1
|
Eshiba S, Namiki T, Mohri Y, Aida T, Serizawa N, Shibata T, Morinaga H, Nanba D, Hiraoka Y, Tanaka K, Miura K, Tanaka M, Uhara H, Yokozeki H, Saida T, Nishimura EK. Stem cell spreading dynamics intrinsically differentiate acral melanomas from nevi. Cell Rep 2021; 36:109492. [PMID: 34348144 DOI: 10.1016/j.celrep.2021.109492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Early differential diagnosis between malignant and benign tumors and their underlying intrinsic differences are the most critical issues for life-threatening cancers. To study whether human acral melanomas, deadly cancers that occur on non-hair-bearing skin, have distinct origins that underlie their invasive capability, we develop fate-tracing technologies of melanocyte stem cells in sweat glands (glandular McSCs) and in melanoma models in mice and compare the cellular dynamics with human melanoma. Herein, we report that glandular McSCs self-renew to expand their migratory progeny in response to genotoxic stress and trauma to generate invasive melanomas in mice that mimic human acral melanomas. The analysis of melanocytic lesions in human volar skin reveals that genetically unstable McSCs expand in sweat glands and in the surrounding epidermis in melanomas but not in nevi. The detection of such cell spreading dynamics provides an innovative method for an early differential diagnosis of acral melanomas from nevi.
Collapse
Affiliation(s)
- Sally Eshiba
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Dermatology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takeshi Namiki
- Department of Dermatology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Naotaka Serizawa
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takakazu Shibata
- Medical Corporation Shibata Dermatology Clinic, 1-1-30 Morinomiya Chuo, Chuo-ku, Osaka 540-0003, Japan
| | - Hironobu Morinaga
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Daisuke Nanba
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuichi Hiraoka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Keiko Miura
- Department of Pathology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masaru Tanaka
- Department of Dermatology, Tokyo Women's Medical University Medical Center East, Tokyo, 2-1-10, Nishiogu, Arakawa-ku, Tokyo 116-8567, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toshiaki Saida
- Shinshu University, 7-7-40-220 Kamiochiai, Chuo-ku, Saitama 338-0001, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Division of Aging and Regeneration, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
2
|
Curnow A, Owen SJ. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7053897. [PMID: 26953144 PMCID: PMC4756206 DOI: 10.1155/2016/7053897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/02/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations.
Collapse
Affiliation(s)
- Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
| | - Sara J. Owen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
| |
Collapse
|
3
|
Rünger TM, Farahvash B, Hatvani Z, Rees A. Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: a less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochem Photobiol Sci 2011; 11:207-15. [PMID: 22005748 DOI: 10.1039/c1pp05232b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of UVA-mutagenesis remain a matter of debate. Earlier described higher rates of mutation formation per pyrimidine dimer with UVA than with UVB and other evidence suggested that a non-pyrimidine dimer-type of DNA damage contributes more to UVA- than to UVB-mutagenesis. However, more recently published data on the spectra of UVA-induced mutations in primary human skin cells and in mice suggest that pyrimidine dimers are the most common type of DNA damage-inducing mutations not only with UVB, but also with UVA. As this rebuts a prominent role of non-dimer type of DNA damage in UVA-mutagenesis, we hypothesized that the higher mutation rate at UVA-induced pyrimidine dimers, as compared to UVB-induced ones, is caused by differences in the way UVA- and UVB-exposed cells process DNA damage. Therefore, we here compared cell cycle regulation, DNA repair, and apoptosis in primary human fibroblasts following UVB- and UVA-irradiation, using the same physiologic and roughly equimutagenic doses (100-300 J m(-2) UVB, 100-300 kJ m(-2) UVA) we have used previously for mutagenesis experiments with the same type of cells. ELISAs for the detection of pyrimidine dimers confirmed that much fewer dimers were formed with these doses of UVA, as compared to UVB. We found that cell cycle arrests (intra-S, G1/S, G2/M), mediated at least in part by activation of p53 and p95, are much more prominent and long-lasting with UVB than with UVA. In contrast, no prominent differences were found between UVA and UVB for other anti-mutagenic cellular responses (DNA repair, apoptosis). Our data suggest that less effective anti-mutagenic cellular responses, in particular different and shorter-lived cell cycle arrests, render pyrimidine dimers induced by UVA more mutagenic than pyrimidine dimers induced by UVB.
