1
|
Cezanne A, Lauer J, Solomatina A, Sbalzarini IF, Zerial M. A non-linear system patterns Rab5 GTPase on the membrane. eLife 2020; 9:e54434. [PMID: 32510320 PMCID: PMC7279886 DOI: 10.7554/elife.54434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins can self-organize into spatial patterns via non-linear dynamic interactions on cellular membranes. Modelling and simulations have shown that small GTPases can generate patterns by coupling guanine nucleotide exchange factors (GEF) to effectors, generating a positive feedback of GTPase activation and membrane recruitment. Here, we reconstituted the patterning of the small GTPase Rab5 and its GEF/effector complex Rabex5/Rabaptin5 on supported lipid bilayers. We demonstrate a 'handover' of Rab5 from Rabex5 to Rabaptin5 upon nucleotide exchange. A minimal system consisting of Rab5, RabGDI and a complex of full length Rabex5/Rabaptin5 was necessary to pattern Rab5 into membrane domains. Rab5 patterning required a lipid membrane composition mimicking that of early endosomes, with PI(3)P enhancing membrane recruitment of Rab5 and acyl chain packing being critical for domain formation. The prevalence of GEF/effector coupling in nature suggests a possible universal system for small GTPase patterning involving both protein and lipid interactions.
Collapse
Affiliation(s)
- Alice Cezanne
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Janelle Lauer
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Anastasia Solomatina
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer ScienceDresdenGermany
- MOSAIC Group, Center for Systems Biology DresdenDresdenGermany
| | - Ivo F Sbalzarini
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer ScienceDresdenGermany
- MOSAIC Group, Center for Systems Biology DresdenDresdenGermany
| | - Marino Zerial
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
2
|
Lauer J, Segeletz S, Cezanne A, Guaitoli G, Raimondi F, Gentzel M, Alva V, Habeck M, Kalaidzidis Y, Ueffing M, Lupas AN, Gloeckner CJ, Zerial M. Auto-regulation of Rab5 GEF activity in Rabex5 by allosteric structural changes, catalytic core dynamics and ubiquitin binding. eLife 2019; 8:46302. [PMID: 31718772 PMCID: PMC6855807 DOI: 10.7554/elife.46302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intracellular trafficking depends on the function of Rab GTPases, whose activation is regulated by guanine exchange factors (GEFs). The Rab5 GEF, Rabex5, was previously proposed to be auto-inhibited by its C-terminus. Here, we studied full-length Rabex5 and Rabaptin5 proteins as well as domain deletion Rabex5 mutants using hydrogen deuterium exchange mass spectrometry. We generated a structural model of Rabex5, using chemical cross-linking mass spectrometry and integrative modeling techniques. By correlating structural changes with nucleotide exchange activity for each construct, we uncovered new auto-regulatory roles for the ubiquitin binding domains and the Linker connecting those domains to the catalytic core of Rabex5. We further provide evidence that enhanced dynamics in the catalytic core are linked to catalysis. Our results suggest a more complex auto-regulation mechanism than previously thought and imply that ubiquitin binding serves not only to position Rabex5 but to also control its Rab5 GEF activity through allosteric structural alterations.
