1
|
Cassiano TDSA, Bonfim VDSA, Neto PHDO, da Silva Filho DA. Vibrational effects on polarizability: insights from normal mode analysis. Sci Rep 2025; 15:11580. [PMID: 40185791 PMCID: PMC11971279 DOI: 10.1038/s41598-025-88066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/23/2025] [Indexed: 04/07/2025] Open
Abstract
The performance of sensing and optical devices is closely linked to the molecular polarizability response, a property significantly influenced by the polarizability tensor's isotropic and anisotropic components. In this study, we investigate the impact of vibrational motion on polarizability. We analyze how intramolecular vibrations affect the polar properties of molecules commonly employed in refrigerants and gas detection technologies. Our computational estimates align well with experimental data. It is revealed that vibrational effects can introduce uncertainties of up to 6% in sensing devices and 50% in optical devices due to nuclear oscillations. Furthermore, normal mode analysis highlights specific vibrational modes that enhance molecular polarizability.
Collapse
Affiliation(s)
| | - Víctor de Souza Assumção Bonfim
- Institute of Physics, University of Brasília, Brasília, 70919-970, Brazil
- International Center of Physics, University of Brasília, Brasília, 70910-900, Brazil
| | - Pedro Henrique de Oliveira Neto
- Institute of Physics, University of Brasília, Brasília, 70919-970, Brazil
- International Center of Physics, University of Brasília, Brasília, 70910-900, Brazil
| | | |
Collapse
|
2
|
Filippi U, Toso S, Zaffalon ML, Pianetti A, Li Z, Marras S, Goldoni L, Meinardi F, Brovelli S, Baranov D, Manna L. Cooling-Induced Order-Disorder Phase Transition in CsPbBr 3 Nanocrystal Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410949. [PMID: 39568247 PMCID: PMC11756043 DOI: 10.1002/adma.202410949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Perovskite nanocrystal superlattices are being actively studied after reports have emerged on collective excitonic properties at cryogenic temperatures, where energetic disorder is minimized due to the frozen lattice vibrations. However, an important issue related to structural disorder of superlattices at low temperatures has received little attention to date. In this work, it is shown that CsPbBr3 nanocrystal superlattices undergo a reversible order-disorder transition upon cooling to 90 K. The transition consists of the loss of structural coherence, that is, increased nanocrystal misalignment, and contraction of the superlattices, as revealed by temperature-dependent X-ray diffraction, and is ascribed to the solidification of ligands (on the basis of Raman spectroscopy). Introducing shorter amines on the nanocrystal surface allows to mitigate these changes, improve order, and shorten interparticle distance. It is demonstrated that the low temperature phase of the short ligand-capped nanocrystal superlattices is characterized by a strong exciton migration observable in the photoluminescence decay, which is due to the shrinkage of the inter-nanocrystal distance.
Collapse
Affiliation(s)
- Umberto Filippi
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
- International Doctoral Program in ScienceUniversità Cattolica del Sacro CuoreBrescia25121Italy
| | - Stefano Toso
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Matteo L. Zaffalon
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Andrea Pianetti
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
| | - Zhanzhao Li
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Sergio Marras
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Luca Goldoni
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Francesco Meinardi
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Sergio Brovelli
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Dmitry Baranov
- Division of Chemical Physics and NanoLundDepartment of ChemistryLund UniversityP.O. Box, 124LundSE‐221 00Sweden
| | - Liberato Manna
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| |
Collapse
|
3
|
Maller C, Marouda E, Köhn M. Photo-Claisen Rearrangement in a Coumarin-Caged Peptide Leads to a Surprising Enzyme Hyperactivation. Chembiochem 2024; 25:e202400561. [PMID: 39172538 DOI: 10.1002/cbic.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Protein phosphatase-1 (PP1) is a ubiquitous enzyme that counteracts hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group as a photocage to control PDP activity, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency of photocages and highlight the need for comprehensive in vitro analysis before cellular experiments.
Collapse
Affiliation(s)
- Corina Maller
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstrasse 27, Freiburg, 79104, Germany
| | - Eirini Marouda
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| |
Collapse
|
4
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
5
|
Harris PD, Ben Eliezer N, Keren N, Lerner E. Phytoplankton cell-states: multiparameter fluorescence lifetime flow-based monitoring reveals cellular heterogeneity. FEBS J 2024; 291:4125-4141. [PMID: 39110124 DOI: 10.1111/febs.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024]
Abstract
Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nadav Ben Eliezer
- Department of Plant Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nir Keren
- Department of Plant Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
6
|
Işık M, Kısaçam MA. Readily Accessible and Brightly Fluorogenic BODIPY/NBD-Tetrazines via S NAr Reactions. J Org Chem 2024; 89:6513-6519. [PMID: 38598957 PMCID: PMC11077493 DOI: 10.1021/acs.joc.3c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
We describe SNAr reactions of some commercial amino-tetrazines and halo-dyes, which give efficiently quenched BODIPY/NBD-tetrazines (ΦFl < 0.01) in high yields and, importantly, with high purities affordable via simple silica gel chromatography only. The dyes exhibit large Stokes shifts, moderate environmental sensitivity, and emission enhancements (up to 193-fold) upon Tz ligation with BCN─a strained dienophile. They successfully serve as labels for HSA protein premodified with BCN, resulting in bright blue-green emission upon ligation.