Collapse
Affiliation(s)
- Thomas M Rünger
- Boston University School of Medicine, Department of Dermatology, 609 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
4
|
Rizzo JL, Dunn J, Rees A, Rünger TM. No formation of DNA double-strand breaks and no activation of recombination repair with UVA. J Invest Dermatol 2010; 131:1139-48. [PMID: 21150922 DOI: 10.1038/jid.2010.365] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Longwave UVA is an independent class I carcinogen. A complete understanding of UVA-induced DNA damage and how this damage is processed in skin cells is therefore of utmost importance. A particular question that has remained contentious is whether UVA induces DNA double-strand breaks (DSBs), either directly or through processing of other types of DNA damage, such as recombination repair of replication forks stalled at DNA photoproducts. We therefore studied activation of the recombination repair pathway by solar available doses of UVA and assessed formation of DNA DSBs in primary skin fibroblasts. We found that, unlike ionizing radiation or UVB, UVA does not activate the Fanconi anemia/BRCA DNA damage response pathway or the "recombinase" RAD51 in primary skin fibroblasts. The fact that this pathway mediates recombination repair of DNA DSBs suggests that DNA DSBs are not formed by UVA. This is further supported by findings that UVA did not induce DNA DSBs, as assayed by neutral single-cell electrophoresis or by formation of γ-H2AX nuclear foci, considered the most sensitive assay for DNA DSBs. The lack of sufficient evidence for formation of DNA DSBs underlines the pivotal role of UVA-induced DNA photoproducts in UVA mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Jennifer L Rizzo
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
5
|
Schuch AP, Menck CFM. The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 99:111-6. [PMID: 20371188 DOI: 10.1016/j.jphotobiol.2010.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/12/2010] [Accepted: 03/15/2010] [Indexed: 11/16/2022]
Abstract
Solar radiation sustains and affects all life forms on Earth. The increase in solar UV-radiation at environmental levels, due to depletion of the stratospheric ozone layer, highlights serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions where radiation-intensity is still higher. Thus, there is the need to evaluate the harmful effects of solar UV-radiation on the DNA molecule as a basis for assessing the risks involved for human health, biological productivity and ecosystems. In order to evaluate the profile of DNA damage induced by this form of radiation and its genotoxic effects, plasmid DNA samples were exposed to artificial-UV lamps and directly to sunlight. The induction of cyclobutane pyrimidine dimer photoproducts (CPDs) and oxidative DNA damage in these molecules were evaluated by means of specific DNA repair enzymes. On the other hand, the biological effects of such lesions were determined through the analysis of the DNA inactivation rate and mutation frequency, after replication of the damaged pCMUT vector in an Escherichia coliMBL50 strain. The results indicated the induction of a significant number of CPDs after exposure to increasing doses of UVC, UVB, UVA radiation and sunlight. Interestingly, these photoproducts are those lesions that better correlate with plasmid inactivation as well as mutagenesis, and the oxidative DNA damages induced present very low correlation with these effects. The results indicated that DNA photoproducts play the main role in the induction of genotoxic effects by artificial UV-radiation sources and sunlight.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Huang XX, Bernerd F, Halliday GM. Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1534-43. [PMID: 19264911 DOI: 10.2353/ajpath.2009.080318] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ultraviolet B (UVB) waveband within sunlight is an important carcinogen; however, UVA is also likely to be involved. By ascribing mutations to being either UVB or UVA induced, we have previously shown that human skin cancers contain similar numbers of UVB- and UVA-induced mutations, and, importantly, the UVA mutations were at the base of the epidermis of the tumors. To determine whether these mutations occurred in response to UV, we exposed engineered human skin (EHS) to UVA, UVB, or a mixture that resembled sunlight, and then detected mutations by both denaturing high-performance liquid chromatography and DNA sequencing. EHS resembles human skin, modeling differential waveband penetration to the basal, dividing keratinocytes. We administered only four low doses of UV exposure. Both UVA and UVB induced p53 mutations in irradiated EHS, suggesting that sunlight doses that are achievable during normal daily activities are mutagenic. UVA- but not UVB-induced mutations predominated in the basal epidermis that contains dividing keratinocytes and are thought to give rise to skin tumors. These studies indicate that both UVA and UVB at physiological doses are mutagenic to keratinocytes in EHS.
