1
|
Xia W, Feng Z, Wang Y, Lei R, Zhou Y, Zhuo Y, Xie R, Dong H, Zhao X, Guan X, Wu J. Orthogonally Engineered Bacteria Capture Metabolically Labeled Tumor Antigens to Improve the Systemic Immune Response in Irradiated Tumors. ACS NANO 2025; 19:5376-5391. [PMID: 39889238 DOI: 10.1021/acsnano.4c13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
In situ vaccination is considered a promising cancer immunotherapy strategy to elicit a tumor-specific T cell response. Live bacteria effectively enhanced the immune response in irradiated tumors as it can activate multiple immune cells. However, the adaptive immune response remains low since bacteria lack the efficient delivery of antigen to dendritic cells (DCs). Here, we show that tumor antigens can be metabolically labeled with azido groups in situ, allowing for their specific capture by orthogonally engineered Salmonella via bioorthogonal chemistry. Subsequently, these antigens are efficiently delivered to DCs through the active movement of the bacteria. Intratumorally injected engineered bacteria captured the labeled antigens and improved their presentation by DCs. This increased the proportion of antigen-specific CD8+ T cells in tumors, further resulting in systemic antitumor effects in the bilateral melanoma mouse model. The antitumor effects were abrogated in Batf3-/- mice or after CD8+ T cell depletion, indicating that systemic antitumor effects were dependent on adaptive immune responses. Overall, our work presents a strategy combining bacterial engineering and antigen labeling, which may guide the development of in situ vaccines in the future.
Collapse
Affiliation(s)
- Wen Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Institute of Drug Research and Development & Jiangsu Engineering Center of Biointelligent Materials, Nanjing University, Nanjing 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi 214101, China
| | - Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Ruiqi Lei
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Yao Zhou
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yujia Zhuo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Ran Xie
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing 210008, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Institute of Drug Research and Development & Jiangsu Engineering Center of Biointelligent Materials, Nanjing University, Nanjing 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi 214101, China
| |
Collapse
|
2
|
Quintana ILL, Paul A, Chowdhury A, Moulton KD, Kulkarni SS, Dube DH. Thioglycosides Act as Metabolic Inhibitors of Bacterial Glycan Biosynthesis. ACS Infect Dis 2023; 9:2025-2035. [PMID: 37698279 PMCID: PMC10580310 DOI: 10.1021/acsinfecdis.3c00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/13/2023]
Abstract
Glycans that coat the surface of bacteria are compelling antibiotic targets because they contain distinct monosaccharides that are linked to pathogenesis and are absent in human cells. Disrupting glycan biosynthesis presents a path to inhibiting the ability of a bacterium to infect the host. We previously demonstrated that O-glycosides act as metabolic inhibitors and disrupt bacterial glycan biosynthesis. Inspired by a recent study which showed that thioglycosides (S-glycosides) are 10 times more effective than O-glycosides at inhibiting glycan biosynthesis in mammalian cells, we crafted a panel of S-glycosides based on rare bacterial monosaccharides. The novel thioglycosides altered glycan biosynthesis and fitness in pathogenic bacteria but had no notable effect on glycosylation or growth in beneficial bacteria or mammalian cells. In contrast to findings in mammalian cells, S-glycosides and O-glycosides exhibited comparable potency in bacteria. However, S-glycosides exhibited enhanced selectivity relative to O-glycosides. These novel metabolic inhibitors will allow selective perturbation of the bacterial glycocalyx for functional studies and set the stage to expand our antibiotic arsenal.
