1
|
Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009; 332:184-209. [DOI: 10.1016/j.crvi.2008.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
2
|
Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y. Sponge paraphyly and the origin of Metazoa. J Evol Biol 2008; 14:171-179. [PMID: 29280585 DOI: 10.1046/j.1420-9101.2001.00244.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to allow critical evaluation of the interrelationships between the three sponge classes, and to resolve the question of mono- or paraphyly of sponges (Porifera), we used the polymerase chain reaction (PCR) to amplify almost the entire nucleic acid sequence of the 18S rDNA from several hexactinellid, demosponge and calcareous sponge species. The amplification products were cloned, sequenced and then aligned with previously reported sequences from other sponges and nonsponge metazoans and variously distant outgroups, and trees were constructed using both neighbour-joining and maximum parsimony methods. Our results suggest that sponges are paraphyletic, the Calcarea being more related to monophyletic Eumetazoa than to the siliceous sponges (Demospongiae, Hexactinellida). These results have important implications for our understanding of metazoan origins, because they suggest that the common ancestor of Metazoa was a sponge. They also have consequences for basal metazoan classification, implying that the phylum Porifera should be abandoned. Our results support the upgrading of the calcareous sponge class to the phylum level.
Collapse
Affiliation(s)
- C Borchiellini
- Centre d'Océanologie de Marseille, Station Marine d'Endoume, Université de la Méditerranée, UMR-CNRS 6540, Marseille, France
| | - M Manuel
- Centre d'Océanologie de Marseille, Station Marine d'Endoume, Université de la Méditerranée, UMR-CNRS 6540, Marseille, France
| | - E Alivon
- Centre d'Océanologie de Marseille, Station Marine d'Endoume, Université de la Méditerranée, UMR-CNRS 6540, Marseille, France
| | - N Boury-Esnault
- Centre d'Océanologie de Marseille, Station Marine d'Endoume, Université de la Méditerranée, UMR-CNRS 6540, Marseille, France
| | - J Vacelet
- Centre d'Océanologie de Marseille, Station Marine d'Endoume, Université de la Méditerranée, UMR-CNRS 6540, Marseille, France
| | - Y Le Parco
- Centre d'Océanologie de Marseille, Station Marine d'Endoume, Université de la Méditerranée, UMR-CNRS 6540, Marseille, France
| |
Collapse
|
3
|
Ryan JF, Baxevanis AD. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2007; 2:37. [PMID: 18078518 PMCID: PMC2222619 DOI: 10.1186/1745-6150-2-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/12/2022] Open
Abstract
The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less specialized along their primary body axis. As such, they present an attractive outgroup from which to investigate how evolutionary changes in the genetic toolkit may have contributed to the emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa. Specifically, we examine these data in the context of how they may explain the evolutionary development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Joseph F Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Jakob W, Schierwater B. Changing hydrozoan bauplans by silencing Hox-like genes. PLoS One 2007; 2:e694. [PMID: 17668071 PMCID: PMC1931613 DOI: 10.1371/journal.pone.0000694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/28/2007] [Indexed: 12/03/2022] Open
Abstract
Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established.
Collapse
Affiliation(s)
- Wolfgang Jakob
- Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | |
Collapse
|
5
|
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 2007; 7:R64. [PMID: 16867185 PMCID: PMC1779571 DOI: 10.1186/gb-2006-7-7-r64] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 07/24/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. RESULTS Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. CONCLUSION The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX).
Collapse
Affiliation(s)
- Joseph F Ryan
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - Patrick M Burton
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Maureen E Mazza
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Grace K Kwong
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - James C Mullikin
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - John R Finnerty
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| |
Collapse
|
6
|
Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2007; 2:e153. [PMID: 17252055 PMCID: PMC1779807 DOI: 10.1371/journal.pone.0000153] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/30/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no "true" Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in "dorsoventral" patterning. CONCLUSIONS/SIGNIFICANCE A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today.