Collapse
Affiliation(s)
- Xiao Xuan Huang
- Discipline of Dermatology, Bosch Institute, Sydney Cancer Centre, The University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
7
|
Halliday GM, Norval M, Byrne SN, Huang XX, Wolf P. The effects of sunlight on the skin. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.ddmec.2008.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Rünger TM, Kappes UP. Mechanisms of mutation formation with long-wave ultraviolet light (UVA). PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2008; 24:2-10. [PMID: 18201350 DOI: 10.1111/j.1600-0781.2008.00319.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-wave ultraviolet (UV) A light is able to damage DNA, to cause mutations, and to induce skin cancer, but the exact mechanisms of UVA-induced mutation formation remain a matter of debate. While pyrimidine dimers are well established to mediate mutation formation with shortwave UVB, other types of DNA damage, such as oxidative base damage, have long been thought to be the premutagenic lesions for UVA mutagenesis. However, pyrimidine dimers can also be generated by UVA, and there are several lines of evidence that these are the most important premutagenic lesions not only for UVB- but also for UVA-induced mutation formation. C-->T transition mutations, which are generated by pyrimidine dimers, are called UV-signature mutations. They cannot be interpreted to be solely UVB-induced, as they are induced by UVA as well. Furthermore, there is no consistent evidence for a separate UVA-signature mutation that is only generated with UVA. We hypothesize that a weaker anti-mutagenic cellular response, but not a different type of DNA damage, may be responsible for a higher mutation rate per DNA photoproduct with UVA, as compared with UVB.
Collapse
Affiliation(s)
- Thomas M Rünger
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
9
|
Zhuang S, Kochevar IE. Ultraviolet A Radiation Induces Rapid Apoptosis of Human Leukemia Cells by Fas Ligand-Independent Activation of the Fas Death Pathway¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780061uarira2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Kowalczuk CI, Priestner MC, Pearson AJ, Saunders RD, Bouffler SD. Wavelength dependence of cellular responses in human melanocytes and melanoma cells following exposure to ultraviolet radiation. Int J Radiat Biol 2007; 82:781-92. [PMID: 17148262 DOI: 10.1080/09553000600930111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To examine the wavelength dependence of cellular responses in human melanocytes and human melanoma cells exposed to ultraviolet radiation (UVR). MATERIALS AND METHODS Primary human melanocytes and G361 human melanoma cells were exposed to ultraviolet-C (UVC), ultraviolet-B (UVB), or ultraviolet-A (UVA) radiation. Dose-response relationships for clonal cell survival were assessed, and flow cytometry was used to monitor cell cycle distributions for up to one week post-irradiation. Chromosomal aberrations were scored in exposed and unexposed melanoma cells. RESULTS G361 melanoma cells were more sensitive than melanocytes to killing by UVB and UVC radiation. This difference in sensitivity between cell types was much less marked following UVA irradiation. The melanoma cells showed a sustained, dose-dependent G2/M block following exposure with all wavelengths; in addition, transit through S phase was slowed following UVA irradiation. There was no apparent block to G1 cells entering S phase at any wavelength. Melanocytes, on the other hand, showed a marked G1 arrest, particularly following UVA irradiation. Cytogenetic results showed a dose-dependent increase in chromatid-type aberrations, mostly gaps, breaks and exchanges, in exposed melanoma cells. CONCLUSION These results show that G361 malignant melanoma cells have lost the ability to regulate the cell cycle at the G1/S checkpoint and are more sensitive than melanocytes to cell killing by UVC and UVB but not UVA radiation. Similarly, exposure of these melanoma cells to UVC and UVB, and to a much lesser extent UVA, induced chromatid aberrations. UVA nevertheless induced strong cell cycle delays in both cell types, indicating that UVA exposure can significantly affect genome metabolism.
