1
|
Kim DI, Kang SJ, Jhang J, Jo YS, Park S, Ye M, Pyeon GH, Im GH, Kim SG, Han S. Encoding opposing valences through frequency-dependent transmitter switching in single peptidergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622790. [PMID: 39574736 PMCID: PMC11581014 DOI: 10.1101/2024.11.09.622790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peptidergic neurons often co-express fast transmitters and neuropeptides in separate vesicles with distinct release properties. However, the release dynamics of each transmitter in various contexts have not been fully understood in behaving animals. Here, we demonstrate that calcitonin gene-related peptide (CGRP) neurons in the external lateral subdivision of the parabrachial nucleus (CGRPPBel) encode opposing valence via differential release, rather than co-release, of glutamate and neuropeptides, according to firing rate. Glutamate is released preferentially at lower firing rates with minimal release at higher firing rates, whereas neuropeptides are released at higher firing rates, resulting in frequency-dependent switching of transmitters. Aversive stimuli evoke high frequency responses with accompanying neuropeptide release to encode negative valence, whereas appetitive stimuli evoke low frequency responses with glutamate release to encode positive valence. Our study reveals a previously unknown capability of single CGRPPBel neurons to bidirectionally encode valence via frequency-dependent differential release of transmitters in vivo.
Collapse
Affiliation(s)
- Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Sukjae J. Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Jinho Jhang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Yong S. Jo
- School of Psychology, Korea University; Seoul, Republic of Korea
| | - Seahyung Park
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Mao Ye
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Gyeong Hee Pyeon
- School of Psychology, Korea University; Seoul, Republic of Korea
| | - Geun-Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science; Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science; Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University; Suwon, Republic of Korea
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science; Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University; Suwon, Republic of Korea
| |
Collapse
|
2
|
Kim DI, Park S, Park S, Ye M, Chen JY, Kang SJ, Jhang J, Hunker AC, Zweifel LS, Caron KM, Vaughan JM, Saghatelian A, Palmiter RD, Han S. Presynaptic sensor and silencer of peptidergic transmission reveal neuropeptides as primary transmitters in pontine fear circuit. Cell 2024; 187:5102-5117.e16. [PMID: 39043179 PMCID: PMC11380597 DOI: 10.1016/j.cell.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/17/2023] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs. Using these tools, we show that neuropeptides, not glutamate, encode the unconditioned stimulus in the parabrachial-to-amygdalar threat pathway during Pavlovian threat learning. We also show that neuropeptides play important roles in encoding positive valence and suppressing conditioned threat response in the amygdala-to-parabrachial endogenous opioidergic circuit. These results show that our sensor and silencer for presynaptic peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake, behaving animals.
Collapse
Affiliation(s)
- Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sekun Park
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Seahyung Park
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mao Ye
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jane Y Chen
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jinho Jhang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan M Vaughan
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Kim DI, Park S, Ye M, Chen JY, Jhang J, Hunker AC, Zweifel LS, Palmiter RD, Han S. Novel genetically encoded tools for imaging or silencing neuropeptide release from presynaptic terminals in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524797. [PMID: 36712060 PMCID: PMC9882317 DOI: 10.1101/2023.01.19.524797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neurons produce and release neuropeptides to communicate with one another. Despite their profound impact on critical brain functions, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects the neuropeptides release presynaptically, and a genetically encoded silencer that specifically degrades neuropeptides inside the LDCV. Monitoring and silencing peptidergic and glutamatergic transmissions from presynaptic terminals using our newly developed tools and existing genetic tools, respectively, reveal that neuropeptides, not glutamate, are the primary transmitter in encoding unconditioned stimulus during Pavlovian threat learning. These results show that our sensor and silencer for peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake behaving animals.
Collapse
Affiliation(s)
- Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sekun Park
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Mao Ye
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jane Y. Chen
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jinho Jhang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Avery C. Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D. Palmiter
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Merighi A, Salio C, Ferrini F, Lossi L. Neuromodulatory function of neuropeptides in the normal CNS. J Chem Neuroanat 2011; 42:276-87. [PMID: 21385606 DOI: 10.1016/j.jchemneu.2011.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 01/15/2023]
Abstract
Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.
Collapse
Affiliation(s)
- Adalberto Merighi
- University of Turin, Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Torino, Italy.
| | | | | | | |
Collapse
|
5
|
Salio C, Lossi L, Ferrini F, Merighi A. Neuropeptides as synaptic transmitters. Cell Tissue Res 2006; 326:583-98. [PMID: 16847638 DOI: 10.1007/s00441-006-0268-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.
Collapse
Affiliation(s)
- Chiara Salio
- Dipartimento di Morfofisiologia Veterinaria and Rita Levi Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
6
|
Abstract
The term neuropeptides commonly refers to a relatively large number of biologically active molecules that have been localized to discrete cell populations of central and peripheral neurons. I review here the most important histological and functional findings on neuropeptide distribution in the central nervous system (CNS), in relation to their role in the exchange of information between the nerve cells. Under this perspective, peptide costorage (presence of two or more peptides within the same subcellular compartment) and coexistence (concurrent presence of peptides and other messenger molecules within single nerve cells) are discussed in detail. In particular, the subcellular site(s) of storage and sorting mechanisms within neurons are thoroughly examined in the view of the mode of release and action of neuropeptides as neuronal messengers. Moreover, the relationship of neuropeptides and other molecules implicated in neural transmission is discussed in functional terms, also referring to the interactions with novel unconventional transmitters and trophic factors. Finally, a brief account is given on the presence of neuropeptides in glial cells.
