1
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
2
|
Zeng Q, Wan Y, Zhu P, Zhao M, Jiang F, Chen J, Tang M, Zhu X, Li Y, Zha H, Wang Y, Hu M, Mo X, Zhang Y, Chen Y, Chen Y, Ye X, Bodmer R, Ocorr K, Jiang Z, Zhuang J, Yuan W, Wu X. The bHLH Protein Nulp1 is Essential for Femur Development Via Acting as a Cofactor in Wnt Signaling in Drosophila. Curr Mol Med 2019; 17:509-517. [PMID: 29437009 PMCID: PMC5898038 DOI: 10.2174/1566524018666180212145714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/22/2022]
Abstract
Background: The basic helix-loop-helix (bHLH) protein families are a large class of transcription factors, which are associated with cell proliferation, tissue differentiation, and other important development processes. We reported that the Nuclear localized protein-1 (Nulp1) might act as a novel bHLH transcriptional factor to mediate cellular functions. However, its role in development in vivo remains unknown. Methods: Nulp1 (dNulp1) mutants are generated by CRISPR/Cas9 targeting the Domain of Unknown Function (DUF654) in its C terminal. Expression of Wg target genes are analyzed by qRT-PCR. We use the Top-Flash luciferase reporter assay to response to Wg signaling. Results: Here we show that Drosophila Nulp1 (dNulp1) mutants, generated by CRISPR/Cas9 targeting the Domain of Unknown Function (DUF654) in its C terminal, are partially homozygous lethal and the rare escapers have bent femurs, which are similar to the major manifestation of congenital bent-bone dysplasia in human Stuve-Weidemann syndrome. The fly phenotype can be rescued by dNulp1 over-expression, indicating that dNulp1 is essential for fly femur development and survival. Moreover, dNulp1 overexpression suppresses the notch wing phenotype caused by the overexpression of sgg/GSK3β, an inhibitor of the canonical Wnt cascade. Furthermore, qRT-PCR analyses show that seven target genes positively regulated by Wg signaling pathway are down-regulated in response to dNulp1 knockout, while two negatively regulated Wg targets are up-regulated in dNulp1 mutants. Finally, dNulp1 overexpression significantly activates the Top-Flash Wnt signaling reporter. Conclusion: We conclude that bHLH protein dNulp1 is essential for femur development and survival in Drosophila by acting as a positive cofactor in Wnt/Wingless signaling.
Collapse
Affiliation(s)
- Q Zeng
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wan
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - P Zhu
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - M Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - F Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Chen
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - M Tang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Zhu
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Y Li
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - H Zha
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - M Hu
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Mo
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Zhang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Chen
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Chen
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Ye
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - R Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - K Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Z Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Zhuang
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - W Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Wu
- The Center for Heart Development, State Key Laboratory of Development Biology, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
3
|
Divvela SSK, Nell P, Napirei M, Zaehres H, Chen J, Gerding WM, Nguyen HP, Gao S, Brand-Saberi B. bHLH Transcription Factor Math6 Antagonizes TGF-β Signalling in Reprogramming, Pluripotency and Early Cell Fate Decisions. Cells 2019; 8:cells8060529. [PMID: 31159500 PMCID: PMC6627693 DOI: 10.3390/cells8060529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor Math6 (Atonal homolog 8; Atoh8) plays a crucial role in a number of cellular processes during embryonic development, iron metabolism and tumorigenesis. We report here on its involvement in cellular reprogramming from fibroblasts to induced pluripotent stem cells, in the maintenance of pluripotency and in early fate decisions during murine development. Loss of Math6 disrupts mesenchymal-to-epithelial transition during reprogramming and primes pluripotent stem cells towards the mesendodermal fate. Math6 can thus be considered a regulator of reprogramming and pluripotent stem cell fate. Additionally, our results demonstrate the involvement of Math6 in SMAD-dependent TGF beta signalling. We furthermore monitor the presence of the Math6 protein during these developmental processes using a newly generated Math6Flag-tag mouse. Taken together, our results suggest that Math6 counteracts TGF beta signalling and, by this, affects the initiating step of cellular reprogramming, as well as the maintenance of pluripotency and early differentiation.
Collapse
Affiliation(s)
| | - Patrick Nell
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China.