Collapse
Affiliation(s)
- C I Kowalczuk
- Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Radiation Protection Division, Chilton, Didcot, Oxfordshire, UK.
| | | | | | | | | |
Collapse
|
11
|
Nishimura H, Yasui H, Sakurai H. Generation and distribution of reactive oxygen species in the skin of hairless mice under UVA: studies on in vivo chemiluminescent detection and tape stripping methods. Exp Dermatol 2006; 15:891-9. [PMID: 17002686 DOI: 10.1111/j.1600-0625.2006.00484.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the formation of reactive oxygen species (ROS) in the skin induced by the ultraviolet (UV) light has been shown to lead to many cutaneous disorders, skin cancer and photoageing, the mechanism and distribution of ROS generation has not yet been definitively determined. In the present study, we examined the distribution of UVA-induced ROS in the skin of live hairless mice, using our proposed in vivo imaging chemiluminescent (CL) method to detect ROS combined with a CL probe (cypridina hilgendorfii luciferin analogue; CLA) and tape stripping (TS) technique. The CL intensities in the skin of live hairless mice were confirmed to significantly increase by UVA exposure. When TS was conducted five times in a maximum level after CL measurement following UVA exposure and subsequent CLA application, CL intensities due to UVA-induced ROS generation in the residual skin decreased to 10% of the original levels; and those in the stripped skin on each tape decreased in the stripped order such as 52%, 16%, 11%, 6% and 5%. Next, CLA was applied and then CL intensities were measured in the residual skin after advance 1, 3 and 5 tape strippings, and CL intensities due to ROS were detected primarily in the outer layer of the skin. On the basis of these results, we concluded that ROS induced by UVA exposure occurs and distributes in the outermost layer of the stratum corneum.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | | | | |
Collapse
|
12
|
Kappes UP, Luo D, Potter M, Schulmeister K, Rünger TM. Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. J Invest Dermatol 2006; 126:667-75. [PMID: 16374481 DOI: 10.1038/sj.jid.5700093] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While the mutagenic and carcinogenic properties of longwave UV light (UVA) are well established, mechanisms of UVA mutagenesis remain a matter of debate. To elucidate the mechanisms of mutation formation with UVA in human skin, we determined the spectra of UVA- and UVB-induced mutations in primary human fibroblasts. As with UVB, we found the majority of mutations to be C-to-T transitions also with UVA. For both UVA and UVB, these transitions were found within runs of pyrimidines, at identical hotspots, and with the same predilection for the nontranscribed strand. They also included CC-to-TT tandem mutations. Therefore, these mutations point to a major role of pyrimidine dimers not only in UVB but also in UVA mutagenesis. While some differences were noted, the similarity between the spectra of UVA- and UVB-induced mutations further supports similar mechanisms of mutation formation. A non-dimer type of DNA damage does not appear to play a major role in either UVA or UVB mutagenesis. Therefore, the previously reported increasing mutagenicity per dimer with increasing wavelengths cannot be due to non-dimer DNA damage. Differences in the cellular response to UVA and UVB, such as the less prominent activation of p53 by UVA, might determine a different mutagenic outcome of UVA- and UVB-induced dimers.
