (5 g/kg/d, 10 g/kg/d, administered by gavage), (5) B(a)P + celecoxib (30 mg/kg/d, administered by gavage). Nodes on the lung surface were observed and calculated. The levels of macrophage inflammatory protein (MIP-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA) kits. Cyclo-oxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-α), IL-1β, miR-101, and Lin28B protein levels were evaluated by immunohistochemistry and Western blotting. RESULTS PEL extract treatment significantly reduced the number of nodes on the lung surface and attenuated B(a)P-induced levels of proinflammatory cytokines MIP-2, TNF-α, IL-6, and IL-1β in lung tissue. The protein expressions of COX-2 and HIF-α were significantly decreased by the treatment of PEL. In addition, both PEL extract and celecoxib markedly upregulate the expression of miR-101 while downregulating IL-1β and Lin28B levels. CONCLUSION Our study indicated that treatment with PEL extract can not only protect the lung from inflammatory injury but effectively prevent precancerous lung lesions through regulating the IL-1β/miR-i101/Lin28B signaling pathway.
Collapse
Affiliation(s)
- Cheng-cheng Wang
- Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Jia-rui Yuan
- Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Chun-fei Wang
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
- Anhui University of Chinese Medicine, Hefei, China
| | - Nan Yang
- Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Juan Chen
- Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Dan Liu
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Jie Song
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Liang Feng
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
- Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Xiao-bin Tan
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
- Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
| | - Xiao-bin Jia
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu Nanjing, P R China
- Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu Nanjing, P R China
| |
Collapse
|
23
|
Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 2017; 629:16-28. [DOI: 10.1016/j.gene.2017.07.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
|
24
|
O 2-controllable hydrogels for studying cellular responses to hypoxic gradients in three dimensions in vitro and in vivo. Nat Protoc 2017; 12:1620-1638. [PMID: 28726849 DOI: 10.1038/nprot.2017.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxygen (O2) acts as a potent upstream regulator of cell function. In both physiological and pathophysiological microenvironments, the O2 concentration is not uniformly distributed but instead follows a gradient that depends on distance from oxygen-carrying blood vessels. Such gradients have a particularly important role in development, tissue regeneration, and tumor growth. In this protocol, we describe how to use our previously reported gelatin-based O2-controllable hydrogels that can provide hypoxic microenvironments in vitro. The hydrogel polymeric network is formed via a laccase-mediated cross-linking reaction. In this reaction, laccase catalyzes diferulic acid (diFA) formation to form hydrogels with an O2-consuming reaction. Cells, such as cancer or endothelial cells, as well as tumor/tissue grafts, can be encapsulated in the hydrogels during hydrogel formation and then analyzed for cellular responses to 3D hypoxic gradients and to elucidate the underlying mechanisms governing these responses. Importantly, oxygen gradients can be precisely controlled in standard cell/tissue culture conditions and in vivo. This platform has been applied to study vascular morphogenesis in response to hypoxia and to understand how oxygen gradients mediate cancer cell behavior. Herein, we describe the means to validate the assay from polymer synthesis and characterization-which take 1-2 weeks and include verification of ferulic acid (FA) conjugation, rheological measurements, and O2 monitoring-to the study of cellular responses and use in rodent models. Time courses for biological experiments using this hydrogel are variable, and thus they may range from hours to weeks, depending on the application and user end goal.
Collapse
|
25
|
Kim D, Dai J, Park YH, Fai LY, Wang L, Pratheeshkumar P, Son YO, Kondo K, Xu M, Luo J, Shi X, Zhang Z. Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium. J Biol Chem 2016; 291:16271-81. [PMID: 27226640 PMCID: PMC4965575 DOI: 10.1074/jbc.m116.715797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Indexed: 01/25/2023] Open
Abstract
Hexavalent chromium (Cr(VI))-containing compounds are well established environmental carcinogens. Most mechanistic investigations of Cr(VI)-induced carcinogenesis focus on oxidative stress and various cellular responses, leading to malignant cell transformation or the first stage of metal-induced carcinogenesis. The development of malignantly transformed cells into tumors that require angiogenesis is the second stage. This study focuses on the second stage, in particular, the role of EGF receptor (EGFR) signaling in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. Our preliminary studies have shown that EGFR is constitutively activated in Cr(VI)-transformed cells, in lung tissue from Cr(VI)-exposed animals, and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. Using in vitro and in vivo models, the present study has investigated the role of EGFR in angiogenesis of Cr(VI)-transformed cells. The results show that Cr(VI)-transformed cells are angiogenic. Hypoxia-inducible factor-1α, pro-angiogenic protein matrix metalloproteinase 1, and VEGF are all highly expressed in Cr(VI)-transformed cells, in lung tissue from animals exposed to Cr(VI), and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. p38 MAPK is also activated in Cr(VI)-transformed cells and in human lung tumor tissue. Inhibition of EGFR reduces p38 MAPK, resulting in decreased expression of hypoxia-inducible factor-1α, metalloproteinase 1, and VEGF, leading to suppressions of angiogenesis and tumorigenesis. Overall, the present study has demonstrated that EGFR plays an important role in angiogenesis and tumorigenesis of Cr(VI)-transformed cells.