Collapse
Affiliation(s)
- Murat Işık
- Department
of Food Engineering, Bingöl University, 12000 Bingöl, Türkiye
| | - Mehmet Ali Kısaçam
- Department
of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
7
|
Schauenburg D, Gao B, Rochet LNC, Schüler D, Coelho JAS, Ng DYW, Chudasama V, Kuan SL, Weil T. Macrocyclic Dual-Locked "Turn-On" Drug for Selective and Traceless Release in Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202314143. [PMID: 38179812 DOI: 10.1002/anie.202314143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Bingjie Gao
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Léa N C Rochet
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Darijan Schüler
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - David Y W Ng
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
8
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
9
|
Liu FT, Jiang PF, Wang YP, Zhao BX, Lin ZM. A ratiometric fluorescent probe based on the FRET platform for the detection of sulfur dioxide derivatives and viscosity. Anal Chim Acta 2024; 1288:342184. [PMID: 38220311 DOI: 10.1016/j.aca.2023.342184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Sulfur dioxide (SO2) is a common gaseous pollutant that significantly threatens environmental pollution and human health. Meanwhile, viscosity is an essential parameter of the intracellular microenvironment, manipulating many physiological roles such as nutrient transport, metabolism, signaling regulation and apoptosis. Currently, most of the fluorescent probes used for detecting SO2 derivatives and viscosity are single-emission probes or probes based on the ICT mechanism, which suffer from short emission wavelengths, small Stokes shifts or susceptibility to environmental background. Therefore, the development of powerful high-performance probes for real-time monitoring of sulfur dioxide derivatives and viscosity is of great significance for human health. RESULTS In this research, we designed the fluorescent probe QQC to detect SO2 derivatives and viscosity based on FRET platform with quinolinium salt as donor and quinolinium-carbazole as acceptor. QQC exhibited a ratiometric fluorescence response to SO2 with a low detection limit (0.09 μM), large Stokes shift (186 nm) and high energy transfer efficiency (95 %), indicating that probe QQC had good sensitivity and specificity. In addition, QQC was sensitive to viscosity, with an 9.10-folds enhancement of orange fluorescence and an excellent linear relationship (R2 = 0.98) between the logarithm of fluorescence intensity at 592 nm and viscosity. Importantly, QQC could not only recognize SO2 derivatives in real water samples and food, but also detect viscosity changes caused by food thickeners and thereby had broad market application prospects. SIGNIFICANCE We have developed a ratiometric fluorescent probe based on the FRET platform for detecting sulfur dioxide derivatives and viscosity. QQC could not only successfully detect SO2 derivatives in food and water samples, but also be made into test strips for detecting HSO3-/SO32- solution. In addition, the probe was also used to detect viscosity changes caused by food thickeners. Therefore, this novel probe had significant value in food and environmental detection applications.
Collapse
Affiliation(s)
- Feng-Ting Liu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Peng-Fei Jiang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yan-Pu Wang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250033, PR China.
| |
Collapse
|
10
|
Khusainova AI, Nizamutdinov AS, Shamsutdinov NI, Kalinichenko S, Safin DI, Gafurov M, Lukinova EV, Batygov SK, Kuznetsov SV, Zinchenko SV, Zelenikhin PV, Pudovkin M. Photo- and X-ray Induced Cytotoxicity of CeF 3-YF 3-TbF 3 Nanoparticle-Polyvinylpyrrolidone-"Radachlorin" Composites for Combined Photodynamic Therapy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:316. [PMID: 38255483 PMCID: PMC10817462 DOI: 10.3390/ma17020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The Ce0.5Y0.35Tb0.15F3 nanoparticles with a CeF3 hexagonal structure were synthesized using the co-precipitation technique. The average nanoparticle diameter was 14 ± 1 nm. The luminescence decay curves of the Ce0.5Y0.35Tb0.15F3 nanoparticles (λem = 541 nm, 5D4-7F5 transition of Tb3+) conjugated with Radachlorin using polyvinylpyrrolidone coating as well as without Radachlorin were detected. Efficient nonradiative energy transfer from Tb3+ to the Radachlorin was demonstrated. The maximum energy transfer coefficients for the nanoparticles conjugated with Radachlorin via polyvinylpyrrolidone and without the coating were 82% and 55%, respectively. The average distance between the nanoparticle surface and Radachlorin was R0 = 4.5 nm. The best results for X-ray-induced cytotoxicity were observed for the NP-PVP-Rch sample at the lowest Rch concentration. In particular, after X-ray irradiation, the survival of A549 human lung carcinoma cells decreased by ~12%.
Collapse
Affiliation(s)
- Alina I. Khusainova
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Alexey S. Nizamutdinov
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Nail I. Shamsutdinov
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Svetlana Kalinichenko
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Damir I. Safin
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Elena V. Lukinova
- Department of General Chemistry, Belgorod State National Research University, 85 Pobedy Str., 308015 Belgorod, Russia;
| | - Sergey Kh. Batygov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (S.K.B.)
| | - Sergey V. Kuznetsov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (S.K.B.)
| | - Sergey V. Zinchenko
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Pavel V. Zelenikhin
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| | - Maksim Pudovkin
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia (N.I.S.); (S.K.); (D.I.S.); (S.V.Z.); (P.V.Z.); (M.P.)