Collapse
Affiliation(s)
- Joseph F. Ryan
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maureen E. Mazza
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - David Q. Matus
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - John R. Finnerty
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR. Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 2005; 27:211-21. [PMID: 15666346 DOI: 10.1002/bies.20181] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In recent years, a handful of model systems from the basal metazoan phylum Cnidaria have emerged to challenge long-held views on the evolution of animal complexity. The most-recent, and in many ways most-promising addition to this group is the starlet sea anemone, Nematostella vectensis. The remarkable amenability of this species to laboratory manipulation has already made it a productive system for exploring cnidarian development, and a proliferation of molecular and genomic tools, including the currently ongoing Nematostella genome project, further enhances the promise of this species. In addition, the facility with which Nematostella populations can be investigated within their natural ecological context suggests that this model may be profitably expanded to address important questions in molecular and evolutionary ecology. In this review, we explore the traits that make Nematostella exceptionally attractive as a model organism, summarize recent research demonstrating the utility of Nematostella in several different contexts, and highlight a number of developments likely to further increase that utility in the near future.
Collapse
|
8
|
Affiliation(s)
- Kenneth M. Halanych
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849;
| |
Collapse
|
9
|
Abstract
We surveyed the genome of the Caribbean zoanthid Parazoanthus parasiticus for Hox and paraHox genes, and examined gene expression patterns for sequences we uncovered. Two Hox genes and three paraHox genes were identified in our surveys. The Hox genes belong to anterior and posterior classes. In phylogenetic analyses, the anterior Hox sequence formed an anthozoan-specific cluster that appears to be a second class of cnidarian anterior Hox gene. The presence of an anterior Gsx-like paraHox gene supports the hypothesis that duplication of a protoHox gene family preceded the divergence of the Cnidaria and bilaterians. The presence of two Mox class paraHox genes in P. parasiticus deserves further attention. Expression analysis using RT-PCR, indicated that one Mox gene and the anterior paraHox gene are not expressed in adult tissue, whereas the other three sequences are expressed in both dividing and unitary polyps. Dividing polyps showed slightly lower Ppox1 (i.e., Mox) expression levels. Our data add to the number of published anthozoan sequences, and provide additional detail concerning the evolutionary significance of cnidarian Hox and paraHox genes.
Collapse
Affiliation(s)
- April Hill
- Biology Department, Fairfield University, Fairfield, CT 06430, USA.
| | | | | |
Collapse
|
10
|
Finnerty JR, Paulson D, Burton P, Pang K, Martindale MQ. Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria. Evol Dev 2003; 5:331-45. [PMID: 12823450 DOI: 10.1046/j.1525-142x.2003.03041.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeobox transcription factors are commonly involved in developmental regulation in diverse eukaryotes, including plants, animals, and fungi. The origin of novel homeobox genes is thought to have contributed to many evolutionary innovations in animals. We perform a molecular phylogenetic analysis of cnox2, the best studied homeobox gene from the phylum Cnidaria, a very ancient lineage of animals. Among three competing hypotheses, our analysis decisively favors the hypothesis that cnox2 is orthologous to the gsx gene of Bilateria, thereby establishing the existence of this specific homeobox gene in the eumetazoan stem lineage, some 650-900 million years ago. We assayed the expression of gsx in the planula larva and polyp of the sea anemone Nematostella vectensis using in situ hybridization and reverse transcriptase polymerase chain reaction. The gsx ortholog of Nematostella, known as anthox2, is expressed at high levels in the posterior planula and the corresponding "head" region of the polyp. It cannot be detected in the anterior planula or the corresponding "foot" region of the polyp. We have attempted to reconstruct the evolution of gsx spatiotemporal expression in cnidarians and bilaterians using a phylogenetic framework. Because of the surprisingly high degree of variability in gsx expression within the Cnidaria, it is currently not possible to infer unambiguously the ancestral cnidarian condition or the ancestral eumetazoan condition for gsx expression.