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromium/toxicity
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Occupational Exposure/adverse effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Donghern Kim
- From the Department of Toxicology and Cancer Biology
| | - Jin Dai
- From the Department of Toxicology and Cancer Biology
| | - Youn-Hee Park
- From the Department of Toxicology and Cancer Biology
| | | | - Lei Wang
- the Center for Research on Environmental Disease, and
| | | | - Young-Ok Son
- the Center for Research on Environmental Disease, and
| | - Kazuya Kondo
- the Department of Oncological Medical Services, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8509, Japan
| | - Mei Xu
- the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jia Luo
- the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 and
| | - Xianglin Shi
- the Center for Research on Environmental Disease, and
| | - Zhuo Zhang
- From the Department of Toxicology and Cancer Biology,
| |
Collapse
|
26
|
p-Coumaric acid, a novel and effective biomarker for quantifying hypoxic stress by HILIC-ESI-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:6-13. [PMID: 27010352 DOI: 10.1016/j.jchromb.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
In this study, we report p-coumaric acid as novel and effective response marker for indirectly measuring the levels of hypoxia in normal primary bronchial epithelial cells. We developed a simple and rapid technique based on hydrophilic interaction chromatography-electrospray ionization-mass spectrometry (HILIC-ESI-MS). During 168h of hypoxia without induction of reactive oxygen species (ROS), an almost linear increase of p-coumaric acid levels was observed. We interpret the increasing p-coumaric acid concentrations during hypoxia as a result of cell damage, triggered by reduced co-enzyme Q10 levels, because the oxidative cascade was not able to supply sufficient energy. The HILIC-ESI-MS assay within p-coumaric acid exhibited a linear dynamic range from 60 to 610 ng/μL with correlation coefficient of 0.9998. The precision of the assay was ≤15% RSD and method accuracies between 97 and 108%.
Collapse
|
27
|
Zeng Z, Huang WD, Gao Q, Su ML, Yang YF, Liu ZC, Zhu BH. Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway. Int J Mol Med 2015; 36:685-97. [PMID: 26202335 PMCID: PMC4533782 DOI: 10.3892/ijmm.2015.2292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/24/2015] [Indexed: 12/26/2022] Open
Abstract
Arnebin-1, a naphthoquinone derivative, plays a crucial role in the wound healing properties of Zicao (a traditional wound healing herbal medicine). It has been noted that Arnebin-1, in conjunction with vascular endothelial growth factor (VEGF), exerts a synergistic pro-angiogenic effect on human umbilical vein endothelial cells (HUVECs) and accelerates the healing process of diabetic wounds. However, the mechanisms responsible for the pro-angiogenic effect of arnebin-1 on HUVECs and its healing effect on diabetic wounds have not yet been fully elucidated. In this study, in an aim to elucidate these mechanisms of action of arnebin-1, we investigated the effects of arnebin-1 on the VEGF receptor 2 (VEGFR2) and the phosphoinositide 3-kinase (PI3K)-dependent signaling pathways in HUVECs treated with VEGF by western blot analysis. The pro-angiogenic effects of arnebin-1 on HUVECs, including its effects on proliferation and migration, were evaluated by MTT assay, Transwell assay and tube formation assay in vitro. The expression levels of hypoxia-inducible factor (HIF)-1α, endothelial nitric oxide synthase (eNOS) and VEGF were determined by western blot analysis in the HUVECs and wound tissues obtained from non-diabetic and diabetic rats. CD31 expression in the rat wounds was evaluated by immunofluorescence staining. We found that the activation of the VEGFR2 signaling pathway induced by VEGF was enhanced by arnebin-1. Arnebin-1 promoted endothelial cell proliferation, migration and tube formation through the PI3K-dependent pathway. Moreover, Arnebin-1 significantly increased the eNOS, VEGF and HIF-1α expression levels in the HUVECs and accelerated the healing of diabetic wounds through the PI3K-dependent signaling pathway. CD31 expression was markedly enhanced in the wounds of diabetic rats treated with arnebin-1 compared to the wounds of untreated diabetic rats. Therefore, the findings of the present study indicate that arnebin-1 promotes the wound healing process in diabetic rats by eliciting a pro-angiogenic response.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen-Dong Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qi Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mei-Ling Su