Collapse
Affiliation(s)
- Janelle Lauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sandra Segeletz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alice Cezanne
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Francesco Raimondi
- Bioquant, Heidelberg University, Heidelberg, Germany.,Heidelberg University Biochemistry Centre (BZH), Heidelberg, Germany
| | - Marc Gentzel
- Molecular Analysis-Mass Spectrometry Center for Molecular and Cellular Bioengineering, Technical University Dresden, Dresden, Germany
| | - Vikram Alva
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Michael Habeck
- Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marius Ueffing
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
3
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
4
|
Thomas C, Strutt D. Rabaptin-5 and Rabex-5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Dev Biol 2013; 385:107-21. [PMID: 24104056 PMCID: PMC3858806 DOI: 10.1016/j.ydbio.2013.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 01/08/2023]
Abstract
Endocytosis plays an important role in the regulation of tumour growth and metastasis. In Drosophila, a number of endocytic neoplastic tumour suppressor genes have been identified that when mutated cause epithelial disruption and over-proliferation. Here we characterise the Drosophila homologue of the Rab5 effector Rabaptin-5, and show that it is a novel neoplastic tumour suppressor. Its ability to bind Rab5 and modulate early endosomal dynamics is conserved in Drosophila, as is its interaction with the Rab5 GEF Rabex5, for which we also demonstrate neoplastic tumour suppressor characteristics. Surprisingly, we do not observe disruption of apico-basal polarity in Rabaptin-5 and Rabex-5 mutant tissues; instead the tumour phenotype is associated with upregulation of Jun N-terminal Kinase (JNK) and Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signalling. Drosophila Rabaptin-5 and Rabex-5 are endocytic neoplastic tumour suppressor genes. The Rab5 effector function of Rabaptin-5 is highly conserved in Drosophila. Rabaptin-5 interacts with Rabex-5 to modulate early endosomal dynamics in vivo. Tumour phenotypes are associated with upregulation of JNK and JAK/STAT signalling.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
5
|
Wang Y, Roche O, Yan MS, Finak G, Evans AJ, Metcalf JL, Hast BE, Hanna SC, Wondergem B, Furge KA, Irwin MS, Kim WY, Teh BT, Grinstein S, Park M, Marsden PA, Ohh M. Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 2009; 15:319-24. [PMID: 19252501 DOI: 10.1038/nm.1922] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 01/05/2009] [Indexed: 11/09/2022]
|
6
|
Abstract
Vesicle‐mediated transport is a process carried out by virtually every cell and is required for the proper targeting and secretion of proteins. As such, there are numerous players involved to ensure that the proteins are properly localized. Overall, transport requires vesicle budding, recognition of the vesicle by the target membrane and fusion of the vesicle with the target membrane resulting in delivery of its contents. The initial interaction between the vesicle and the target membrane has been referred to as tethering. Because this is the first contact between the two membranes, tethering is critical to ensuring that specificity is achieved. It is therefore not surprising that there are numerous ‘tethering factors’ involved ranging from multisubunit complexes, coiled‐coil proteins and Rab guanosine triphosphatases. Of the multisubunit tethering complexes, one of the best studied at the molecular level is the evolutionarily conserved TRAPP complex. There are two forms of this complex: TRAPP I and TRAPP II. In yeast, these complexes function in a number of processes including endoplasmic reticulum‐to‐Golgi transport (TRAPP I) and an ill‐defined step at the trans Golgi (TRAPP II). Because the complex was first reported in 1998 (1), there has been a decade of studies that have clarified some aspects of its function but have also raised further questions. In this review, we will discuss recent advances in our understanding of yeast and mammalian TRAPP at the structural and functional levels and its role in disease while trying to resolve some apparent discrepancies and highlighting areas for future study.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
7
|
Del Conte-Zerial P, Brusch L, Rink JC, Collinet C, Kalaidzidis Y, Zerial M, Deutsch A. Membrane identity and GTPase cascades regulated by toggle and cut-out switches. Mol Syst Biol 2008; 4:206. [PMID: 18628746 PMCID: PMC2516367 DOI: 10.1038/msb.2008.45] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/04/2008] [Indexed: 01/17/2023] Open
Abstract
Key cellular functions and developmental processes rely on cascades of GTPases. GTPases of the Rab family provide a molecular ID code to the generation, maintenance and transport of intracellular compartments. Here, we addressed the molecular design principles of endocytosis by focusing on the conversion of early endosomes into late endosomes, which entails replacement of Rab5 by Rab7. We modelled this process as a cascade of functional modules of interacting Rab GTPases. We demonstrate that intermodule interactions share similarities with the toggle switch described for the cell cycle. However, Rab5-to-Rab7 conversion is rather based on a newly characterized ‘cut-out switch' analogous to an electrical safety-breaker. Both designs require cooperativity of auto-activation loops when coupled to a large pool of cytoplasmic proteins. Live cell imaging and endosome tracking provide experimental support to the cut-out switch in cargo progression and conversion of endosome identity along the degradative pathway. We propose that, by reconciling module performance with progression of activity, the cut-out switch design could underlie the integration of modules in regulatory cascades from a broad range of biological processes.