Collapse
Affiliation(s)
- Isabella
de la Luz Quintana
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Ankita Paul
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400-076, India
| | - Aniqa Chowdhury
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Karen D. Moulton
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
3
|
Yang J, Yang K, Du S, Luo W, Wang C, Liu H, Liu K, Zhang Z, Gao Y, Han X, Song Y. Bioorthogonal Reaction-Mediated Tumor-Selective Delivery of CRISPR/Cas9 System for Dual-Targeted Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202306863. [PMID: 37485554 DOI: 10.1002/anie.202306863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Shiyu Du
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Str, Xicheng District, Beijing, 100037, China
| | - Kunguo Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| |
Collapse
|
4
|
Reid A, Erickson KM, Hazel JM, Lukose V, Troutman JM. Chemoenzymatic Preparation of a Campylobacter jejuni Lipid-Linked Heptasaccharide on an Azide-Linked Polyisoprenoid. ACS OMEGA 2023; 8:15790-15798. [PMID: 37151508 PMCID: PMC10157688 DOI: 10.1021/acsomega.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
Complex poly- and oligosaccharides on the surface of bacteria provide a unique fingerprint to different strains of pathogenic and symbiotic microbes that could be exploited for therapeutics or sensors selective for specific glycans. To discover reagents that can selectively interact with specific bacterial glycans, a system for both the chemoenzymatic preparation and immobilization of these materials would be ideal. Bacterial glycans are typically synthesized in nature on the C55 polyisoprenoid bactoprenyl (or undecaprenyl) phosphate. However, this long-chain isoprenoid can be difficult to work with in vitro. Here, we describe the addition of a chemically functional benzylazide tag to polyisoprenoids. We have found that both the organic-soluble and water-soluble benzylazide isoprenoid can serve as a substrate for the well-characterized system responsible for Campylobacter jejuni N-linked heptasaccharide assembly. Using the organic-soluble analogue, we demonstrate the use of an N-acetyl-glucosamine epimerase that can be used to lower the cost of glycan assembly, and using the water-soluble analogue, we demonstrate the immobilization of the C. jejuni heptasaccharide on magnetic beads. These conjugated beads are then shown to interact with soybean agglutinin, a lectin known to interact with N-acetyl-galactosamine in the C. jejuni heptasaccharide. The methods provided could be used for a wide variety of applications including the discovery of new glycan-interacting partners.
Collapse
Affiliation(s)
- Amanda
J. Reid
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Katelyn M. Erickson
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Joseph M. Hazel
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
- Department
of Chemistry, The Ohio State University, 281 W Lane Avenue, Columbus, Ohio 43210, United States
| | - Vinita Lukose
- Departments
of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jerry M. Troutman
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| |
Collapse
|
5
|
Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Isr J Chem 2023; 63:e202200050. [PMID: 37324574 PMCID: PMC10266715 DOI: 10.1002/ijch.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/02/2024]
Abstract
Bacteria coat themselves with a dense array of cell envelope glycans that enhance bacterial fitness and promote survival. Despite the importance of bacterial glycans, their systematic study and perturbation remains challenging. Chemical tools have made important inroads toward understanding and altering bacterial glycans. This review describes how pioneering discoveries from Prof. Carolyn Bertozzi's laboratory inspired our laboratory to develop sugar probes to facilitate the study of bacterial glycans. As described below, we used metabolic glycan labelling to install bioorthogonal reporters into bacterial glycans, ultimately permitting the discovery of a protein glycosylation system, the identification of glycosylation genes, and the development of metabolic glycan inhibitors. Our results have provided an approach to screen bacterial glycans and gain insight into their function, even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Katharine Barrett
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| |
Collapse
|
6
|
Dalesandro BE, Pires MM. Immunotargeting of Gram-Positive Pathogens via a Cell Wall Binding Tick Antifreeze Protein. J Med Chem 2023; 66:503-515. [PMID: 36563000 DOI: 10.1021/acs.jmedchem.2c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunological agents that supplement or modulate the host immune response have proven to have powerful therapeutic potential, although this modality is less explored against bacterial pathogens. We describe the application of a bacterial binding protein to re-engage the immune system toward pathogenic bacteria. More specifically, a hapten was conjugated to a protein expressed by Ixodes scapularis ticks, called I. scapularis antifreeze glycoprotein (IAFGP), that has high affinity for the d-alanine residue on the bacterial peptidoglycan. We showed that a fragment of this protein retained high surface binding affinity. Moreover, conjugation of a hapten to this peptide led to the display of haptens on the cell surface of vancomycin-resistant Enterococcus faecalis. Hapten display then induced the recruitment of antibodies and promoted uptake of bacterial pathogens by immune cells. These results demonstrate the feasibility in using cell wall binding agents as the basis of a class of bacterial immunotherapies.