Collapse
Affiliation(s)
- John R Finnerty
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
CnidBase, the Cnidarian Evolutionary Genomics Database, is a tool for investigating the evolutionary, developmental and ecological factors that affect gene expression and gene function in cnidarians. In turn, CnidBase will help to illuminate the role of specific genes in shaping cnidarian biodiversity in the present day and in the distant past. CnidBase highlights evolutionary changes between species within the phylum Cnidaria and structures genomic and expression data to facilitate comparisons to non-cnidarian metazoans. CnidBase aims to further the progress that has already been made in the realm of cnidarian evolutionary genomics by creating a central community resource which will help drive future research and facilitate more accurate classification and comparison of new experimental data with existing data. CnidBase is available at http://cnidbase.bu.edu/.
Collapse
|
12
|
Abstract
One of the central, unresolved controversies in biology concerns the distribution of primitive versus advanced characters at different stages of vertebrate development. This controversy has major implications for evolutionary developmental biology and phylogenetics. Ernst Haeckel addressed the issue with his Biogenetic Law, and his embryo drawings functioned as supporting data. We re-examine Haeckel's work and its significance for modern efforts to develop a rigorous comparative framework for developmental studies. Haeckel's comparative embryology was evolutionary but non-quantitative. It was based on developmental sequences, and treated heterochrony as a sequence change. It is not always clear whether he believed in recapitulation of single characters or entire stages. The Biogenetic Law is supported by several recent studies -- if applied to single characters only. Haeckel's important but overlooked alphabetical analogy of evolution and development is an advance on von Baer. Haeckel recognized the evolutionary diversity in early embryonic stages, in line with modern thinking. He did not necessarily advocate the strict form of recapitulation and terminal addition commonly attributed to him. Haeckel's much-criticized embryo drawings are important as phylogenetic hypotheses, teaching aids, and evidence for evolution. While some criticisms of the drawings are legitimate, others are more tendentious. In opposition to Haeckel and his embryo drawings, Wilhelm His made major advances towards developing a quantitative comparative embryology based on morphometrics. Unfortunately His's work in this area is largely forgotten. Despite his obvious flaws, Haeckel can be seen as the father of a sequence-based phylogenetic embryology.
Collapse
Affiliation(s)
- Michael K Richardson
- Section of Integrative Zoology, Institute of Evolutionary and Ecological Sciences, University of Leiden, The Netherlands.
| | | |
Collapse
|
13
|
Martindale MQ, Finnerty JR, Henry JQ. The Radiata and the evolutionary origins of the bilaterian body plan. Mol Phylogenet Evol 2002; 24:358-65. [PMID: 12220977 DOI: 10.1016/s1055-7903(02)00208-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.
Collapse
Affiliation(s)
- Mark Q Martindale
- Kewalo Marine Lab, University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
14
|
Abstract
A large Hox cluster comprising at least seven genes has evolved by gene duplications in the ancestors of bilaterians. It probably emerged from a mini-cluster of three or four genes that was present before the divergence of cnidarians and bilaterians. The comparison of Hox structural data in bilaterian phyla shows that the genes of the anterior part of the cluster have been more conserved than those of the posterior part. Some specific signature sequences, present in the form of signature residues within the homeodomain or conserved peptides outside the homeodomain, constitute phylogenetic evidence for the monophyly of protostomes and their division into ecdysozoans and lophotrochozoans. These conserved motifs may provide decisive arguments for the phylogenetic position of some enigmatic phyla.