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong-Fei Yang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhao-Chun Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bang-Hao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Centre, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
28
|
Halama A, Guerrouahen BS, Pasquier J, Diboun I, Karoly ED, Suhre K, Rafii A. Metabolic signatures differentiate ovarian from colon cancer cell lines. J Transl Med 2015; 13:223. [PMID: 26169745 PMCID: PMC4499939 DOI: 10.1186/s12967-015-0576-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022] Open
Abstract
Background In this era of precision medicine, the deep and comprehensive characterization of tumor phenotypes will lead to therapeutic strategies beyond classical factors such as primary sites or anatomical staging. Recently, “-omics” approached have enlightened our knowledge of tumor biology. Such approaches have been extensively implemented in order to provide biomarkers for monitoring of the disease as well as to improve readouts of therapeutic impact. The application of metabolomics to the study of cancer is especially beneficial, since it reflects the biochemical consequences of many cancer type-specific pathophysiological processes. Here, we characterize metabolic profiles of colon and ovarian cancer cell lines to provide broader insight into differentiating metabolic processes for prospective drug development and clinical screening. Methods We applied non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography and gas chromatography for the metabolic phenotyping of four cancer cell lines: two from colon cancer (HCT15, HCT116) and two from ovarian cancer (OVCAR3, SKOV3). We used the MetaP server for statistical data analysis. Results A total of 225 metabolites were detected in all four cell lines; 67 of these molecules significantly discriminated colon cancer from ovarian cancer cells. Metabolic signatures revealed in our study suggest elevated tricarboxylic acid cycle and lipid metabolism in ovarian cancer cell lines, as well as increased β-oxidation and urea cycle metabolism in colon cancer cell lines. Conclusions Our study provides a panel of distinct metabolic fingerprints between colon and ovarian cancer cell lines. These may serve as potential drug targets, and now can be evaluated further in primary cells, biofluids, and tissue samples for biomarker purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0576-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar.
| | - Bella S Guerrouahen
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, 10065, USA. .,Experimental Biology Division-Research, Sidra Medical and Research Center, PO Box 26999, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Ilhem Diboun
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar.
| | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar. .,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, 10065, USA. .,Department of Genetic Medicine and Obstetrics and Gynecology, Weill Cornell Medical College, Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
29
|
Wang YM, Gu ML, Ji F. Succinate dehydrogenase-deficient gastrointestinal stromal tumors. World J Gastroenterol 2015; 21:2303-2314. [PMID: 25741136 PMCID: PMC4342905 DOI: 10.3748/wjg.v21.i8.2303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs.
Collapse
|
30
|
Tian Y, Yao J, Liu S, Jiang C, Zhang J, Li Y, Feng J, Liu Z. Identification and expression analysis of 26 oncogenes of the receptor tyrosine kinase family in channel catfish after bacterial infection and hypoxic stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:16-25. [PMID: 25722053 DOI: 10.1016/j.cbd.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
Receptor tyrosine kinases (RTKs) are high-affinity cell surface receptors for many polypeptide growth factors, cytokines and hormones. RTKs are not only key regulators of normal cellular processes, but are also involved in the progression of many types of tumors, and responses to various biotic and abiotic stresses. Catfish is a primary aquaculture species in the United States, while its industry is drastically hindered by several major diseases including enteric septicemia of catfish (ESC) that is caused by Edwardsiella ictaluri. Disease outbreaks are often accompanied by hypoxic stress, which affects the performance and survival of fish by reducing disease resistance. In this study, we identified 26 RTK oncogenes in the channel catfish genome, and determined their expression profiles after ESC infection and hypoxic stress. The 26 RTK genes were divided into four subfamilies according to phylogenetic analysis, including TIE (2 genes), ErbB (6 genes), EPH (14 genes), and INSR (4 genes). All identified RTKs possess a similar molecular architecture including ligand-binding domains, a single transmembrane helix and a cytoplasmic region, which suggests that these genes could play conserved biological roles. The expression analysis revealed that eight RTKs were significantly regulated after bacterial infection, with dramatic induction of insulin receptor genes including INSRb, IGF1Ra, and IGF1Rb. Upon hypoxic stress, EPHB3a, EGFR, ErbB4b, and IGF1Rb were expressed at higher levels in the tolerant catfish, while EPHA2a, EPHA2, TIE1 and INSRa were expressed at higher levels in the intolerant catfish. These results suggested the involvement of RTKs in immune responses and hypoxic tolerance.