| |
Collapse
|
11
|
Bowman AJ, Huang C, Schnitzer MJ, Kasevich MA. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo. Science 2023; 380:1270-1275. [PMID: 37347862 PMCID: PMC10361454 DOI: 10.1126/science.adf9725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The development of voltage-sensitive fluorescent probes suggests fluorescence lifetime as a promising readout for electrical activity in biological systems. Existing approaches fail to achieve the speed and sensitivity required for voltage imaging in neuroscience applications. We demonstrated that wide-field electro-optic fluorescence lifetime imaging microscopy (EO-FLIM) allows lifetime imaging at kilohertz frame-acquisition rates, spatially resolving action potential propagation and subthreshold neural activity in live adult Drosophila. Lifetime resolutions of <5 picoseconds at 1 kilohertz were achieved for single-cell voltage recordings. Lifetime readout is limited by photon shot noise, and the method provides strong rejection of motion artifacts and technical noise sources. Recordings revealed local transmembrane depolarizations, two types of spikes with distinct fluorescence lifetimes, and phase locking of spikes to an external mechanical stimulus.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kasevich
- Physics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Liu K, Zhang Y, Zhang W, Liu L, Yu Z. A Study on the Interactions of Proteinase K with Myricetin and Myricitrin by Multi-Spectroscopy and Molecular Modeling. Int J Mol Sci 2023; 24:ijms24065317. [PMID: 36982397 PMCID: PMC10048853 DOI: 10.3390/ijms24065317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Myricetin (MYR) and myricitrin (MYT) are well recognized for their nutraceutical value, such as antioxidant, hypoglycemic, and hypotensive effects. In this work, fluorescence spectroscopy and molecular modeling were adopted to investigate the conformational and stability changes of proteinase K (PK) in the presence of MYR and MYT. The experimental results showed that both MYR and MYT could quench fluorescence emission via a static quenching mechanism. Further investigation demonstrated that both hydrogen bonding and van der Waals forces play significant roles in the binding of complexes, which is consistent with the conclusions of molecular modeling. Synchronous fluorescence spectroscopy, Förster resonance energy transfer, and site-tagged competition experiments were performed to prove that the binding of MYR or MYT to PK could alter its micro-environment and conformation. Molecular docking results revealed that either MYR or MYT spontaneously interacted with PK at a single binding site via hydrogen bonding and hydrophobic interactions, which is consistent with the results of spectroscopic measurements. A 30 ns molecular dynamics simulation was conducted for both PK-MYR and PK-MYT complexes. The calculation results showed that no large structural distortions or interaction changes occurred during the entire simulation time span. The average RMSD changes of PK in PK-MYR and PK-MYT were 2.06 and 2.15 Å, respectively, indicating excellent stability of both complexes. The molecular simulation results suggested that both MYR and MYT could interact with PK spontaneously, which is in agreement with spectroscopic results. This agreement between experimental and theoretical results indicates that the method herein could be feasible and worthwhile for protein–ligand complex studies.
Collapse
Affiliation(s)
- Kefan Liu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Yubo Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Liyan Liu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhan Yu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- Provincial Key Laboratory for Separation and Analysis of Complex Systems in Liaoning Universities, Shenyang Normal University, Shenyang 110034, China
- Correspondence:
| |
Collapse
|
13
|
Pratap R, Vishal V, Chaudhary S, Parmar AS. Fabrication of white light emitting diodes via high yield surface passivated carbon quantum dots doped with terbium. RSC Adv 2023; 13:1974-1984. [PMID: 36688058 PMCID: PMC9832327 DOI: 10.1039/d2ra07890b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Exploiting the unique characteristics of various materials to create novel hybrid materials opens up innovative possibilities for cutting-edge applications across numerous fields. Here, we have synthesized novel surface functionalized photoluminescent carbon quantum dots (CQDs) doped with a rare-earth element (Tb3+) for white light emitting diodes. High quantum yield CQDs were produced utilizing Plumeria leaves as a precursor using a one-step hydrothermal approach, and further, its optical characterization was thoroughly investigated. Herein, the functionalized CQDs demonstrate excitation-independent electroluminescence performance. The UV-LED chip and functionalized CQD were combined to create a device that emits cold white light with Commission Internationale de L'Eclairage coordinates of (0.33, 0.34), a corresponding correlated color temperature of 4995 K and color rendering index of 84.2.
Collapse
Affiliation(s)
- Ravi Pratap
- Department of Physics, Indian Institute of Technology (BHU) VaranasiVaranasiIndia
| | - Vipul Vishal
- School of Medical Science and Technology, Indian Institute of Technology KharagpurKharagpurIndia
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University)ChandigarhIndia
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU) VaranasiVaranasiIndia
| |
Collapse
|
14
|
Ashworth EK, Langeland J, Stockett MH, Lindkvist TT, Kjær C, Bull JN, Nielsen SB. Cryogenic Fluorescence Spectroscopy of Ionic Fluorones in Gaseous and Condensed Phases: New Light on Their Intrinsic Photophysics. J Phys Chem A 2022; 126:9553-9563. [PMID: 36529970 DOI: 10.1021/acs.jpca.2c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescence spectroscopy of gas-phase ions generated through electrospray ionization is an emerging technique able to probe intrinsic molecular photophysics directly without perturbations from solvent interactions. While there is ample scope for the ongoing development of gas-phase fluorescence techniques, the recent expansion into low-temperature operating conditions accesses a wealth of data on intrinsic fluorophore photophysics, offering enhanced spectral resolution compared with room-temperature measurements, without matrix effects hindering the excited-state dynamics. This perspective reviews current progress on understanding the photophysics of anionic fluorone dyes, which exhibit an unusually large Stokes shift in the gas phase, and discusses how comparison of gas- and condensed-phase fluorescence spectra can fingerprint structural dynamics. The capacity for temperature-dependent measurements of both fluorescence emission and excitation spectra helps establish the foundation for the use of fluorone dyes as fluorescent tags in macromolecular structure determination. We suggest ideas for technique development.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691Stockholm, Sweden
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - James N Bull
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | | |
Collapse
|
15
|
Guaglianone G, Torrado B, Lin YF, Watkins MC, Wysocki VH, Gratton E, Nowick JS. Elucidating the Oligomerization and Cellular Interactions of a Trimer Derived from Aβ through Fluorescence and Mass Spectrometric Studies. ACS Chem Neurosci 2022; 13:2473-2482. [PMID: 35892278 PMCID: PMC9389591 DOI: 10.1021/acschemneuro.2c00313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 01/20/2023] Open
Abstract
Aβ oligomers play a central role in the neurodegeneration observed with Alzheimer's disease. Our laboratory has developed covalently stabilized trimers derived from residues 17-36 of Aβ as model systems for studying Aβ oligomers. In the current study, we apply the emerging techniques of fluorescence lifetime imaging microscopy (FLIM) and native mass spectrometry (native MS) to better understand the assembly and interactions of the oligomer model system 2AT-L in aqueous solutions and with cells. 2AT-L and fluorescently labeled 2AT-L analogues assemble in the membrane-like environment of SDS-PAGE, showing diffuse bands of oligomers in equilibrium. Native ion mobility-mass spectrometry (native IM-MS) of 2AT-L allows for the identification of discrete oligomers in solution and shows similar patterns of oligomer formation between 2AT-L and fluorescently labeled analogues. Fluorescence microscopy with SH-SY5Y cells reveals that fluorescently labeled 2AT-L analogues colocalize within lysosomes. FLIM studies with phasor analysis further elucidate the assembly of 2AT-L within cells and establish the occurrence of FRET, indicating the presence of oligomers within cells. Collectively, these multiple complementary techniques help better understand the complex behavior of the 2AT-L model system.