Collapse
|
15
|
Schierwater B, Desalle R. Current problems with the zootype and the early evolution of Hox genes. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 291:169-74. [PMID: 11479915 DOI: 10.1002/jez.1066] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
"Hox cluster type" genes have sparked intriguing attempts to unite all metazoan animals by a shared pattern of expression and genomic organization of a specific set of regulatory genes. The basic idea, the zootype concept, claims the conservation of a specific set of "Hox cluster type genes" in all metazoan animals, i.e., in the basal diploblasts as well as in the derived triploblastic animals. Depending on the data used and the type of analysis performed, different opposing views have been taken on this idea. We review here the sum of data currently available in a total evidence analysis, which includes morphological and the most recent molecular data. This analysis highlights several problems with the idea of a simple "Hox cluster type" synapomorphy between the diploblastic and triploblastic animals and suggests that the "zootype differentiation" of the Hox cluster most likely is an invention of the triploblasts. The view presented is compatible with the idea that early Hox gene evolution started with a single proto-Hox (possibly a paraHox) gene. J. Exp. Zool. (Mol. Dev. Evol.) 291:169-174, 2001.
Collapse
Affiliation(s)
- B Schierwater
- Tierärztliche Hochschule-ITZ, Division of Ecology and Evolution, Bünteweg 17d, 30599 Hannover, Germany.
| | | |
Collapse
|
16
|
Finnerty JR. Cnidarians Reveal Intermediate Stages in the Evolution of Hox Clusters and Axial Complexity1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0608:crisit]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Nikko E, Van de Vyver G, Richelle-Maurer E. Retinoic acid down-regulates the expression of EmH-3 homeobox-containing gene in the freshwater sponge Ephydatia muelleri. Mech Ageing Dev 2001; 122:779-94. [PMID: 11337008 DOI: 10.1016/s0047-6374(01)00235-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of retinoic acid (RA), a common morphogen and gene expression regulator in vertebrates, were studied in the freshwater sponge Ephydatia muelleri, both on morphogenesis and on the expression of EmH-3 homeobox-containing gene. At 0.3 microM, RA had no noticeable influence on sponge development, slightly up-regulating EmH-3 expression. In contrast, in sponges reared in 10, 8 microM and to a lesser extent 2 microM RA, there was a strong down-regulation of EmH-3 expression after hatching. This induced modifications in cell composition and morphology, greatly disturbing normal development. Archaeocytes kept the features found in newly hatched sponges while choanocytes and a functional aquiferous system were completely absent. The inhibition of morphogenesis and down-regulation of EmH-3 expression were reversible when sponges were no longer subjected to RA. After RA removal, EmH-3 expression returned to the high values found in untreated sponges, archaeocytes differentiated into choanocytes and sponges achieved a normal development. These results clearly show that, in freshwater sponges, the most primitive metazoan, RA may also act as a morphogen, regulating the expression of a homeobox-containing gene. They demonstrate that the expression of EmH-3 is necessary for the differentiation of archaeocytes into choanocytes and hence for the formation of a complete functional aquiferous system.
Collapse
Affiliation(s)
- E Nikko
- Laboratoire de Physiologie Cellulaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, CP 300, Rue des professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium.
| | | | | |
Collapse
|
18
|
Finnerty JR. Cnidarians Reveal Intermediate Stages in the Evolution of Hox Clusters and Axial Complexity. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.3.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
19
|
Abstract
The Hox gene cluster has a crucial function in body patterning during animal development. How and when this gene cluster originated is being clarified by recent data from Cnidaria, a basal animal phylum. The characterization of Hox-like genes from Hydra, sea anemones and jellyfish has revealed that a Hox gene cluster is extremely ancient, having originated even before the divergence of these basal animals.
Collapse
Affiliation(s)
- D E Ferrier
- School of Animal & Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
| | | |
Collapse
|
20
|
Manuel M, Le Parco Y. Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 2000; 17:97-107. [PMID: 11020308 DOI: 10.1006/mpev.2000.0822] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of the developmental mechanisms in living basal metazoan phyla is crucial for understanding the genetic bases of morphological evolution in early animal history. We looked for homeobox genes in the calcareous sponge, Sycon raphanus, using the polymerase chain reaction. Partial sequences of eight homeoboxes were recovered, five of which are assignable to the NK-2 class of homeoboxes. The three remaining sequences are related members of a new class of homeoboxes, the Sycox class, showing limited similarity to bilaterian Lbx, Hlx, HEX, En, and Cad classes. Among the five NK-2 class homeoboxes are four closely related sequences occupying a divergent position within the class, the remaining one on the contrary showing high sequence similarity with members of the NK-2 family, a particular subgroup within the NK-2 class, previously known only from the Bilateria. This suggests that diversification of the NK-2 class occurred early in metazoan history. Altogether, the results reveal an unexpected diversification of homeobox genes in S. raphanus.