Collapse
Affiliation(s)
- Ulrike P Kappes
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
13
|
Kappes UP, Rünger TM. No Major Role for 7,8-Dihydro-8-oxoguanine in Ultraviolet Light-Induced Mutagenesis. Radiat Res 2005; 164:440-5. [PMID: 16187746 DOI: 10.1667/rr3434.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative DNA damage, in particular 7,8-dihydro-8-oxoguanine (8-oxoG), has been suggested to mediate mutation formation and malignant transformation after exposure of the skin to long-wave ultraviolet (UVA) light. It is processed primarily by the base excision repair (BER) pathway. The initial step of BER is the removal of the damaged base by a damage-specific DNA-glycosylase, which is 8-oxoG DNA glycosylase (OGG1) for 8-oxoG. To study the contribution of 8-oxoG to UVA-light mutagenesis, we compared UVA- and UVB-light-induced mutation frequencies in mouse embryonal fibroblasts from OGG1 knockout mice and their OGG1-intact littermates using the ouabain mutagenesis assay. After irradiation with various doses of UVA or UVB radiation, mutations in the Na,K-ATPase gene of single cells were detected by testing for colony-forming ability in a selective medium. OGG1-/- cells did not exhibit an increased frequency of UV-light-induced mutations compared to OGG1+/+ cells after exposure to either UVA or UVB radiation. This indicates that 8-oxoG, which is processed by OGG1, does not contribute significantly to either UVA- or UVB-light-induced mutagenesis.
Collapse
Affiliation(s)
- Ulrike P Kappes
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
14
|
Besaratinia A, Synold TW, Chen HH, Chang C, Xi B, Riggs AD, Pfeifer GP. DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proc Natl Acad Sci U S A 2005; 102:10058-63. [PMID: 16009942 PMCID: PMC1174921 DOI: 10.1073/pnas.0502311102] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UV components of sunlight (UVA and UVB) are implicated in the etiology of human skin cancer. The underlying mechanism of action for UVB carcinogenicity is well defined; however, the mechanistic involvement of UVA in carcinogenesis is not fully delineated. We investigated the genotoxicity of UVA1 versus UVB in the overall genome and in the p53 tumor suppressor gene in normal human skin fibroblasts. Immuno-dot blot analysis identified the cis-syn cyclobutane pyrimidine-dimer (CPD) as a distinctive UVB-induced lesion and confirmed its formation in the genomic DNA of UVA1-irradiated cells dependent on radiation dose. HPLC/tandem MS analysis showed an induction of 8-oxo-7,8-dihydro-2'-deoxyguanosine in the genomic DNA of UVA1-irradiated cells only. Mapping of DNA damages by terminal transferase-dependent PCR revealed preferential, but not identical, formation of polymerase-blocking lesions and/or strand breaks along exons 5-8 of the p53 gene in UVB- and UVA1-irradiated cells. The UVB-induced lesions detected by terminal transferase-PCR were almost exclusively mapped to pyrimidine-rich sequences; however, the UVA1-induced lesions were mapped to purine- and pyrimidine-containing sequences along the p53 gene. Cleavage assays with lesion-specific DNA repair enzymes coupled to ligation-mediated PCR showed preferential, but not identical, formation of CPDs along the p53 gene in UVB- and UVA1-irradiated cells. Additionally, dose-dependent formation of oxidized and ring-opened purines and abasic sites was established in the p53 gene in only UVA1-irradiated cells. We conclude that UVA1 induces promutagenic CPDs and oxidative DNA damage at both the genomic and nucleotide resolution level in normal human skin fibroblasts.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Division of Biology, Beckman Research Institute, and Department of Medical Oncology, The City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ravanat JL, Sauvaigo S, Caillat S, Martinez GR, Medeiros MHG, Di Mascio P, Favier A, Cadet J. Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. Biol Chem 2004; 385:17-20. [PMID: 14977042 DOI: 10.1515/bc.2004.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The damage profile produced by the reaction of singlet molecular oxygen with cellular DNA was determined using the comet assay associated with DNA repair enzymes. Singlet oxygen was produced intracellularly by thermal decomposition of a water-soluble endoperoxide of a naphthalene derivative which is able to penetrate through the membrane into mammalian cells. We found that the DNA modifications produced by singlet oxygen were almost exclusively oxidised purines recognised by the formamidopyrimidine DNA N-glycosylase. In contrast, significant amounts of direct strand breaks and alkali-labile sites or oxidised pyrimidines, detectable by the bacterial endonuclease III, were not produced.