Collapse
Affiliation(s)
- Gretchen Guaglianone
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Belén Torrado
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Yu-Fu Lin
- Resource
for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Matthew C. Watkins
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Vicki H. Wysocki
- Resource
for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Enrico Gratton
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - James S. Nowick
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
16
|
Asemi NN, Aljaafreh MJ, Prasad S, Aldawood S, AlSalhi MS, Aldaghri O. Efficient liquid scintillator loaded with a light-emitting conjugated oligomer for beta- and gamma-ray spectroscopic measurements. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
18
|
Valdez S, Robertson M, Qiang Z. Fluorescence Resonance Energy Transfer Measurements in Polymer Science: A Review. Macromol Rapid Commun 2022; 43:e2200421. [PMID: 35689335 DOI: 10.1002/marc.202200421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Indexed: 12/27/2022]
Abstract
Fluorescence resonance energy transfer (FRET) is a non-invasive characterization method for studying molecular structures and dynamics, providing high spatial resolution at nanometer scale. Over the past decades, FRET-based measurements are developed and widely implemented in synthetic polymer systems for understanding and detecting a variety of nanoscale phenomena, enabling significant advances in polymer science. In this review, the basic principles of fluorescence and FRET are briefly discussed. Several representative research areas are highlighted, where FRET spectroscopy and imaging can be employed to reveal polymer morphology and kinetics. These examples include understanding polymer micelle formation and stability, detecting guest molecule release from polymer host, characterizing supramolecular assembly, imaging composite interfaces, and determining polymer chain conformations and their diffusion kinetics. Finally, a perspective on the opportunities of FRET-based measurements is provided for further allowing their greater contributions in this exciting area.
Collapse
Affiliation(s)
- Sara Valdez
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
19
|
Brett MW, Gordon CK, Hardy J, Davis NJLK. The Rise and Future of Discrete Organic-Inorganic Hybrid Nanomaterials. ACS PHYSICAL CHEMISTRY AU 2022; 2:364-387. [PMID: 36855686 PMCID: PMC9955269 DOI: 10.1021/acsphyschemau.2c00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid nanomaterials (HNs), the combination of organic semiconductor ligands attached to nanocrystal semiconductor quantum dots, have applications that span a range of practical fields, including biology, chemistry, medical imaging, and optoelectronics. Specifically, HNs operate as discrete, tunable systems that can perform prompt fluorescence, energy transfer, singlet fission, upconversion, and/or thermally activated delayed fluorescence. Interest in HNs has naturally grown over the years due to their tunability and broad spectrum of applications. This Review presents a brief introduction to the components of HNs, before expanding on the characterization and applications of HNs. Finally, the future of HN applications is discussed.
Collapse
|
20
|
Lichtenegger MF, Drewniok J, Bornschlegl A, Lampe C, Singldinger A, Henke NA, Urban AS. Electron-Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films. ACS NANO 2022; 16:6317-6324. [PMID: 35302740 DOI: 10.1021/acsnano.2c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional halide perovskite nanoplatelets (NPLs) have exceptional light-emitting properties, including wide spectral tunability, ultrafast radiative decays, high quantum yields (QY), and oriented emission. Due to the high binding energies of electron-hole pairs, excitons are generally considered the dominant species responsible for carrier transfer in NPL films. To realize efficient devices, it is imperative to understand how exciton transport progresses therein. We employ spatially and temporally resolved optical microscopy to map exciton diffusion in perovskite nanocrystal (NC) thin films between 15 °C and 55 °C. At room temperature (RT), we find the diffusion length to be inversely correlated to the thickness of the nanocrystals (NCs). With increasing temperatures, exciton diffusion declines for all NC films, but at different rates. This leads to specific temperature turnover points, at which thinner NPLs exhibit higher diffusion lengths. We attribute this anomalous diffusion behavior to the coexistence of excitons and free electron hole-pairs inside the individual NCs within our temperature range. The organic ligand shell surrounding the NCs prevents charge transfer. Accordingly, any time an electron-hole pair spends in the unbound state reduces the FRET-mediated inter-NC transfer rates and, consequently, the overall diffusion. These results clarify how exciton diffusion progresses in strongly confined halide perovskite NC films, emphasizing critical considerations for optoelectronic devices.