Collapse
Affiliation(s)
- Yi Tian
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jun Yao
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Chen Jiang
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Jiaren Zhang
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
31
|
Schürmann C, Schmidt N, Seitz O, Pfeilschifter J, Frank S. Angiogenic response pattern during normal and impaired skin flap re-integration in mice: A comparative study. J Craniomaxillofac Surg 2014; 42:1710-6. [DOI: 10.1016/j.jcms.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/23/2014] [Accepted: 06/04/2014] [Indexed: 02/04/2023] Open
|
32
|
Westwood DA, Patel O, Baldwin GS. Gastrin mediates resistance to hypoxia-induced cell death in xenografts of the human colorectal cancer cell line LoVo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2471-80. [DOI: 10.1016/j.bbamcr.2014.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
33
|
Barui A, Banerjee P, Chaudhary A, Conjeti S, Mondal B, Dey S, Chatterjee J. Evaluation of angiogenesis in diabetic lower limb wound healing using a natural medicine: A quantitative approach. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.wndm.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Abstract
Oxygen is vital for the existence of all multicellular organisms, acting as a signalling molecule regulating cellular activities. Specifically, hypoxia, which occurs when the partial pressure of oxygen falls below 5%, plays a pivotal role during development, regeneration and cancer. Here we report a novel hypoxia-inducible (HI) hydrogel composed of gelatin and ferulic acid that can form hydrogel networks via oxygen consumption in a laccase-mediated reaction. Oxygen levels and gradients within the hydrogels can be accurately controlled and precisely predicted. We demonstrate that HI hydrogels guide vascular morphogenesis in vitro via hypoxia-inducible factors activation of matrix metalloproteinases and promote rapid neovascularization from the host tissue during subcutaneous wound healing. The HI hydrogel is a new class of biomaterials that may prove useful in many applications, ranging from fundamental studies of developmental, regenerative and disease processes through the engineering of healthy and diseased tissue models towards the treatment of hypoxia-regulated disorders.
Collapse
Affiliation(s)
- Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sharon Gerecht
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA [2] Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
35
|
Epidermal or dermal specific knockout of PHD-2 enhances wound healing and minimizes ischemic injury. PLoS One 2014; 9:e93373. [PMID: 24695462 PMCID: PMC3973687 DOI: 10.1371/journal.pone.0093373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/05/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF)-1α, part of the heterodimeric transcription factor that mediates the cellular response to hypoxia, is critical for the expression of multiple angiogenic growth factors, cell motility, and the recruitment of endothelial progenitor cells. Inhibition of the oxygen-dependent negative regulator of HIF-1α, prolyl hydroxylase domain-2 (PHD-2), leads to increased HIF-1α and mimics various cellular and physiological responses to hypoxia. The roles of PHD-2 in the epidermis and dermis have not been clearly defined in wound healing. METHODS Epidermal and dermal specific PHD-2 knockout (KO) mice were developed in a C57BL/6J (wild type) background by crossing homozygous floxed PHD-2 mice with heterozygous K14-Cre mice and heterozygous Col1A2-Cre-ER mice to get homozygous floxed PHD-2/heterozygous K14-Cre and homozygous floxed PHD-2/heterozygous floxed Col1A2-Cre-ER mice, respectively. Ten to twelve-week-old PHD-2 KO and wild type (WT) mice were subjected to wounding and ischemic pedicle flap model. The amount of healing was grossly quantified with ImageJ software. Western blot and qRT-PCR was run on protein and RNA from primary cells cultured in vitro. RESULTS qRT-PCR demonstrated a significant decrease of PHD-2 in keratinocytes and fibroblasts derived from tissue specific KO mice relative to control mice (*p<0.05). Western blot analysis showed a significant increase in HIF-1α and VEGF protein levels in PHD-2 KO mice relative to control mice (*p<0.05). PHD-2 KO mice showed significantly accelerated wound closure relative to WT (*p<0.05). When ischemia was analyzed at day nine post-surgery in a flap model, the PHD-2 tissue specific knockout mice showed significantly more viable flaps than WT (*p<0.05). CONCLUSIONS PHD-2 plays a significant role in the rates of wound healing and response to ischemic insult in mice. Further exploration shows PHD-2 KO increases cellular levels of HIF-1α and this increase leads to the transcription of downstream angiogenic factors such as VEGF.
Collapse
|
36
|
He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:255-61. [PMID: 24413338 PMCID: PMC3948041 DOI: 10.1289/ehp.1307545] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/06/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. OBJECTIVES We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. METHODS We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. RESULTS We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. CONCLUSION The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. CITATION He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255-261; http://dx.doi.org/10.1289/ehp.1307545.