- Leibniz Institut für Arbeitsforschung, Technische Universität Dortmund, 44139, Dortmund, Germany.
| | - Markus Napirei
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
| | - Jiayu Chen
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China.
| | - Wanda Maria Gerding
- Ruhr University Bochum, Medical Faculty, Department of Human Genetics, 44801 Bochum, Germany.
| | - Huu Phuc Nguyen
- Ruhr University Bochum, Medical Faculty, Department of Human Genetics, 44801 Bochum, Germany.
| | - Shaorong Gao
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China.
| | - Beate Brand-Saberi
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
| |
Collapse
|
4
|
Ding D, Xu L, Xu H, Li X, Liang Q, Zhao Y, Wang Y. Mash1 efficiently reprograms rat astrocytes into neurons. Neural Regen Res 2014; 9:25-32. [PMID: 25206740 PMCID: PMC4146312 DOI: 10.4103/1673-5374.125326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 01/25/2023] Open
Abstract
To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuronal characteristics. Moreover, β-tubulin expression levels were significantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.
Collapse
Affiliation(s)
- Daofang Ding
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leqin Xu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Li
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Liang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjian Zhao
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Roybon L, Mastracci TL, Ribeiro D, Sussel L, Brundin P, Li JY. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. ACTA ACUST UNITED AC 2009; 20:1234-44. [PMID: 19767311 DOI: 10.1093/cercor/bhp187] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During forebrain development, Mash1 directs gamma-aminobutyric acid (GABA)ergic neuron differentiation ventrally in the ganglionic eminences. Repression of Mash1 in the cortex is necessary to prevent the formation of GABAergic interneurons. Negative regulation of Mash1 has been attributed to members of the Neurogenin family; the genetic ablation of Neurogenin2 (Ngn2) leads to the derepression of Mash1 and the formation of ectopic GABAergic neurons in the cortex. We have developed an in vitro system to clarify the importance of NeuroD proteins in the Mash1 regulatory pathway. Using a neurosphere culture system, we show that the downstream effectors of the Ngn2 pathway NeuroD1 and NeuroD2 can abrogate GABAergic differentiation directed by Mash1. The ectopic expression of either of these genes in Mash1-expressing cells derived from the lateral ganglionic eminence, independently downregulate Mash1 expression without affecting expression of distal less homeodomain genes. This results in a complete loss of the GABAergic phenotype. Moreover, we demonstrate that ectopic expression of Mash1 in cortical progenitors is sufficient to phenocopy the loss of Ngn2 and strongly enhances ectopic GABAergic differentiation. Collectively, our results define the compensatory and cross-regulatory mechanisms that exist among basic helix-loop-helix transcription factors during neuronal fate specification.
Collapse
Affiliation(s)
- Laurent Roybon
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008; 319:406-15. [PMID: 18495103 DOI: 10.1016/j.ydbio.2008.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/16/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Recent work on the sea urchin endomesoderm gene regulatory network (GRN) offers many opportunities to study the specification and differentiation of each cell type during early development at a mechanistic level. The mesoderm lineages consist of two cell populations, primary and secondary mesenchyme cells (PMCs and SMCs). The micromere-PMC GRN governs the development of the larval skeleton, which is the exclusive fate of PMCs, and SMCs diverge into four lineages, each with its own GRN state. Here we identify a sea urchin ortholog of the Twist transcription factor, and show that it plays an essential role in the PMC GRN and later is involved in SMC formation. Perturbations of Twist either by morpholino knockdown or by overexpression result in defects in progressive phases of PMC development, including specification, ingression/EMT, differentiation and skeletogenesis. Evidence is presented that Twist expression is required for the maintenance of the PMC specification state, and a reciprocal regulation between Alx1 and Twist offers stability for the subsequent processes, such as PMC differentiation and skeletogenesis. These data illustrate the significance of regulatory state maintenance and continuous progression during cell specification, and the dynamics of the sequential events that depend on those earlier regulatory states.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
7
|
Lo PC, Zaffran S, Sénatore S, Frasch M. The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis. Dev Biol 2007; 311:287-96. [PMID: 17904115 PMCID: PMC2128039 DOI: 10.1016/j.ydbio.2007.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/01/2007] [Indexed: 01/05/2023]
Abstract
The Hand proteins of the bHLH family of transcriptional factors play critical roles in vertebrate cardiogenesis. In Drosophila, the single orthologous Hand gene is expressed in the developing embryonic dorsal vessel (heart), lymph glands, circular visceral musculature, and a subset of CNS cells. We demonstrate that the absence of Hand activity causes semilethality during the early larval instars. The dorsal vessel and midgut musculature are unaffected in null mutant embryos, but in a large fraction the lymph glands are missing. However, homozygous adult flies lacking Hand possess morphologically abnormal dorsal vessels characterized by a disorganized myofibrillar structure, reduced systolic and diastolic diameter, and abnormal heartbeat contractions, and suffer from premature lethality. In addition, their midguts are highly deformed; in the most severe cases, there is midgut blockage and a massive excess of ectopic peritrophic membrane tubules exiting a rupture in an anterior midgut bulge. Nevertheless, the visceral musculature appears to be relatively normal. Based on these phenotypes, we conclude that the expression of the Drosophila Hand gene in the dorsal vessel and circular visceral muscles is mainly required during pupal stages, when Hand participates in the proper hormone-dependent remodeling of the larval aorta into the adult heart and in the normal morphogenesis of the adult midgut endoderm during metamorphosis.