Collapse
Affiliation(s)
- Michael F Lichtenegger
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Jan Drewniok
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Andreas Bornschlegl
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Carola Lampe
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Andreas Singldinger
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Nina A Henke
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| |
Collapse
|
21
|
Lim J, Petersen M, Bunz M, Simon C, Schindler M. Flow cytometry based-FRET: basics, novel developments and future perspectives. Cell Mol Life Sci 2022; 79:217. [PMID: 35352201 PMCID: PMC8964568 DOI: 10.1007/s00018-022-04232-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
Abstract
Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Simon
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
KAKIMOVA Z, ZHARYKBASOVA K, KAKIMOV A, MIRASHEVA G, TOLEUBEKOVA S, ZHARYKBASOV Y, TULKEBAYEVA G, MURATBAYEV A, UTEGENOVA A. Study on the detection of antibiotics in food based on enzyme - free labelless aptamer sensor. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|
24
|
Excitation polarization angle-resolved single-laser dual-polarization energy transfer on the cell surface. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
26
|
Jin R, Grasso M, Zhou M, Marmorstein R, Baumgart T. Unfolding Mechanisms and Conformational Stability of the Dimeric Endophilin N-BAR Domain. ACS OMEGA 2021; 6:20790-20803. [PMID: 34423187 PMCID: PMC8374900 DOI: 10.1021/acsomega.1c01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Endophilin, which is a member of the Bin-amphiphysin-Rvs (BAR) domain protein superfamily, contains a homodimeric N-BAR domain of a characteristic crescent shape. The N-BAR domain comprises a six-helix bundle and is known to sense and generate membrane curvature. Here, we characterize aspects of the unfolding mechanism of the endophilin A1 N-BAR domain during thermal denaturation and examine factors that influence the thermal stability of this domain. Far-UV circular dichroism (CD) spectroscopy was applied to monitor changes in the secondary structure above room temperature. The protein's conformational changes were further characterized through Foerster resonance energy transfer and cross-linking experiments at varying temperatures. Our results indicate that thermal unfolding of the endophilin N-BAR is (minimally) a two-step process, with a dimeric intermediate that displays partial helicity loss. Furthermore, a thermal shift assay and temperature-dependent CD were applied to compare the unfolding processes of several truncated versions of endophilin. The melting temperature of the N-BAR domain decreased when we deleted either the N-terminal H0 helix or the unstructured linker of endophilin. This result suggests that these intrinsically disordered domains may play a role in structurally stabilizing the functional N-BAR domain in vivo. Finally, we show that single-site mutations can also compromise endophilin's thermal stability.
Collapse
Affiliation(s)
- Rui Jin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Grasso
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mingyang Zhou
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tobias Baumgart
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
27
|
Zalmi GA, Gawade VK, Nadimetla DN, Bhosale SV. Aggregation Induced Emissive Luminogens for Sensing of Toxic Elements. ChemistryOpen 2021; 10:681-696. [PMID: 34240566 PMCID: PMC8266767 DOI: 10.1002/open.202100082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
The major findings in the growing field of aggregation induced emissive (AIE) active materials for the detection of environmental toxic pollutants have been summarized and discussed in this Review article. Owing to the underlying photophysical phenomenon, fluorescent AIE active molecules show more impact on sensing applications. The major focus in current research efforts is on the development of AIE active materials such as TPE based organic fluorescent molecules, metal organic framework, and polymers that can be employed for the detection of toxic pollutants such as CN- , NO2- , Hg2+ , Cd2+ , As3+ , As5+ , F- , Pb2+ , Sb3+ ions.
Collapse
Affiliation(s)
- Geeta A. Zalmi
- School of Chemical SciencesGoa UniversityTaleigaoPlateau Goa403206India
| | - Vilas K. Gawade
- School of Chemical SciencesGoa UniversityTaleigaoPlateau Goa403206India
| | | | | |
Collapse
|
28
|
Yang G, Liu Y, Hui Y, Tengjisi, Chen D, Weitz DA, Zhao C. Implications of Quenching‐to‐Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye‐Labeled Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Tengjisi
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering Zhejiang University Hangzhou China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou China
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USA
- Department of Physics Harvard University Cambridge MA USA
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
29
|
Yang G, Liu Y, Hui Y, Tengjisi, Chen D, Weitz DA, Zhao C. Implications of Quenching‐to‐Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye‐Labeled Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202101730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Tengjisi
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering Zhejiang University Hangzhou China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou China
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USA
- Department of Physics Harvard University Cambridge MA USA
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
30
|
Liu Y, Yang G, Jin S, Zhang R, Chen P, Tengjisi, Wang L, Chen D, Weitz DA, Zhao C. J‐Aggregate‐Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angew Chem Int Ed Engl 2020; 59:20065-20074. [DOI: 10.1002/anie.202008018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Peng Chen
- Nanomaterials Centre School of Chemical Engineering Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Tengjisi
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Lianzhou Wang
- Nanomaterials Centre School of Chemical Engineering Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| |
Collapse
|
31
|
Liu Y, Yang G, Jin S, Zhang R, Chen P, Tengjisi, Wang L, Chen D, Weitz DA, Zhao C. J‐Aggregate‐Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Peng Chen
- Nanomaterials Centre School of Chemical Engineering Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Tengjisi
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| | - Lianzhou Wang
- Nanomaterials Centre School of Chemical Engineering Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia Queensland 4072 Australia
| |
Collapse
|
32
|
Wang Z, Yu F, Chen W, Wang J, Liu J, Yao C, Zhao J, Dong H, Hu W, Zhang Q. Rational Control of Charge Transfer Excitons Toward High‐Contrast Reversible Mechanoresponsive Luminescent Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Fei Yu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Wang
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changjiang Yao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Zhao
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University, and Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR China
| |
Collapse
|
33
|
Wang Z, Yu F, Chen W, Wang J, Liu J, Yao C, Zhao J, Dong H, Hu W, Zhang Q. Rational Control of Charge Transfer Excitons Toward High‐Contrast Reversible Mechanoresponsive Luminescent Switching. Angew Chem Int Ed Engl 2020; 59:17580-17586. [DOI: 10.1002/anie.202005933] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Fei Yu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Wang