Collapse
Affiliation(s)
- Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Parle D, Bulat F, Fouad S, Zecchini H, Brindle KM, Neves AA, Leeper FJ. Metabolic Glycan Labeling of Cancer Cells Using Variably Acetylated Monosaccharides. Bioconjug Chem 2022; 33:1467-1473. [PMID: 35876696 PMCID: PMC9389531 DOI: 10.1021/acs.bioconjchem.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Methylcyclopropene (Cyoc)-tagged tetra-acetylated monosaccharides, and in particular mannosamine derivatives, are promising tools for medical imaging of cancer using metabolic oligosaccharide engineering and the extremely fast inverse electron-demand Diels-Alder bioorthogonal reaction. However, the in vivo potential of these monosaccharide derivatives has yet to be fully explored due to their low aqueous solubility. To address this issue, we sought to vary the extent of acetylation of Cyoc-tagged monosaccharides and probe its effect on the extent of glycan labeling in various cancer cell lines. We demonstrate that, in the case of AcxManNCyoc, tri- and diacetylated derivatives generated significantly enhanced cell labeling compared to the tetra-acetylated monosaccharide. In contrast, for the more readily soluble azide-tagged sugars, a decrease in acetylation led to decreased glycan labeling. Ac3ManNCyoc gave better labeling than the azido-tagged Ac4ManNAz and has significant potential for in vitro and in vivo imaging of glycosylated cancer biomarkers.
Collapse
Affiliation(s)
- Daniel
R. Parle
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flaviu Bulat
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Shahd Fouad
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Heather Zecchini
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Kevin M. Brindle
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - André A. Neves
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Luong P, Ghosh A, Moulton KD, Kulkarni SS, Dube DH. Synthesis and Application of Rare Deoxy Amino l-Sugar Analogues to Probe Glycans in Pathogenic Bacteria. ACS Infect Dis 2022; 8:889-900. [PMID: 35302355 PMCID: PMC9445936 DOI: 10.1021/acsinfecdis.2c00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
9
|
Brown AR, Wodzanowski KA, Santiago CC, Hyland SN, Follmar JL, Asare-Okai P, Grimes CL. Protected N-Acetyl Muramic Acid Probes Improve Bacterial Peptidoglycan Incorporation via Metabolic Labeling. ACS Chem Biol 2021; 16:1908-1916. [PMID: 34506714 DOI: 10.1021/acschembio.1c00268] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolic glycan probes have emerged as an excellent tool to investigate vital questions in biology. Recently, methodology to incorporate metabolic bacterial glycan probes into the cell wall of a variety of bacterial species has been developed. In order to improve this method, a scalable synthesis of the peptidoglycan precursors is developed here, allowing for access to essential peptidoglycan immunological fragments and cell wall building blocks. The question was asked if masking polar groups of the glycan probe would increase overall incorporation, a common strategy exploited in mammalian glycobiology. Here, we show, through cellular assays, that E. coli do not utilize peracetylated peptidoglycan substrates but do employ methyl esters. The 10-fold improvement of probe utilization indicates that (i) masking the carboxylic acid is favorable for transport and (ii) bacterial esterases are capable of removing the methyl ester for use in peptidoglycan biosynthesis. This investigation advances bacterial cell wall biology, offering a prescription on how to best deliver and utilize bacterial metabolic glycan probes.