Collapse
Affiliation(s)
- Perla Del Conte-Zerial
- Center for Information Services and High Performance Computing, University of Technology Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 2007; 6:3256-65. [PMID: 17608402 DOI: 10.1021/pr070158j] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid droplet is a cellular organelle with a neutral lipid core surrounded by a phospholipid monolayer and coated with structural as well as functional proteins. The determination of these proteins, especially their functional regulations and dynamic movement on and off droplets, holds a key to resolving the biological functions of the cellular organelle. To address this, we carried out a comprehensive proteomic study that includes a complete proteomic, a phosphoprotein proteomic, and a comparative proteomic analysis using purified lipid droplets and mass spectrometry techniques. The complete proteome identified 125 proteins of which 70 proteins had not been identified on droplets of mammalian cells previously. In phosphoprotein proteomic analysis, 7 functional lipid droplet proteins were determined to be phosphorylated, including adipose differentiation related protein (ADRP/ADFP), two Rab proteins, and four lipid metabolism enzymes, including adipose triglyceride lipase (ATGL). To understand the dynamics of lipid droplets, GTP-dependent protein recruitment was analyzed by comparative proteomics. Arf1 and some of its coatomers, three other Arfs, several other small G-proteins including 3 Rabs, and several lipid synthetic enzymes were recruited from cytosol to purified droplets. Together, the present study suggests that lipid droplet is an active and dynamic cellular organelle that governs lipid homeostasis and intracellular trafficking through protein phosphorylation as well as GTP-regulated protein translocation.
Collapse
Affiliation(s)
- René Bartz
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9039, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Stone M, Jia S, Heo WD, Meyer T, Konan KV. Participation of rab5, an early endosome protein, in hepatitis C virus RNA replication machinery. J Virol 2007; 81:4551-63. [PMID: 17301141 PMCID: PMC1900164 DOI: 10.1128/jvi.01366-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 02/04/2007] [Indexed: 12/16/2022] Open
Abstract
Like most positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its genome on the surface of rearranged membranes. We have shown previously that HCV NS4AB, but not the product NS4B, inhibits endoplasmic reticulum (ER)-to-Golgi protein traffic (K. V. Konan, T. H. Giddings, Jr., M. Ikeda, K. Li, S. M. Lemon, and K. Kirkegaard, J. Virol. 77:7843-7855). However, both NS4AB and NS4B can induce "membranous web" formation, first reported by Egger et al. (D. B Egger, R. Gosert, L. Bianchi, H. E. Blum, D. Moradpour, and K. Bienz, J. Virol. 76:5974-5984), which is also observed in HCV-infected cells (Y. Rouille, F. Helle, D. Delgrange, P. Roingeard, C. Voisset, E. Blanchard, S. Belouzard, J. McKeating, A. H. Patel, G. Maertens, T. Wakita, C. Wychowski, and J. Dubuisson, J. Virol. 80:2832-2841) and cells that bear a subgenomic NS5A-green fluorescent protein (GFP) replicon (D. Moradpour, M. J. Evans, R. Gosert, Z. Yuan, H. E. Blum, S. P. Goff, B. D. Lindenbach, and C. M. Rice, J. Virol. 78:7400-7409). To determine the intracellular origin of the web, we examined NS4B colocalization with endogenous cellular markers in the context of the full-length or subgenomic replicon. We found that, in addition to ER markers, early endosome (EE) proteins, including Rab5, were associated with web-inducing protein NS4B. Furthermore, an immunoisolated fraction containing NS4B was found to contain both ER and EE proteins. Using fluorescence microscopy, we showed that wild-type and constitutively active Rab5 proteins were associated with NS4B. Interestingly, expression of dominant-negative Rab5 resulted in significant loss of GFP fluorescence in NS5A-GFP replicon cells. We also found that a small reduction in Rab5 protein expression decreased HCV RNA synthesis significantly. Furthermore, transfection of labeled Rab5 small interfering RNAs into NS5A-GFP replicon cells resulted in a significant decrease in GFP fluorescence. Finally, Rab5 protein was found to coimmunoprecipitate with HCV NS4B. These studies suggest that EE proteins, including Rab5, may play a role in HCV genome replication or web formation.