Collapse
Affiliation(s)
- Patrick C.H. Lo
- Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Stéphane Zaffran
- Developmental Biology Institute of Marseille-Luminy, CNRS URM 6216, Campus de Luminy, Case 907, 13009 Marseille, FRANCE
| | - Sébastien Sénatore
- Developmental Biology Institute of Marseille-Luminy, CNRS URM 6216, Campus de Luminy, Case 907, 13009 Marseille, FRANCE
| | - Manfred Frasch
- Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
- * Author for correspondence. Present address: Friedrich-Alexander University of Erlangen-Nuremberg, Inst. of Biology, Dept. of Developmental Biology, 91054 Erlangen, Germany), e-mail , tel ++49 9131 8528061, fax ++49 9131 8528040
| |
Collapse
|
8
|
Heidt AB, Rojas A, Harris IS, Black BL. Determinants of myogenic specificity within MyoD are required for noncanonical E box binding. Mol Cell Biol 2007; 27:5910-20. [PMID: 17562853 PMCID: PMC1952131 DOI: 10.1128/mcb.01700-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 11/27/2006] [Accepted: 05/21/2007] [Indexed: 11/20/2022] Open
Abstract
The MyoD family of basic helix-loop-helix (bHLH) transcription factors has the remarkable ability to induce myogenesis in vitro and in vivo. This myogenic specificity has been mapped to two amino acids in the basic domain, an alanine and threonine, referred to as the myogenic code. These essential determinants of myogenic specificity are conserved in all MyoD family members from worms to humans, yet their function in myogenesis is unclear. Induction of the muscle transcriptional program requires that MyoD be able to locate and stably bind to sequences present in the promoter regions of critical muscle genes. Recent studies have shown that MyoD binds to noncanonical E boxes in the myogenin gene, a critical locus required for myogenesis, through interactions with resident heterodimers of the HOX-TALE transcription factors Pbx1A and Meis1. In the present study, we show that the myogenic code is required for MyoD to bind to noncanonical E boxes in the myogenin promoter and for the formation of a tetrameric complex with Pbx/Meis. We also show that these essential determinants of myogenesis are sufficient to confer noncanonical E box binding to the E12 basic domain. Thus, these data show that noncanonical E box binding correlates with myogenic potential, and we speculate that the myogenic code residues in MyoD function as myogenic determinants via their role in noncanonical E box binding and recognition.
Collapse
Affiliation(s)
- Analeah B Heidt
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
9
|
Zhong Y, Jiang L, Hiai H, Toyokuni S, Yamada Y. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 2007; 26:6937-47. [PMID: 17486074 DOI: 10.1038/sj.onc.1210494] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LYL1, a member of the class II basic helix-loop-helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1alpha promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Dimerization
- Gene Rearrangement, T-Lymphocyte
- Helix-Loop-Helix Motifs
- Humans
- Immunophenotyping
- Immunoprecipitation
- Luciferases/metabolism
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Two-Hybrid System Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Y Zhong
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
10
|
Cai J, Jabs EW. A twisted hand: bHLH protein phosphorylation and dimerization regulate limb development. Bioessays 2005; 27:1102-6. [PMID: 16237669 DOI: 10.1002/bies.20313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saethre-Chotzen syndrome (SCS), a human autosomal dominant condition with limb defects and craniosynostosis, is caused by haploinsufficiency of TWIST1, a basic helix-loop-helix (bHLH) transcription factor. Until recently, the molecular pathogenesis of the limb defects in SCS has not been well understood. Now, Firulli et al.1 show in mouse and chick that ectopic expression of a related bHLH protein, Hand2, results in phenocopies of the limb defects caused by Twist1 loss-of-function mutations. These two proteins interact in a dosage-dependent antagonistic manner, and both can be regulated through phosphorylation at conserved helix I amino acid residues. These findings provide an important link between the misregulation of Twist1 dimerization and the limb phenotypes observed in SCS.
Collapse
Affiliation(s)
- Juanliang Cai
- Institute of Genetic Medicine, Center for Craniofacial Development and Disorders, The Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|