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changjiang Yao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Zhao
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University, and Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR China
| |
Collapse
|
34
|
Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P. Quo vadis FRET? Förster's method in the era of superresolution. Methods Appl Fluoresc 2020; 8:032003. [PMID: 32521530 DOI: 10.1088/2050-6120/ab9b72] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the theoretical foundations of Förster resonance energy transfer (FRET) were laid in the 1940s as part of the quantum physical revolution of the 20th century, it was only in the 1970s that it made its way to biology as a result of the availability of suitable measuring and labeling technologies. Thanks to its ease of application, FRET became widely used for studying molecular associations on the nanometer scale. The development of superresolution techniques at the turn of the millennium promised an unprecedented insight into the structure and function of molecular complexes. Without downplaying the significance of superresolution microscopies this review expresses our view that FRET is still a legitimate tool in the armamentarium of biologists for studying molecular associations since it offers distinct advantages and overcomes certain limitations of superresolution approaches.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary. MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
35
|
Prasad S, Aljaafreh MJ, AlSalhi MS. Time-resolved spectroscopy of radiative energy transfer between a conjugated oligomer and polymer in solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118151. [PMID: 32092681 DOI: 10.1016/j.saa.2020.118151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/12/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
We report a short investigation of the energy transfer process between the conjugated oligomer 1,4-bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF) and the conjugated polymer poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene-vinylene] - end capped with DMP (MDMO-PPV). The radiative energy transfer (RET) process shows a time delay, and the formation of the excimer causes a further delay. All these processes were studied using time-resolved spectroscopy (TRS), which has three-dimensional (3D) features with wavelength, intensity and time (picosecond) as the X, Y and Z-axis, respectively. We observed a definitive delay (1 ns) in the fluorescence from MEDMO-PPV concerning the fluorescence of the oligomer, indicating the RET. The TRS of different relative concentrations and temperature effects on the energy transfer process was also studied. The quantum yield, critical distance, polarizability and change of MEDMO-PPV were calculated. The excimer of the MEDMO-PPV produces Amplified Spontaneous Emission (ASE) after a time delay of at least 0.5 ns, which was also observed in this study.
Collapse
Affiliation(s)
- Saradh Prasad
- Research Chair on laser diagnosis of cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - Mamduh J Aljaafreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - Mohamad S AlSalhi
- Research Chair on laser diagnosis of cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| |
Collapse
|
36
|
Clark NM, Van den Broeck L, Guichard M, Stager A, Tanner HG, Blilou I, Grossmann G, Iyer-Pascuzzi AS, Maizel A, Sparks EE, Sozzani R. Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:789-816. [PMID: 32119794 DOI: 10.1146/annurev-arplant-050718-100038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The acquisition of quantitative information on plant development across a range of temporal and spatial scales is essential to understand the mechanisms of plant growth. Recent years have shown the emergence of imaging methodologies that enable the capture and analysis of plant growth, from the dynamics of molecules within cells to the measurement of morphometricand physiological traits in field-grown plants. In some instances, these imaging methods can be parallelized across multiple samples to increase throughput. When high throughput is combined with high temporal and spatial resolution, the resulting image-derived data sets could be combined with molecular large-scale data sets to enable unprecedented systems-level computational modeling. Such image-driven functional genomics studies may be expected to appear at an accelerating rate in the near future given the early success of the foundational efforts reviewed here. We present new imaging modalities and review how they have enabled a better understanding of plant growth from the microscopic to the macroscopic scale.
Collapse
Affiliation(s)
- Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50010, USA;
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
| | - Marjorie Guichard
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
- CellNetworks Cluster of Excellence, Heidelberg University, 69120 Heidelberg, Germany
| | - Adam Stager
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19711, USA; ,
| | - Herbert G Tanner
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19711, USA; ,
| | - Ikram Blilou
- Department of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Guido Grossmann
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
- CellNetworks Cluster of Excellence, Heidelberg University, 69120 Heidelberg, Germany
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA;
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
| |
Collapse
|
37
|
Chen B, Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01358j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review focuses on recent progress in the development of Yb-based upconversion nanoparticles and their emerging technological applications.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong SAR
- China
- City University of Hong Kong Shenzhen Research Institute
| | - Feng Wang
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong SAR
- China
- City University of Hong Kong Shenzhen Research Institute
| |
Collapse
|
38
|
Jiang K, Xu D, Liu Z, Zhao W, Ji H, Zhang J, Li M, Zheng T, Feng H. An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles. RSC Adv 2019; 9:37292-37299. [PMID: 35542252 PMCID: PMC9075753 DOI: 10.1039/c9ra05774a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
The popularity of 2D barcodes is playing a key role in simplifying people's daily life activities, such as identification, quick payment, checking in and checking out, etc. However, relevant issues have emerged as their popularity has soared. The most urgent and representative problem is decryption, which may lead to serious information leakage and substantial damage to organizations, such as governments and international enterprises. This issue is mainly due to the visibility of 2D barcodes. In order to prevent potential privacy violation and sensitive information leakage through easy access of those visible 2D barcodes, we have designed and fabricated invisible 2D barcodes that will only be visible under UV illumination. This approach provides a promising solution to address the previous problem by transferring 2D barcodes into an invisible state. We have employed a typical micro-emulsion method to fabricate polystyrene (PS) fluorescent nanoparticles due to its simplicity. The invisible patterns can and will only be accessed and recognized under UV light illumination to protect personal private information. These invisible 2D barcodes provide a feasible solution for personal information protection and fit with a patient's privacy protection scenario very well, as we have demonstrated.