Collapse
Affiliation(s)
- Michelle Stone
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 308 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
10
|
Itzen A, Rak A, Goody RS. Sec2 is a highly efficient exchange factor for the Rab protein Sec4. J Mol Biol 2006; 365:1359-67. [PMID: 17134721 DOI: 10.1016/j.jmb.2006.10.096] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 10/18/2006] [Accepted: 10/26/2006] [Indexed: 11/26/2022]
Abstract
Sec2 is a reversibly membrane associated multi-domain protein with guanine nucleotide exchange activity towards the yeast Rab-protein Sec4. Both proteins are localized to secretory vesicles destined for exocytosis. We have used transient kinetic methods to show that Sec2 is a highly active exchange factor, in contrast to other proteins previously characterized as Rab exchange factors. With a K(d) value for the Sec2:Sec4.GDP interaction of ca 70 microM and a maximal rate of GDP displacement of ca 15 s(-1), it is 100-1000-fold more effective than other proteins showing exchange activity towards Rabs (MSS4, DSS4, Vps9) and ca tenfold faster than Cdc25 as a Ras specific exchanger, although still 100-fold slower than the fastest systems studied so far, EF-Tu/Ef-Ts and Ran/RCC1. A comparison with other proteins showing Rab exchange activity shows that maximal rates of GDP dissociation catalyzed by Sec2 are orders of magnitude faster. When comparing Sec2 with DSS4, which also acts on Sec4, the difference was particularly dramatic. Another difference is seen in the kinetics of association of GTP with the Sec4:Sec2 complex, a process which is extremely slow for DSS4/MSS4 complexes with cognate Rabs but in the range observed for other GTPase:exchanger complexes for Sec4:Sec2., It is suggested that systems such as Ef-Tu/Ef-Ts and Ran/RCC1 have evolved for maximal possible activity for the interaction between two soluble proteins, whereas other evolutionary constraints which are connected to the spatial and temporal coordination of events in vesicular transport and other regulatory networks have determined the detailed kinetic properties of the other systems.
Collapse
Affiliation(s)
- Aymelt Itzen
- Department of Physical Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | |
Collapse
|
11
|
Kyei GB, Vergne I, Chua J, Roberts E, Harris J, Junutula JR, Deretic V. Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J 2006; 25:5250-9. [PMID: 17082769 PMCID: PMC1636625 DOI: 10.1038/sj.emboj.7601407] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 10/05/2006] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis arrests phagosomal maturation in infected macrophage, and, apart from health significance, provides a superb model system to dissect the phagolysosomal biogenesis pathway. Here, we demonstrate a critical role for the small GTPase Rab14 in maintaining mycobacterial phagosome maturation block. Four-dimensional microscopy showed that phagosomes containing live mycobacteria accumulated Rab14 following phagocytosis. The recruitment of Rab14 had strong functional consequence, as a knockdown of endogenous Rab14 by siRNA or overexpression of Rab14 dominant-negative mutants (Rab14S25N and Rab14N125I) released the maturation block and allowed phagosomes harboring live mycobacteria to progress into phagolysosomes. Conversely, overexpression of the wild-type Rab14 and the constitutively active mutant Rab14Q70L prevented phagosomes with dead mycobacteria from undergoing default maturation into phagolysosomal organelles. Mechanistic studies demonstrated a role for Rab14 in stimulating organellar fusion between phagosomes and early endosomes but not with late endosomes. Rab14 enables mycobacterial phagosomes to maintain early endosomal characteristics and avoid late endosomal/lysosomal degradative components.