Collapse
Affiliation(s)
- Jun He
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Geng X, Feng J, Liu S, Wang Y, Arias C, Liu Z. Transcriptional regulation of hypoxia inducible factors alpha (HIF-α) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:38-50. [PMID: 24384398 DOI: 10.1016/j.cbpb.2013.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022]
Abstract
Hypoxia inducible factors (HIFs) are considered to be the master switch of oxygen-dependent gene expression with mammalian species. In most cases, regulation of HIF has been believed at posttranslational levels. However, little is known of HIF regulation in channel catfish, a species highly tolerant to low oxygen condition. Here we report the identification and characterization of HIF-1α, HIF-2αa, HIF-2αb, HIF-3α, and FIH-1 genes, and their mRNA expression under hypoxia conditions. The transcripts of the five genes were found to be regulated temporally and spatially after low oxygen challenge, suggesting regulation of HIF-α genes at pre-translational levels. In most tissues, the HIF-α mRNAs were down-regulated 1.5h but up-regulated 5h after hypoxia treatment. Of these HIF-α mRNAs, the expression of HIF-3α mRNA was induced in the most dramatic fashion, both in the speed of induction and the extent of induction, compared to HIF-1α and HIF-2α genes, suggesting its importance in responses to hypoxia.
Collapse
Affiliation(s)
- Xin Geng
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yaping Wang
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Covadonga Arias
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
38
|
Forristal CE, Levesque JP. Targeting the hypoxia-sensing pathway in clinical hematology. Stem Cells Transl Med 2013; 3:135-40. [PMID: 24371328 DOI: 10.5966/sctm.2013-0134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors regulated by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes and are key to cell adaptation to low oxygen. The hematopoietic stem cell (HSC) niche in the bone marrow is highly heterogeneous in terms of microvasculature and thus oxygen concentration. The importance of hypoxia and HIFs in the hematopoietic environment is becoming increasingly recognized. Many small compounds that inhibit PHDs have been developed, enabling HIFs to be pharmacologically stabilized in an oxygen-independent manner. The use of PHD inhibitors for therapeutic intervention in hematopoiesis is being increasingly investigated. PHD inhibitors are well established to increase erythropoietin production to correct anemia in hemodialysis patients. Pharmacological stabilization of HIF-1α protein with PHD inhibitors is also emerging as an important regulator of HSC proliferation and self-renewal. Administration of PHD inhibitors increases quiescence and decreases proliferation of HSCs in the bone marrow in vivo, thereby protecting them from high doses of irradiation and accelerating hematological recovery. Recent findings also show that stabilization of HIF-1α increases mobilization of HSCs in response to granulocyte colony-stimulating factor and plerixafor, suggesting that PHD inhibitors could be useful agents to increase mobilization success in patients requiring transplantation. These findings highlight the importance of the hypoxia-sensing pathway and HIFs in clinical hematology.
Collapse
Affiliation(s)
- Catherine E Forristal
- Stem Cell Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
39
|
Madrid E, Reyes JG, Hernández B, García JM, San Martín S, Olivero P, Crespo PV, Párraga M. Effect of normobaric hypoxia on the testis in a murine model. Andrologia 2012; 45:332-8. [PMID: 22967372 DOI: 10.1111/and.12019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 11/27/2022] Open
Abstract
High-altitude hypoxia generates spermiogram impairment due to germinal epithelium, Leydig cells, sperm and seminal plasma alterations, but precise mechanisms involved are unknown. The objective of this work was to analyse the effect of normobaric hypoxia on the morphology of testicular interstitium and some associated molecular and hormonal factors. Twenty-four mice were exposed to normobaric hypoxia (8.1% inspired oxygen fraction) during 20 days. The effects on body weight, testicular weight, vascularisation, testosterone, HIF1-α and VEGF were analysed at different periods of exposure and compared to controls. Hypoxic mice had lower body weight than mice kept in normoxia. Testicular weight raised significantly the 1st day, but remained normal during the rest of experiment. Number of blood vessels per field and mean diameter of vessels were higher in hypoxic mice. Plasmatic and testicular testosterone raised during first 24 h of hypoxia, but decreased on the 5th day. Vascular/interstitial ratio (proportion of interstice occupied by blood vessels) duplicated at the end of the experiment. Most substantial early effects of hypoxia were testicular oedema, increase in number and diameter of blood vessels and elevation of plasmatic and testicular testosterone. Normobaric hypoxia generates similar effects to those induced by hypobaric hypoxia.
Collapse
Affiliation(s)
- E Madrid
- Centro de Investigaciones Biomédicas Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Succinate dehydrogenase-deficient tumors: diagnostic advances and clinical implications. Adv Anat Pathol 2012; 19:193-203. [PMID: 22692282 DOI: 10.1097/pap.0b013e31825c6bc6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Just over 10 years ago, germline mutations in SDHD, a gene that encodes 1 of the 4 proteins of the succinate dehydrogenase (SDH) complex, were reported in a subset of patients with hereditary paraganglioma-pheochromocytoma syndrome. Since that time, rapid discoveries have been made in this area. It is now recognized that all of the SDH genes are involved in the tumorigenesis of not only paragangliomas/pheochromocytomas, but also other tumor types, most notably gastrointestinal stromal tumors. This review will outline the genetics of SDH-deficient tumors, discuss possible mechanisms of tumorigenesis, and describe how these tumors can be identified by immunohistochemistry.