Collapse
Affiliation(s)
- A Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, University of Torino, UE, Italy.
| |
Collapse
|
7
|
Abstract
Considering the mechanisms responsible for age- and Alzheimer's disease (AD)-related neuronal degeneration, little attention was paid to the opposing relationships between the energy-rich phosphates, mainly the availability of the adenosine triphosphate (ATP), and the activity of the glutamic acid decarboxylase (GAD), the rate-limiting enzyme synthesizing the gamma-amino butyric acid (GABA). Here, it is postulated that in all neuronal phenotypes the declining ATP-mediated negative control of GABA synthesis gradually declines and results in age- and AD-related increases of GABA synthesis. The Ca2+-independent carrier-mediated GABA release interferes with Ca2+-dependent exocytotic release of all transmitter-modulators, because the interstitial (ambient) GABA acts on axonal preterminal and terminal varicosities endowed with depolarizing GABA(A)-benzodiazepine receptors; this makes GABA the "executor" of virtually all age- and AD-related neurodegenerative processes. Such a role of GABA is diametrically opposite to that in the perinatal phase, when the carrier-mediated GABA release, acting on GABA(A)/chloride ionophore receptors, positively controls chemotactic migration of neuronal precursor cells, has trophic actions and initiates synaptogenesis, thereby enabling retrograde axonal transport of target produced factors that trigger differentiation of neuronal phenotypes. However, with advancing age, and prematurely in AD, the declining mitochondrial ATP synthesis unleashes GABA synthesis, and its carrier-mediated release blocks Ca2+-dependent exocytotic release of all transmitter-modulators, leading to dystrophy of chronically depolarized axon terminals and block of retrograde transport of target-produced trophins, causing "starvation" and death of neuronal somata. The above scenario is consistent with the following observations: 1) a 10-month daily administration to aging rats of the GABA-chloride ionophore antagonist, pentylenetetrazol, or of the BDZ antagonist, flumazenil (FL), each forestalls the age-related decline in cognitive functions and losses of hippocampal neurons; 2) the brains of aging rats, relative to young animals, and the postmortem brains of AD patients, relative to age-matched controls, show up to two-fold increases in GABA synthesis; 3) the aging humans and those showing symptoms of AD, as well as the aging nonhuman primates and rodents--all show in the forebrain dystrophic axonal varicosities, losses of transmitter vesicles, and swollen mitochondria. These markers, currently regarded as the earliest signs of aging and AD, can be reproduced in vitro cell cultures by 1 microM GABA; the development of these markers can be prevented by substituting Cl- with SO4(2-); 4) the extrasynaptic GABA suppresses the membrane Na+, K+-ATPase and ion pumping, while the resulting depolarization of soma-dendrites relieves the "protective" voltage-dependent Mg2+ control of the N-methyl-D-aspartate (NMDA) channels, thereby enabling Ca2+-dependent persistent toxic actions of the excitatory amino acids (EAA); and 5) in whole-cell patch-clamp recording from neurons of aging rats, relative to young rats, the application of 3 microM GABA, causes twofold increases in the whole-cell membrane Cl- conductances and a loss of the physiologically important neuronal ability to desensitize to repeated GABA applications. These age-related alterations in neuronal membrane functions are amplified by 150% in the presence of agonists of BDZ recognition sites located on GABA receptor. The GABA deafferentation hypothesis also accounts for the age- and AD-related degeneration in the forebrain ascending cholinergic, glutamatergic, and the ascending mesencephalic monoaminergic system, despite that the latter, to foster the distribution-utilization of locally produced trophins, evolved syncytium-like connectivities among neuronal somata, axon collaterals, and dendrites, to bidirectionally transport trophins. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- T J Marczynski
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
8
|
Fenoglio C, Scherini E, Necchi D, Soldani C, Bernocchi G. Perineuronal glial system in the cerebral ganglion of active and hibernating Helix aspersa. Tissue Cell 1997; 29:561-72. [DOI: 10.1016/s0040-8166(97)80056-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Accepted: 05/12/1997] [Indexed: 10/25/2022]
|
9
|
Lukaszyk I, Kraszpulski M, Wrzołkowa T. Pericapillary and distant axon terminals in the nuclei of the cat amygdala: a morphometric study. ANATOMY AND EMBRYOLOGY 1996; 193:297-302. [PMID: 8881478 DOI: 10.1007/bf00198332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
According to some ultrastructural studies, the pericapillary axon terminals in the central nervous system (CNS) are functionally connected with the capillary vessel wall. Thus, it may be expected that the population of pericapillary axon terminals will be morphologically distinct from the terminals at a further distance from the capillary walls. To test this hypothesis, morphometrical analysis of 3,048 axon terminals was performed, comparing terminals situated in the close vicinity of the capillary vessel with those at a distance from the vessels in the lateral, basal, medial, central and cortical nuclei of the amygdaloid body of eight cats. The cross-sectional area and circumference of each identified axon terminal profile were measured, and the shape of synaptic vesicles and the presence of synaptic contacts and granular vesicles were recorded. The statistical evaluation of results was performed by means of the Newman-Keuls' test, Wilcoxon's test, Fisher's contingency-table test and the test for two coefficients of structure. The morphometric examination revealed two ultrastructurally distinct groups of axon terminals, pericapillary and distant terminals, in all the nuclei of the amygdaloid body. The differentiating features were the shape of the synaptic vesicles, the number of synaptic contacts, and the size of the axon terminals. These results further support the hypothesis of a functional connection between axon terminals and the capillary vessel wall in the CNS.
Collapse
Affiliation(s)
- I Lukaszyk
- Laboratory of Electron Microscopy, Medical University of Gdańsk, Poland
| | | | | |
Collapse
|