Collapse
Affiliation(s)
- Ashley R. Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Julianna L. Follmar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - PapaNii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Becht S, Sen R, Büllmann SM, Dreuw A, Jäschke A. "Click-switch" - one-step conversion of organic azides into photochromic diarylethenes for the generation of light-controlled systems. Chem Sci 2021; 12:11593-11603. [PMID: 34667559 PMCID: PMC8447918 DOI: 10.1039/d1sc02526k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylethenes (DAEs) are an established class of photochromic molecules, but their effective incorporation into pre-existing targets is synthetically difficult. Here we describe a new class of DAEs in which one of the aryl rings is a 1,2,3-triazole that is formed by “click” chemistry between an azide on the target and a matching alkyne–cyclopentene–thiophene component. This late-stage zero-length linking allows for tight integration of the DAE with the target, thereby increasing the chances for photomodulation of target functions. Nineteen different DAEs were synthesized and their properties investigated. All showed photochromism. Electron-withdrawing groups, and in particular −M-substituents at the triazole and/or thiophene moiety resulted in DAEs with high photo- and thermostability. Further, the chemical nature of the cyclopentene bridge had a strong influence on the behaviour upon UV light irradiation. Incorporation of perfluorinated cyclopentene led to compounds with high photo- and thermostability, but the reversible photochromic reaction was restricted to halogenated solvents. Compounds containing the perhydrogenated cyclopentene bridge, on the other hand, allowed the reversible photochromic reaction in a wide range of solvents, but had on average lower photo- and thermostabilities. The combination of the perhydrocyclopentene bridge and electron-withdrawing groups resulted in a DAE with improved photostability and no solvent restriction. Quantum chemical calculations helped to identify the photoproducts formed in halogenated as well as non-halogenated solvents. For two optimized DAE photoswitches, photostationary state composition and reaction quantum yields were determined. These data revealed efficient photochemical ring closure and opening. We envision applications of these new photochromic diarylethenes in photonics, nanotechnology, photobiology, photopharmacology and materials science. New photochromic diarylethenes are reported in which one aryl ring is a 1,2,3-triazole that is formed by “click” chemistry between an azide on the target and a matching alkyne–cyclopentene–thiophene component.![]()
Collapse
Affiliation(s)
- Steffy Becht
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Reena Sen
- Theoretical and Computational Chemistry, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Im Neuenheimer Feld 205A 69120 Heidelberg Germany
| | - Simon M Büllmann
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Andreas Dreuw
- Theoretical and Computational Chemistry, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Im Neuenheimer Feld 205A 69120 Heidelberg Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
11
|
Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020; 12:1102-1114. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Collapse
|
12
|
Wang H, Sobral MC, Zhang DKY, Cartwright AN, Li AW, Dellacherie MO, Tringides CM, Koshy ST, Wucherpfennig KW, Mooney DJ. Metabolic labeling and targeted modulation of dendritic cells. NATURE MATERIALS 2020; 19:1244-1252. [PMID: 32424368 PMCID: PMC7748064 DOI: 10.1038/s41563-020-0680-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Targeted immunomodulation of dendritic cells (DCs) in vivo will enable manipulation of T-cell priming and amplification of anticancer immune responses, but a general strategy has been lacking. Here we show that DCs concentrated by a biomaterial can be metabolically labelled with azido groups in situ, which allows for their subsequent tracking and targeted modulation over time. Azido-labelled DCs were detected in lymph nodes for weeks, and could covalently capture dibenzocyclooctyne (DBCO)-bearing antigens and adjuvants via efficient Click chemistry for improved antigen-specific CD8+ T-cell responses and antitumour efficacy. We also show that azido labelling of DCs allowed for in vitro and in vivo conjugation of DBCO-modified cytokines, including DBCO-IL-15/IL-15Rα, to improve priming of antigen-specific CD8+ T cells. This DC labelling and targeted modulation technology provides an unprecedented strategy for manipulating DCs and regulating DC-T-cell interactions in vivo.