Collapse
|
41
|
Anti-inflammatory properties of histone deacetylase inhibitors: a mechanistic study. J Trauma Acute Care Surg 2012; 72:347-53; discussion 353-4. [PMID: 22327976 DOI: 10.1097/ta.0b013e318243d8b2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND We have demonstrated that postshock administration of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, can significantly improve early survival in a highly lethal model of hemorrhagic shock. As the primary insult in hemorrhagic shock is cellular hypoxia, and transcription factor hypoxia-inducible factor-1α (HIF-1α) controls proinflammatory gene expression in macrophages, we hypothesized that SAHA would attenuate the HIF-1α associated proinflammatory pathway in a hypoxic macrophage model. METHODS Mouse macrophages were exposed to hypoxic conditions (0.5% O2, 10% CO2, and 89.5% N2) at 37°C in the presence or absence of SAHA (10 μmol/L). The cells and culture medium were harvested at 1 hour, 4 hours, and 8 hours. Sham (no hypoxia, no SAHA) served as a control. Western blots were performed to assess protein levels of prolyl hydroxylase 2 (PHD2), HIF-1α, and inducible nitric oxide synthase (iNOS) in the cells. Colorimetric biochemical assay and enzyme-linked immunosorbent assay were used to analyze the release of nitric oxide (NO) and secretion of tumor necrosis factor α (TNF-α), respectively, in the cell culture medium. RESULTS Hypoxia significantly increased cellular level of HIF-1α (1 hour and 4 hours), gene transcription of iNOS (4 hours and 8 hours), iNOS protein (8 hours), NO production (8 hours), and TNF-α secretion (4 hours and 8 hours). SAHA treatment attenuated all of the above hypoxia-induced alterations in the macrophages. In addition, SAHA treatment significantly increased cellular level of PHD2, one of the upstream negative regulators of HIF-1α, at 1 hour. CONCLUSIONS Treatment with SAHA attenuates hypoxia-HIF-1α-inflammatory pathway in macrophages and suppresses hypoxia-induced release of proinflammatory NO and TNF-α. SAHA also causes an early increase in cellular PHD2, which provides, at least in part, a new explanation for the decrease in the HIF-1α protein levels.
Collapse
|
42
|
Ko SH, Nauta A, Morrison SD, Zhou H, Zimmermann A, Gurtner GC, Ding S, Longaker MT. Antimycotic ciclopirox olamine in the diabetic environment promotes angiogenesis and enhances wound healing. PLoS One 2011; 6:e27844. [PMID: 22125629 PMCID: PMC3220686 DOI: 10.1371/journal.pone.0027844] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 10/26/2011] [Indexed: 12/01/2022] Open
Abstract
Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX) can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Sae Hee Ko
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Allison Nauta
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Shane D. Morrison
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Hongyan Zhou
- Gladstone Institute of Cardiovascular Disease, University of California San Francisco Mission Bay Campus, San Francisco, California, United States of America
| | - Andrew Zimmermann
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford University, Stanford, California, United States of America
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sheng Ding
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael T. Longaker
- Hagey Laboratory for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc Natl Acad Sci U S A 2011; 108:E924-33. [PMID: 21949374 DOI: 10.1073/pnas.1106351108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (HIF1)-mediated induction of the transcriptional repressor differentially expressed in chondrocytes protein 1 (DEC1) (BHLHE40), which subsequently binds and suppresses the promoter of M-MITF (melanocyte-restricted MITF isoform). Correspondingly, hypoxic conditions or HIF1α stabilization achieved by using small-molecule prolyl-hydroxylase inhibitors reduced M-MITF expression, leading to melanoma cell growth arrest that was rescued by ectopic expression of M-MITF in vitro. Prolyl hydroxylase inhibition also potently suppressed melanoma growth in a mouse xenograft model. These studies illuminate a physiologic hypoxia response in pigment cells leading to M-MITF suppression, one that suggests a potential survival advantage mechanism for MITF amplification in metastatic melanoma and offers a small-molecule strategy for suppression of the MITF oncogene in vivo.