Collapse
Affiliation(s)
- Jean-Luc Ravanat
- Laboratoire Lésions des Acides Nucléiques, FRE 2600, DRFMC/SCIB CEA Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Zhang G, Ma H, Zhang D, Li J, Zhu D. 4,5-Dimethylthio-4‘-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a Highly Selective and Sensitive Chemiluminescence Probe for Singlet Oxygen. J Am Chem Soc 2004; 126:11543-8. [PMID: 15366900 DOI: 10.1021/ja0481530] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4,5-Dimethylthio-4'-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene has been designed and synthesized as a highly selective and sensitive chemiluminescence (CL) probe for singlet oxygen ((1)O(2)). The design strategy for the probe is directed by the idea of photoinduced electron-transfer process and carried out through the incorporation of electron-rich tetrathiafulvalene unit into a reactive luminophore of anthracene specific for (1)O(2). Upon reaction with reactive oxygen species (ROS), such as hydrogen peroxide, hypochlorite, superoxide, hydroxyl radical, or (1)O(2), the probe exhibits both strong CL response to and high selectivity for (1)O(2) only, rather than the other ROS. This remarkable CL property permits (1)O(2) to be distinguished easily from the other ROS and makes the probe possible to be used widely for (1)O(2) detection in many chemical and biological systems and even in light water (H(2)O) environments. This applicability has been demonstrated by monitoring the (1)O(2) generation in a metal-catalyzed decomposition system of tert-butyl hydroperoxide. Moreover, the CL reaction mechanism of the present system is also discussed, clearly confirming that the introduction of electron-rich tetrathiafulvalene into the 9-position of anthracene can greatly activate its reactivity toward (1)O(2).
Collapse
Affiliation(s)
- Xiaohua Li
- Contribution from the Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
17
|
Zhuang S, Kochevar IE. Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways. Photochem Photobiol 2003; 78:61-7. [PMID: 12929750 DOI: 10.1562/0031-8655(2003)078<0061:uarira>2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous cellular chromophores absorb ultraviolet A radiation (UVA, 290-320 nm), the major UV component of terrestrial solar radiation, leading to the formation of reactive oxidizing species that initiate apoptosis, gene expression and mutagenesis. UVA-induced apoptosis of T helper cells is believed to underlie the UVA phototherapy for atopic dermatitis and other T cell-mediated inflammatory skin diseases. We have evaluated the involvement of the Fas-Fas ligand (FasL) pathway in rapid UVA-induced apoptosis in human leukemia HL-60 cells. UVA-induced apoptosis was not inhibited by pretreatment with a neutralizing anti-Fas antibody, although the same UVA treatment initiated cleavage of caspase-8 and subsequent processing of Bid and caspase-3-like proteases. Inhibition of caspase-8 by Lle-Glu (OMe)-Thr-Asp(OMe)-fluoromethyl ketone completely blocked caspase-3 cleavage and apoptosis in UVA-treated cells, suggesting that apoptosis was initiated by the Fas pathway. This inference was supported by demonstrating that immunoprecipitates obtained from UVA-treated cells using anti-Fas antibody contained caspase-8 and Fas-associating protein with death domain (FADD). In addition, Fas clustering in response to UVA treatment was observed by immunofluorescence microscopy. These data support a mechanism for rapid, UVA-induced apoptosis in HL-60 cells involving initial formation of the Fas-FADD-caspase-8 death complex in an FasL-independent manner.