Collapse
Affiliation(s)
- M Manuel
- Laboratoire Diversité et Fonctionnement des Ecosystèmes Marins Côtiers (DIMAR CNRS UMR-6540), Centre d'Océanologie de Marseille, Université de la Méditerranée, Station Marine d'Endoume, Marseille, 13007, France.
| | | |
Collapse
|
21
|
Kourakis MJ, Martindale MQ. Combined-method phylogenetic analysis of Hox and ParaHox genes of the metazoa. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:175-91. [PMID: 10931500 DOI: 10.1002/1097-010x(20000815)288:2<175::aid-jez8>3.0.co;2-n] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The clustered Hox genes show a conserved role in patterning the body axis of bilaterian metazoans. Increasingly, a broader phylogenetic sampling of non-model system organisms is being examined to detect a correlation, if any, between Hox gene evolution, and body plan innovations. To assess how Hox gene expression and function evolve with changing cluster arrangements, we must be able to reliably assign gene orthologies between Hox genes. Recent evidence suggests that a four-gene proto-Hox cluster duplicated to form the precursor of the present cluster and an additional sister-cluster, the ParaHox group. Here, phylogenetic methods are used to determine Hox-gene orthologies and to infer probable clustering events leading to the current bilaterian Hox complement. This analysis supports the ParaHox hypothesis and gives first confirmation that ind (intermediate neuroblasts defective) is an anterior ParaHox ortholog from protostomes. This analysis supports a proto-Hox cluster of four genes in which the central-class member of the ParaHox cluster may have been lost. It is also proposed here that ancestral diploblasts had central-class members of both Hox and ParaHox clusters. Primitive Hox gene ancestors are estimated by phylogenetic methods and found to have no strong affinity to any particular class of extant Hox members.
Collapse
Affiliation(s)
- M J Kourakis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
22
|
Shippy TD, Guo J, Brown SJ, Beeman RW, Denell RE. Analysis of maxillopedia expression pattern and larval cuticular phenotype in wild-type and mutant tribolium. Genetics 2000; 155:721-31. [PMID: 10835394 PMCID: PMC1461110 DOI: 10.1093/genetics/155.2.721] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.
Collapse
Affiliation(s)
- T D Shippy
- Division of Biology, Kansas State University, Manhattan 66506, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The adult body plan of bilaterians is achieved by imposing regional specifications on pluripotential cells. The establishment of spatial domains is governed in part by regulating expression of transcription factors. The key to understanding bilaterian evolution is contingent on our understanding of how the regulation of these transcription factors influenced bilaterian stem-group evolution.