Collapse
|
44
|
Cunningham LA, Candelario K, Li L. Roles for HIF-1α in neural stem cell function and the regenerative response to stroke. Behav Brain Res 2011; 227:410-7. [PMID: 21871501 DOI: 10.1016/j.bbr.2011.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/20/2022]
Abstract
Stroke represents a leading cause of long-term disability worldwide, with few therapeutic options available for improving behavioral recovery. Identification of endogenous neural stem and progenitor cells (NSPCs) that are capable of promoting reparative responses following brain injury and stroke make these cells attractive therapeutic targets for stimulating cell replacement and neuronal plasticity. Interest in the mechanisms that support NSPC survival and replenishment of damaged cells within the ischemic brain has led to elucidation of new roles for hypoxia-inducible factor-1α (HIF-1α) in NSPC function. HIF-1α is a well-studied mediator of adaptive cellular responses to hypoxia through direct transcriptional regulation of cellular metabolism and angiogenesis. Recent evidence also indicates novel roles for HIF-1α in stem cell differentiation through modulation of Notch and Wnt/β-catenin signaling pathways. In this review, we will explore the hypothesis that HIF-1α represents an important mediator of NSPC function under both non-pathological conditions and stroke; and plays a central role in the regulation of NSPC response to hypoxia, metabolism and maintenance of the vascular environment of the neural stem cell niche.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Department of Neurosciences, MSC08 4740, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
45
|
Tannahill GM, O'Neill LAJ. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett 2011; 585:1568-72. [PMID: 21565193 DOI: 10.1016/j.febslet.2011.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022]
Abstract
While it has long been suspected that inflammation participates in the pathogenesis of metabolic disorders such as the insulin resistance that occurs in type 2 diabetes, recent work suggests that this is not the only important interaction between metabolism and inflammation. Inroads into the understanding of the relationship between metabolic pathways and inflammation are indicating that signaling by innate immune receptors such as TLR4 and Nlrp3 regulate metabolism. TLRs have been shown to promote glycolysis, whilst Nlrp3-mediated production of IL-1β causes insulin resistance. A key role for the hypoxia-sensing transcription factor HIF1α in the functioning of macrophages activated by TLRs has also recently emerged. This review will assess recent evidence for these complex interactions and speculate on their importance for innate immunity and inflammation.
Collapse
|
46
|
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40:294-309. [PMID: 20965423 PMCID: PMC3143508 DOI: 10.1016/j.molcel.2010.09.022] [Citation(s) in RCA: 1792] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 02/06/2023]
Abstract
Oxygen (O(2)) is an essential nutrient that serves as a key substrate in cellular metabolism and bioenergetics. In a variety of physiological and pathological states, organisms encounter insufficient O(2) availability, or hypoxia. In order to cope with this stress, evolutionarily conserved responses are engaged. In mammals, the primary transcriptional response to hypoxic stress is mediated by the hypoxia-inducible factors (HIFs). While canonically regulated by prolyl hydroxylase domain-containing enzymes (PHDs), the HIFα subunits are intricately responsive to numerous other factors, including factor-inhibiting HIF1α (FIH1), sirtuins, and metabolites. These transcription factors function in normal tissue homeostasis and impinge on critical aspects of disease progression and recovery. Insights from basic HIF biology are being translated into pharmaceuticals targeting the HIF pathway.
Collapse
Affiliation(s)
- Amar J Majmundar
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
47
|
Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 2010; 345:105-20. [PMID: 20517715 PMCID: PMC3144567 DOI: 10.1007/82_2010_74] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myeloid cells provide important functions in low oxygen (O(2)) environments created by pathophysiological conditions, including sites of infection, inflammation, tissue injury, and solid tumors. Hypoxia-inducible factors (HIFs) are principle regulators of hypoxic adaptation, regulating gene expression involved in glycolysis, erythropoiesis, angiogenesis, proliferation, and stem cell function under low O(2). Interestingly, increasing evidence accumulated over recent years suggests an additional important regulatory role for HIFs in inflammation. In macrophages, HIFs not only regulate glycolytic energy generation, but also optimize innate immunity, control pro-inflammatory gene expression, mediate bacterial killing and influence cell migration. In neutrophils, HIF-1α promotes survival under O(2)-deprived conditions and mediates blood vessel extravasation by modulating β (2) integrin expression. Additionally, HIFs contribute to inflammatory functions in various other components of innate immunity, such as dendritic cells, mast cells, and epithelial cells. This review will dissect the role of each HIF isoform in myeloid cell function and discuss their impact on acute and chronic inflammatory disorders. Currently, intensive studies are being conducted to illustrate the connection between inflammation and tumorigenesis. Detailed investigation revealing interaction between microenvironmental factors such as hypoxia and immune cells is needed. We will also discuss how hypoxia and HIFs control properties of tumor-associated macrophages and their relationship to tumor formation and progression.