Collapse
Affiliation(s)
- Kunkun Jiang
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Dandan Xu
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Zhongyang Liu
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Weiwei Zhao
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hongjun Ji
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jiaheng Zhang
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Mingyu Li
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital Shenzhen China
| | - Huanhuan Feng
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
39
|
Brahma R, Singh MP, Baruah JB. Stacking among the clips of the poly-aromatic rings of phenazine with hydroxy-aromatics and photophysical properties. RSC Adv 2019; 9:33403-33412. [PMID: 35529104 PMCID: PMC9073320 DOI: 10.1039/c9ra07602f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Clip-like arrangements of molecules in the cocrystals of phenazine with hydroxy-aromatics in their respective self-assemblies and photophysical properties were presented. Phenazine cocrystals with 1,2-dihydroxybenzene provided assembly with butterfly-like arrangements. In these cocrystals, the phenazine molecules occurred in parallel pairs having extensive π-stacking. The clip-like cocrystals with 1,3-dihydroxybenzene also exhibited parallel pairs of phenazine molecules that were parallel cofacial π-stacked. The hydrated cocrystals of phenazine with 1,2,3-trihydroxybenzene had chains of parallel cofacial phenazine rings having three distinguishable π-separation distances among the centroids of the phenazine rings. Also, 2,7-dihydroxynaphthalene formed a clip-like cocrystal with phenazine, which encapsulated an additional molecule of phenazine. This cocrystal also provided chain-like parallel arrangements of the phenazine molecules. The emission and quantum yields of the cocrystals were determined by the integrating sphere method, which indicated that only the cocrystal of phenazine with 2,7-dihydroxynaphthalene showed monomer-like emission of phenazine and the rest of the cocrystals were in a quenched state. In the solution phase, quenching of the emission of hydroxynaphthalene was observed when phenazine was added to an independent solution of 2,7-dihydroxynaphthalene or another hydroxynaphthalene. However, when hydroxybenzenes were added to a solution of phenazine, fluorescence enhancements of phenazine occurred due to photo-electron transfer. π-Stackings control the photoluminescence efficiencies in solids, whereas in solutions, the ON or OFF processes are dependent on the hydroxyaromatics.![]()
Collapse
Affiliation(s)
- Rinki Brahma
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781 039 Assam India
| | - Munendra Pal Singh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781 039 Assam India
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781 039 Assam India
| |
Collapse
|
40
|
Ilmi R, Tseriotou E, Stylianou P, Christou YA, Ttofi I, Dietis N, Pitris C, Odysseos AD, Georgiades SN. A Novel Conjugate of Bis[((4-bromophenyl)amino)quinazoline], a EGFR-TK Ligand, with a Fluorescent Ru(II)-Bipyridine Complex Exhibits Specific Subcellular Localization in Mitochondria. Mol Pharm 2019; 16:4260-4273. [PMID: 31508966 DOI: 10.1021/acs.molpharmaceut.9b00608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a key target in anticancer research, whose aberrant function in malignancies has been linked to severe irregularities in critical cellular processes, including cell cycle progression, proliferation, differentiation, and survival. EGFR mutant variants, either transmembrane or translocated to the mitochondria and/or the nucleus, often exhibit resistance to EGFR inhibitors. The ability to noninvasively image and quantify EGFR provides novel approaches in the detection, monitoring, and treatment of EGFR-related malignancies. The current study aimed to deliver a new theranostic agent that combines fluorescence imaging properties with EGFR inhibition. This was achieved via conjugation of an in-house-developed ((4-bromophenyl)amino)quinazoline inhibitor of mutant EGFR-TK, selected from a focused aminoquinazoline library, with a [Ru(bipyridine)3]2+ fluorophore. A triethyleneglycol-derived diamino linker featuring (+)-ionizable sites was employed to link the two functional moieties, affording two unprecedented Ru conjugates with 1:1 and 2:1 stoichiometry of aminoquinazoline to the Ru complex (mono-quinazoline-Ru-conjugate and bis-quinazoline-Ru-conjugate, respectively). The bis-quinazoline-Ru-conjugate, which retains an essential inhibitory activity, was found by fluorescence imaging to be effectively uptaken by Uppsala 87 malignant glioma (grade IV malignant glioma) cells. The fluorescence imaging study and a time-resolved fluorescence resonance energy transfer study indicated a specific subcellular distribution of the conjugate that coincides with that of a mitochondria-targeted dye, suggesting mitochondrial localization of the conjugate and potential association with mitochondria-translocated forms of EGFR. Mitochondrial localization was further documented by the specific concentration of the bis-quinazoline-Ru-conjugate in a mitochondrial isolation assay.