Collapse
Affiliation(s)
- George B Kyei
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Isabelle Vergne
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jennifer Chua
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Esteban Roberts
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - James Harris
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Departments of Molecular Genetics & Microbiology, and Cell Biology and Physiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131-001, USA. Tel.: +1 505 272 0291; Fax: +1 505 272 5309; E-mail:
| |
Collapse
|
12
|
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821-7. [PMID: 16882731 PMCID: PMC1567661 DOI: 10.1073/pnas.0601617103] [Citation(s) in RCA: 797] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
Collapse
Affiliation(s)
- Bianka L. Grosshans
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Darinel Ortiz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Abstract
Rab5 is a member of the large family of small GTPases involved in membrane trafficking. Two genetically encoded sensors were developed to visualize Rab5 in its GTP-bound conformation in living cells. Rab5-binding fragments of Rabaptin5 or early endosomal antigen 1 (EEA.1) were fused to yellow fluorescent protein (YFP) and used in the fluorescent resonance energy transfer (FRET) assay together with Rab5-tagged cyan fluorescent protein (CFP). The presence of energy transfer between CFP-Rab5 and YFP-Rab5 binding fragments detected by sensitized FRET microscopy has validated the utility of these generated sensors to visualize the localization of GTP-bound Rab5. GTP-bound Rab5 was found in endosomes, often concentrated in distinct microdomains. Molecular architecture of the Rab5 microdomains was analyzed by three-chromophore FRET (3-FRET) microscopy, utilizing YFP, CFP, and monomeric red fluorescent proteins (mRFP.l). The results of the 3-FRET analysis suggest that GTP-bound Rab5 is capable of oligomerization and present in multiprotein complexes.
Collapse
|
14
|
Abstract
We have developed an in vitro assay to reconstitute the formation of endosomal recycling vesicles. To achieve specificity for endosomes as the donor organelle, cells are surface-biotinylated and allowed to endocytose for 10 min, after which the remaining surface-biotin is stripped off. The cells are then permeabilized and the cytosol washed away. Upon addition of exogenous cytosol and energy, sealed vesicles containing biotinylated recycling receptors are produced. Modification of the cytosol, for example, by immunodepletion or addition of purified proteins, allows the identification of proteins involved in vesicle formation. The results show that recycling is mediated by AP-1/clathrin-coated vesicles, requires Rab4, and is negatively regulated by rabaptin-5/rabex-5.
Collapse
|
15
|
Galperin E, Sorkin A. Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis. J Cell Sci 2004; 116:4799-810. [PMID: 14600265 DOI: 10.1242/jcs.00801] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rab5 is a small GTPase that controls endocytosis and early endosome dynamics. To visualize active, GTP-loaded Rab5 in living cells, we developed molecular sensors consisting of the Rab5-binding fragments of Rabaptin5 or EEA.1 fused to yellow fluorescent protein (YFP). Interaction of these sensors with GTP-bound Rab5 fused to cyan fluorescent protein (CFP) resulted in fluorescence resonance energy transfer (FRET) between CFP and YFP. Activated Rab5 was detected by FRET microscopy in endosomal compartments and often concentrated in microdomains in the endosomal membrane. Although the plasma membrane-localized activity of Rab5 was not detected by light microscopy, overexpression of a GDP-bound mutant of CFP-Rab5(S34N) inhibited internalization of the epidermal growth factor receptor by retaining receptors in clathrin-coated pits. To test whether the Rab5(S34N) mutant affects endocytosis directly at the plasma membrane, CFP-Rab5 was fused to the plasma membrane targeting sequence of K-Ras containing a CAAX motif. The resulting chimeric CFP-Rab5-CAAX was located mainly in the plasma membrane and was capable of binding GTP as judged by FRET microscopy with the Rabaptin5-based sensor. Interestingly, EEA.1 sensor did not follow activated Rab5-CAAX to the plasma membrane, suggesting that the interaction of EEA.1 with Rab5 plays a secondary role in EEA.1 targeting. Overexpression of CFP-Rab5(S34N)CAAX prevented endocytosis of receptors by retaining them in coated pits. These data suggest that the dominant-negative effect of the Rab5(S34N) mutant on the late stages of endocytosis can be mediated through the inhibition of cytosol-associated or plasma-membrane-associated rather than endosome-associated regulators of Rab proteins.