Collapse
Affiliation(s)
- Shougang Zhuang
- Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
18
|
Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. Singlet molecular oxygen generated from lipid hydroperoxides by the russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am Chem Soc 2003; 125:6172-9. [PMID: 12785849 DOI: 10.1021/ja029115o] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The decomposition of lipid hydroperoxides into peroxyl radicals is a potential source of singlet oxygen ((1)O(2)) in biological systems. We report herein on evidence of the generation of (1)O(2) from lipid hydroperoxides involving a cyclic mechanism from a linear tetraoxide intermediate proposed by Russell. Using (18)O-labeled linoleic acid hydroperoxide (LA(18)O(18)OH) in the presence of Ce(4+) or Fe(2+), we observed the formation of (18)O-labeled (1)O(2) ((18)[(1)O(2)]) by chemical trapping of (1)O(2) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) by high-performance liquid chromatography coupled to tandem mass spectrometry. Spectroscopic evidence for the generation of (1)O(2) was obtained by measuring (i) the dimol light emission in the red spectral region (lambda > 570 nm); (ii) the monomol light emission in the near-infrared (IR) region (lambda = 1270 nm); and (iii) the quenching effect of sodium azide. Moreover, the presence of (1)O(2) was unequivocally demonstrated by the direct spectral characterization of the near-IR light emission. For the sake of comparison, (1)O(2) deriving from the H(2)O(2)/OCl(-) and H(2)O(2)/MoO(4)(2)(-) systems or from the thermolysis of the endoperoxide of 1,4-dimethylnaphthalene was also monitored. These chemical trapping and photoemission properties clearly demonstrate that the decomposition of LA(18)O(18)OH generates (18)[(1)O(2)], consistent with the Russell mechanism and pointing to the involvement of (1)O(2) in lipid hydroperoxide mediated cytotoxicity.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, Brazil
| | | | | | | |
Collapse
|
19
|
Miyamoto S, Martinez GR, Martins APB, Medeiros MHG, Di Mascio P. Direct evidence of singlet molecular oxygen [O2(1Deltag)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite. J Am Chem Soc 2003; 125:4510-7. [PMID: 12683821 DOI: 10.1021/ja029262m] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxynitrite (ONOO-), a biologically active species, can induce lipid peroxidation in biological membranes, thereby leading to the formation of various hydroperoxides. We report herein on the formation of singlet molecular oxygen [O(2) ((1)Delta(g))] in the reaction of peroxynitrite with linoleic acid hydroperoxide (LAOOH) or (18)O-labeled LAOOH. The formation of O(2) ((1)Delta(g)) was characterized by (i) dimol light emission in the red spectral region (lambda > 570 nm) using a red-sensitive photomultiplier; (ii) monomol light emission in the near-infrared region (lambda = 1270 nm) with a liquid nitrogen-cooled germanium diode or a photomultiplier coupled to a monochromator; (iii) the enhacing effect of deuterium oxide on chemiluminescence intensity, as well as the quenching effect of sodium azide; and (iv) chemical trapping of O(2) ((1)Delta(g)) or (18)O-labeled O(2) ((1)Delta(g)) with the 9,10-diphenylanthracene (DPA) and detection of the corresponding DPAO(2) or (18)O-labeled DPA endoperoxide by HPLC coupled to tandem mass spectrometry. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by a direct spectral characterization of the near-infrared light emission attributed to the transition of O(2) ((1)Delta(g)) to the triplet ground state. For the sake of comparison, O(2) ((1)Delta(g)) deriving from the thermolysis of the endoperoxide of 1,4-dimethylnaphthalene or from the H(2)O(2)/hypochlorite and H(2)O(2)/molybdate systems were also monitored. These novel observations identified the generation of O(2) ((1)Delta(g)) in the reaction of LAOOH with peroxynitrite, suggesting a potential O(2) ((1)Delta(g))-dependent mechanism that contributes to cytotoxicity mediated by lipid hydroperoxides and peroxynitrite reactions in biological systems.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
20
|