Collapse
Affiliation(s)
- Rashid Ilmi
- EPOS-Iasis, R&D , 5 Karyatidon Street , Nicosia 2028 , Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Amilan Jose D, Sharma N, Sakla R, Kaushik R, Gadiyaram S. Fluorescent nanoprobes for the sensing of gasotransmitters hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO). Methods 2019; 168:62-75. [DOI: 10.1016/j.ymeth.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022] Open
|
42
|
Algar WR, Hildebrandt N, Vogel SS, Medintz IL. FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nat Methods 2019; 16:815-829. [DOI: 10.1038/s41592-019-0530-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
43
|
Petkov BK, Gellen TA, Farfan CA, Carbery WP, Hetzler BE, Trauner D, Li X, Glover WJ, Ulness DJ, Turner DB. Two-Dimensional Electronic Spectroscopy Reveals the Spectral Dynamics of Förster Resonance Energy Transfer. Chem 2019. [DOI: 10.1016/j.chempr.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Chen Z, Li P, Zhang Z, Zhai X, Liang J, Chen Q, Li K, Lin G, Liu T, Wu Y. Ultrasensitive Sensor Using Quantum Dots-Doped Polystyrene Nanospheres for Clinical Diagnostics of Low-Volume Serum Samples. Anal Chem 2019; 91:5777-5785. [DOI: 10.1021/acs.analchem.9b00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
|
46
|
Zong H, Wang X, Mu X, Wang J, Sun M. Plasmon-Enhanced Fluorescence Resonance Energy Transfer. CHEM REC 2019; 19:818-842. [PMID: 30716206 DOI: 10.1002/tcr.201800181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022]
Abstract
In this review, we firstly introduce physical mechanism of fluorescence resonance energy transfer (FRET), the methods to measure FRET efficiency, and the applications of FRET. Secondly, we introduce the principle and applications of plasmon-enhanced fluorescence (PEF). Thirdly, we focused on the principle and applications of plasmon-enhanced FRET. This review can promote further understanding of FRET and PE-FRET.
Collapse
Affiliation(s)
- Huan Zong
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, People's Republic of China.,School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xinxin Wang
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xijiao Mu
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jingang Wang
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, People's Republic of China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
47
|
Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat Methods 2018; 15:669-676. [PMID: 30171252 PMCID: PMC6121742 DOI: 10.1038/s41592-018-0085-0] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods. A multi-laboratory study finds that single-molecule FRET is a reproducible and reliable approach for determining accurate distances in dye-labeled DNA duplexes.
Collapse
|
48
|
Checkpoint for helicity conservation in fluorescence at the nanoscale: Energy and helicity transfer (hFRET) from a rotating donor dipole. Biophys Chem 2018; 239:38-53. [DOI: 10.1016/j.bpc.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
49
|
Nguyen TA, Puhl HL, Pham AK, Vogel SS. Auto-FPFA: An Automated Microscope for Characterizing Genetically Encoded Biosensors. Sci Rep 2018; 8:7374. [PMID: 29743504 PMCID: PMC5943267 DOI: 10.1038/s41598-018-25689-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Genetically encoded biosensors function by linking structural change in a protein construct, typically tagged with one or more fluorescent proteins, to changes in a biological parameter of interest (such as calcium concentration, pH, phosphorylation-state, etc.). Typically, the structural change triggered by alterations in the bio-parameter is monitored as a change in either fluorescent intensity, or lifetime. Potentially, other photo-physical properties of fluorophores, such as fluorescence anisotropy, molecular brightness, concentration, and lateral and/or rotational diffusion could also be used. Furthermore, while it is likely that multiple photo-physical attributes of a biosensor might be altered as a function of the bio-parameter, standard measurements monitor only a single photo-physical trait. This limits how biosensors are designed, as well as the accuracy and interpretation of biosensor measurements. Here we describe the design and construction of an automated multimodal-microscope. This system can autonomously analyze 96 samples in a micro-titer dish and for each sample simultaneously measure intensity (photon count), fluorescence lifetime, time-resolved anisotropy, molecular brightness, lateral diffusion time, and concentration. We characterize the accuracy and precision of this instrument, and then demonstrate its utility by characterizing three types of genetically encoded calcium sensors as well as a negative control.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland, USA
| | - Henry L Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland, USA
| | - An K Pham
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland, USA
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland, USA.
| |
Collapse
|
50
|
Isbaner S, Karedla N, Kaminska I, Ruhlandt D, Raab M, Bohlen J, Chizhik A, Gregor I, Tinnefeld P, Enderlein J, Tsukanov R. Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer. NANO LETTERS 2018; 18:2616-2622. [PMID: 29562123 DOI: 10.1021/acs.nanolett.8b00425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.
Collapse
Affiliation(s)
- Sebastian Isbaner
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
| | - Narain Karedla
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
- DFG Research Center "Nanoscale Microscopy and Molecular Physiology of the Brain" (CNMPB) , 37077 Göttingen , Germany
| | - Izabela Kaminska
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA) , Braunschweig University of Technology , 38106 Braunschweig , Germany
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics , Nicolaus Copernicus University , 87-100 Torun , Poland
| | - Daja Ruhlandt
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
| | - Mario Raab
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA) , Braunschweig University of Technology , 38106 Braunschweig , Germany
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - Johann Bohlen
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA) , Braunschweig University of Technology , 38106 Braunschweig , Germany
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - Alexey Chizhik
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
| | - Ingo Gregor
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
| | - Philip Tinnefeld
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA) , Braunschweig University of Technology , 38106 Braunschweig , Germany
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
- DFG Research Center "Nanoscale Microscopy and Molecular Physiology of the Brain" (CNMPB) , 37077 Göttingen , Germany
| | - Roman Tsukanov
- Third Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
| |
Collapse
|