Collapse
Affiliation(s)
- Emilia Galperin
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
16
|
Harris E, Cardelli J. RabD, a Dictyostelium Rab14-related GTPase, regulates phagocytosis and homotypic phagosome and lysosome fusion. J Cell Sci 2002; 115:3703-13. [PMID: 12186956 DOI: 10.1242/jcs.00050] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RabD, a Dictyostelium Rab14-related GTPase, localizes in the endo-lysosomal pathway and contractile vacuole system of membranes. Cell lines expressing dominant-negative RabD were defective in endocytosis, endosomal membrane flow and homotypic lysosome fusion. In support of a role for RabD in fusion, cells overexpressing constitutively active RabD(Q67L) accumulated enlarged hydrolase-rich acidic vesicles ringed with GFP-RabD, consistent with RabD directly regulating lysosome fusion. To determine whether RabD also regulated phagocytosis and/or homotypic phagosome fusion (a process stimulated by many intracellular pathogens), cells overexpressing dominant-active (RabD(Q67L)) or dominant-negative (Rab(N121I)) RabD were analyzed microscopically and biochemically. The rate of phagocytosis was increased two-fold in RabD(Q67L)-expressing cells and reduced by 50% in RabD(N121I)-expressing cells compared with control cells. To examine the role of RabD in the formation of multiparticle phagosomes, we performed a series of pulse-chase experiments using fluorescently labeled bacteria and fluorescent latex beads. The rate of fusion of newly formed phagosomes was five times higher in the RabD(Q67L)-expressing cells and reduced by over 50% in RabD(N121I)-expressing cells as compared with control cells. GFP-RabD(Q67L) was found to ring multiparticle spacious phagosomes, which supports a direct role for this protein in regulating fusion. Inhibition of PI 3-kinase activity, which is known to regulate phagosome fusion in the wild-type cells, reduced the rate of phagosome fusion in RabD(Q67L+) cells, indicating that RabD acted upstream of or parallel with PI 3-kinase. We hypothesize that RabD and, possibly, Rab14, a related GTPase that associates with phagosomes in mammalian cells, are important regulators of homotypic phagosome and endo-lysosome fusion.
Collapse
Affiliation(s)
- Edward Harris
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
17
|
Abstract
Choroideremia is an X-chromosome-linked disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium and the photoreceptor layer in the eye. The gene product defective in choroideremia, CHM, is identical to Rab escort protein 1 (REP1). CHM/REP1 is an essential component of the catalytic geranylgeranyltransferase II complex (GGTrII) that delivers newly synthesized small GTPases belonging to the RAB gene family to the catalytic complex for post-translational modification. CHM/REP family members are evolutionarily related to members of the guanine nucleotide dissociation inhibitor (GDI) family, proteins involved in the recycling of Rab proteins required for vesicular membrane trafficking through the exocytic and endocytic pathways, forming the GDI/CHM superfamily. Biochemical and structural analyses have now revealed a striking parallel in the organization and function of these two families allowing us to generate a general model for GDI/CHM superfamily function in health and disease.
Collapse
Affiliation(s)
- C Alory
- Departments of Cell and Molecular Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
18
|
Lippé R, Miaczynska M, Rybin V, Runge A, Zerial M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 2001; 12:2219-28. [PMID: 11452015 PMCID: PMC55678 DOI: 10.1091/mbc.12.7.2219] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases.
Collapse
Affiliation(s)
- R Lippé
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|