Serpone N, Salinaro A, Emeline AV, Horikoshi S, Hidaka H, Zhao J. An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochem Photobiol Sci 2002; 1:970-81. [PMID: 12661594 DOI: 10.1039/b206338g] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photostabilities of a random set of commercially available sunscreen lotions and their active ingredients are examined spectroscopically subsequent to simulated sunlight UV exposure. Loss of filtering efficacy can occur because of possible photochemical modifications of the sunscreen active agents. Changes in absorption of UVA/ UVB sunlight by agents in sunscreen lotions also leads to a reduction of the expected photoprotection of human skin and DNA against the harmful UV radiation. The active ingredients were investigated in aqueous media and in organic solvents of various polarities (methanol, acetonitrile, and n-hexane) under aerobic and anaerobic conditions The UV absorption features are affected by the nature of the solvents with properties closely related to oil-in-water (o/w) or water-in-oil (w/o) emulsions actually used in sunscreen formulations, and by the presence of molecular oxygen. The photostabilities of two combined chemical ingredients (oxybenzone and octyl methoxycinnamate) and the combination oxybenzone/titanium dioxide were also explored. In the latter case, oxybenzone undergoes significant photodegradation in the presence of the physical filter TiO2.
Collapse
Affiliation(s)
- Nick Serpone
- Department of Chemistry & Biochemistry, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, Canada H3G 1 MB
| | | | | | | | | | | |
Collapse
|
21
|
Martinez GR, Medeiros MHG, Ravanat JL, Cadet J, Di Mascio P. [18O]-labeled singlet oxygen as a tool for mechanistic studies of 8-oxo-7,8-dihydroguanine oxidative damage: detection of spiroiminodihydantoin, imidazolone and oxazolone derivatives. Biol Chem 2002; 383:607-17. [PMID: 12033450 DOI: 10.1515/bc.2002.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A water-soluble [18O]-labeled endoperoxide derived from N,N'-di(2,3-dihydroxypropyl)-1,4-naphthalene-dipropanamide (DHPN18O2) has been shown to act as a clean chemical source of [18O]-labeled molecular singlet oxygen. This allows the assessment of the singlet oxygen (1O2) reactivity toward biological targets such as DNA. The present work focuses on the qualitative identification of the main 1O2-oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was achieved using high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Thus, the [18O]-labeled and unlabeled imidazolone and oxazolone, together with the diastereoisomeric spiroiminodihydantoin nucleosides, were detected as the main degradation products. In addition, a modified nucleoside that exhibits similar features as those of the oxidized guanidinohydantoin molecule was detected. Our data strongly suggest that the imidazolone and oxazolone nucleosides are generated via the rearrangement of an unstable 5-hydroperoxide intermediate. Interestingly, the combined use of appropriate tools, including isotopically labeled singlet oxygen and the high- resolution HPLC-ESI-MS/MS technique, has allowed to shed new light on the 1O2-mediated oxidation reactions of guanine DNA components.
Collapse
Affiliation(s)
- Glaucia R Martinez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:88-102. [PMID: 11684456 DOI: 10.1016/s1011-1344(01)00206-8] [Citation(s) in RCA: 630] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this survey, emphasis was placed on the main photoreactions of nucleic acid components, involving both direct and indirect effects. The main UVB- and UVA-induced DNA photoproducts, together with the mechanisms of their formation, are described. Information on the photoproduct distribution within cellular DNA is also provided, taking into account the limitations of the different analytical methods applied to monitor the formation of the DNA damage. Thus, the formation of the main DNA dimeric pyrimidine lesions produced by direct absorption of UVB photons was assessed using a powerful HPLC-tandem mass spectrometry assay. In addition, it was found that UVA photooxidation damage mostly involves the guanine residues of cellular DNA as the result of singlet oxygen generation by still unknown endogenous photosensitizers.
Collapse
Affiliation(s)
- J L Ravanat
- Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR 5046, Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
23
|
UV damage to nucleic acid components. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1568-461x(01)80045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|