Collapse
Affiliation(s)
- Hongxia Z Imtiyaz
- Abramson Family Cancer Research Institute, University of Pennsylvania, 438 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
48
|
NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci U S A 2010; 107:20477-82. [PMID: 21059928 DOI: 10.1073/pnas.1006646107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperthermia (HT) is a strong adjuvant treatment with radiotherapy and chemotherapy because it causes tumor reoxygenation. However, the detailed molecular mechanisms of how HT enhances tumor oxygenation have not been elucidated. Here we report that 1 h of HT activates hypoxia-inducible factor-1 (HIF-1) in tumors and its downstream targets, vascular endothelial growth factor (VEGF) and pyruvate dehydrogenase kinase 1 (PDK1). Consistent with HIF-1 activation and up-regulation of its downstream genes, HT also enhances tumor perfusion/vascularization and decreases oxygen consumption. As a result, tumor hypoxia is reduced after HT, suggesting that these physiological changes contribute to HT-induced tumor reoxygenation. Because HIF-1 is a potent regulator of tumor vascularization and metabolism, our findings suggest that HIF-1 plays a role in HT-induced tumor reoxygenation by transactivating its downstream targets. We demonstrate that NADPH oxidase-mediated reactive oxygen species production, as a mechanism, up-regulates HIF-1 after HT. Furthermore, we determine that this pathway is initiated by increased transcription of NADPH oxidase-1 through the ERK pathway. In conclusion, this study determines that, although HIF-1 is a good therapeutic target, the timing of its inhibition needs to be optimized to achieve the most beneficial outcome when it is combined with other treatments of HT, radiation, and chemotherapy.
Collapse
|
49
|
Petschke A, La Rivière PJ. Comparison of intensity-modulated continuous-wave lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications. BIOMEDICAL OPTICS EXPRESS 2010; 1:1188-1195. [PMID: 21258540 PMCID: PMC3018082 DOI: 10.1364/boe.1.001188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/16/2010] [Accepted: 10/15/2010] [Indexed: 05/14/2023]
Abstract
Using a Green's function solution to the photoacoustic wave equation, we compare intensity-modulated continuous-wave (CW) lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications. Assuming the same transducer is used in both cases, we show that the axial resolution is identical and is determined by the transducer and material properties of the object. We derive a simple formula relating the signal-to-noise ratios (SNRs) of the two imaging systems that only depends on the fluence of each pulse and the time-bandwidth product of the chirp pulse. We also compare the SNR of the two systems assuming the fluence is limited by the American National Standards Institute (ANSI) laser safety guidelines for skin. We find that the SNR is about 20 dB to 30 dB larger for pulsed laser systems for reasonable values of the parameters. However, CW diode lasers have the advantage of being compact and relatively inexpensive, which may outweigh the lower SNR in many applications.
Collapse
Affiliation(s)
- Adam Petschke
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Patrick J. La Rivière
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| |
Collapse
|
50
|
Mesquita RC, Skuli N, Kim MN, Liang J, Schenkel S, Majmundar AJ, Simon MC, Yodh AG. Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia. BIOMEDICAL OPTICS EXPRESS 2010; 1:1173-1187. [PMID: 21258539 PMCID: PMC3018079 DOI: 10.1364/boe.1.001173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/29/2010] [Accepted: 10/12/2010] [Indexed: 05/06/2023]
Abstract
Murine hindlimb ischemia is a useful model for investigation of the mechanisms of peripheral arterial disease and for understanding the role of endothelial cells and generic factors affecting vascular regeneration or angiogenesis. To date, important research with these models has explored tissue reperfusion following ischemia with Laser Doppler methods, methods which provide information about superficial (~mm) vascular regeneration. In this work, we employ diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) in mice after hindlimb ischemia. We hypothesize that vascular re-growth is not uniform in tissue, and therefore, since diffuse optical methods are capable of probing deep tissues, that the diffuse optics approach will provide a more complete picture of the angiogenesis process throughout the whole depth profile of the limb. Besides increased depth penetration, the combined measurements of DCS and DOS enable all-optical, noninvasive, longitudinal monitoring of tissue perfusion and oxygenation that reveals the interplay between these hemodynamic parameters during angiogenesis. Control mice were found to reestablish 90% of perfusion and oxygen consumption during this period, but oxygen saturation in the limb only partially recovered to about 30% of its initial value. The vascular recovery of mice with endothelial cell-specific deletion of HIF-2α was found to be significantly impaired relative to control mice, indicating that HIF-2α is important for endothelial cell functions in angiogenesis. Comparison of DOS/DCS measurements to parallel measurements in the murine models using Laser Doppler Flowmetry reveal differences in the reperfusion achieved by superficial versus deep tissue during neoangiogenesis; findings from histological analysis of blood vessel development were further correlated with these differences. In general, the combination of DCS and DOS enables experimenters to obtain useful information about oxygenation, metabolism, and perfusion throughout the limb. The results establish diffuse optics as a practical noninvasive method to evaluate the role of transcription factors, such as the endothelial cell-specific HIF-2α, in genetic ally modified mice.
Collapse
Affiliation(s)
- Rickson C. Mesquita
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meeri N. Kim
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiaming Liang
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Steve Schenkel
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amar J. Majmundar
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun G. Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|