Collapse
Affiliation(s)
- K J Peterson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
24
|
Brown S, DeCamillis M, Gonzalez-Charneco K, Denell M, Beeman R, Nie W, Denell R. Implications of the Tribolium Deformed mutant phenotype for the evolution of Hox gene function. Proc Natl Acad Sci U S A 2000; 97:4510-4. [PMID: 10781053 PMCID: PMC18265 DOI: 10.1073/pnas.97.9.4510] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among insects, the genetic regulation of regional identities in the postoral head or gnathal segments (mandibular, maxillary, and labial) is best understood in the fly Drosophila melanogaster. In part, normal gnathal development depends on Deformed (Dfd) and Sex combs reduced (Scr), genes in the split Drosophila homeotic complex. The gnathal segments of Dfd and Scr mutant larvae are abnormal but not homeotically transformed. In the red flour beetle, Tribolium castaneum, we have isolated loss-of-function mutations of the Deformed ortholog. Mutant larvae display a strong transformation of mandibular appendages to antennae. The maxillary appendages, normally composed of an endite and a telopodite, develop only the telopodite in mutant larvae. We previously reported that mutations in the beetle Scr and Antennapedia orthologs cause the labial and thoracic appendages, respectively, to be transformed to antennae. Moreover, a deficiency of most of the beetle homeotic complex causes all gnathal (as well as thoracic and abdominal) segments to develop antennae. These and other observations are consistent with the hypothesis that ancestral insect homeotic gene functions have been modified considerably during the evolution of the highly specialized maggot head. One of the ancestral homeobox genes that arose close to the root of the Eumetazoa appears to have given rise to Dfd, Scr, and the Antennapedia homeobox-class homeotic genes. Evidence from both Tribolium and Drosophila suggests that this ancestral gene served to repress anterior development as well as confer a trunk-specific identity.
Collapse
Affiliation(s)
- S Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Richelle-Maurer E, Van de Vyver G. Temporal and spatial expression of EmH-3, a homeobox-containing gene isolated from the freshwater sponge Ephydatia muelleri. Mech Ageing Dev 1999; 109:203-19. [PMID: 10576335 DOI: 10.1016/s0047-6374(99)00037-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Homeoboxes have been particularly valuable in identifying genes involved in development. This prompted us to look for homeobox-containing genes in sponges, the most primitive metazoans, and to explore the potential role of these genes in their development. Using the reverse transcription polymerase reaction (RT-PCR), we analyzed the expression of EmH-3 homeobox-containing gene at different stages of development, and in different cell-type populations. The patterns of EmH-3 expression show that this gene is expressed differentially in the course of development and in a cell-type specific manner. The level of transcripts increases from undetectable levels in resting gemmules to higher levels at the moment of hatching and throughout the sponge's life. EmH-3 is strongly expressed in the pluripotent archaeocytes, whether isolated from fully differentiated sponges (adult archaeocytes) or from HU-treated sponges (embryonic archaeocytes). Conversely, in differentiated cells such as pinacocytes and choanocytes, EmH-3 expression is very weak and similar to that found in the resting gemmules. On the other hand, another freshwater sponge homeobox-containing gene, prox1 from Ephydatia fluviatilis is expressed almost at the same level at all stages of development and in all the investigated cell populations. Together, these results suggest that EmH-3 plays a role in cell determination and/or differentiation. In particular EmH-3 would determine which archaeocytes will multiply and undergo differentiation and which ones will remain undifferentiated.
Collapse
Affiliation(s)
- E Richelle-Maurer
- Laboratoire de Physiologie Cellulaire et Génétique des Levures, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
26
|
Abstract
The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.
Collapse
Affiliation(s)
- A H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
27
|
Collins AG. Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci U S A 1998; 95:15458-63. [PMID: 9860990 PMCID: PMC28064 DOI: 10.1073/pnas.95.26.15458] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1998] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians.
Collapse
Affiliation(s)
- A G Collins
- Department of Integrative Biology, Museum of Paleontology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Abstract
Two burgeoning research trends are helping to reconstruct the evolution of the Hox cluster with greater detail and clarity. First, Hox genes are being studied in a broader phylogenetic sampling of taxa: the past year has witnessed important new data from teleost fishes, onychophorans, myriapods, polychaetes, glossiphoniid leeches, ribbon worms, and sea anemones. Second, commonly accepted notions of animal relationships are being challenged by alternative phylogenetic hypotheses that are causing us to rethink the evolutionary relationships of important metazoan lineages, especially arthropods, annelids, nematodes, and platyhelminthes.
Collapse
Affiliation(s)
- J R Finnerty
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, Illinois 60637, USA.
| | | |
Collapse
|