Collapse
Affiliation(s)
- Hua Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Miguel C Sobral
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - David K Y Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Adam N Cartwright
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aileen Weiwei Li
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Maxence O Dellacherie
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Christina M Tringides
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandeep T Koshy
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA.
| |
Collapse
|
13
|
Wu Y, Zheng J, Xing D, Zhang T. Near-infrared light controlled fluorogenic labeling of glycoengineered sialic acids in vivo with upconverting photoclick nanoprobe. NANOSCALE 2020; 12:10361-10368. [PMID: 32369049 DOI: 10.1039/c9nr10286h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sialic acid serves as an important determinant for profiling cell activities in diverse biological and pathological processes. The precise control of sialic acid labeling to visualize its biological pathways under endogenous conditions is significant but still challenging due to the lack of reliable methods. Herein, we developed an effective strategy to spatiotemporally label thesialic acids with a near-infrared (NIR) light activated upconverting nanoprobe (Tz-UCNP). With this photoclickable nanoprobe and a stable N-alkene-d-mannosamine (Ac4ManNIPFA), metabolically synthesized alkene sialic acids on the cell surface were labeled and imaged in real time through fluorogenic cycloaddition. More importantly, we achieved spatially selective visualization of sialic acids in specific tumor tissues of the mice under NIR light activation in a spatially controlled manner. This in situ controllable labeling strategy thus enables the metabolic labeling of specific sialic acids in complex biological systems.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China.
| | | | | | | |
Collapse
|
14
|
Soares da Costa D, Sousa JC, Dá Mesquita S, Petkova-Yankova NI, Marques F, Reis RL, Sousa N, Pashkuleva I. Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules 2020; 25:molecules25040795. [PMID: 32059500 PMCID: PMC7070308 DOI: 10.3390/molecules25040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
The expression of different glycans at the cell surface dictates cell interactions with their environment and other cells, being crucial for the cell fate. The development of the central nervous system is associated with tremendous changes in the cell glycome that is tightly regulated. Herein, we have employed bioorthogonal Cu-free click chemistry to image temporal distribution of different glycans in live mouse hippocampal neurons during their maturation in vitro. We show development-dependent glycan patterns with increased fucose and decreased mannose expression at the end of the maturation process. We also demonstrate that this approach is biocompatible and does not affect glycan transport although it relies on an administration of modified glycans. The applicability of this strategy to tissue sections unlocks new opportunities to study the glycan dynamics under more complex physiological conditions.
Collapse
Affiliation(s)
- Diana Soares da Costa
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- Correspondence: (D.S.d.C.); (I.P.)
| | - João C. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Nevena I. Petkova-Yankova
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- Correspondence: (D.S.d.C.); (I.P.)
| |
Collapse
|
15
|
Williams DA, Pradhan K, Paul A, Olin IR, Tuck OT, Moulton KD, Kulkarni SS, Dube DH. Metabolic inhibitors of bacterial glycan biosynthesis. Chem Sci 2020; 11:1761-1774. [PMID: 34123271 PMCID: PMC8148367 DOI: 10.1039/c9sc05955e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bacterial cell wall is a quintessential drug target due to its critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell wall glycocalyx contains distinctive monosaccharides that are absent from human cells, and proper assembly of monosaccharides into higher-order glycans is critical for bacterial fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare deoxy amino sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the creation of glycosylation inhibitors. To ease the study of bacterial glycan function in the absence of detailed structural or enzyme information, we crafted metabolic inhibitors based on rare bacterial monosaccharide scaffolds. Metabolic inhibitors were assessed for their ability to interfere with glycan biosynthesis and fitness in pathogenic and symbiotic bacterial species. Three metabolic inhibitors led to dramatic structural and functional defects in Helicobacter pylori. Strikingly, these inhibitors acted in a bacteria-selective manner. These metabolic inhibitors will provide a platform for systematic study of bacterial glycosylation enzymes not currently possible with existing tools. Moreover, their selectivity will provide a pathway for the development of novel, narrow-spectrum antibiotics to treat infectious disease. Our inhibition approach is general and will expedite the identification of bacterial glycan biosynthesis inhibitors in a range of systems, expanding the glycochemistry toolkit.
Collapse
Affiliation(s)
- Daniel A Williams
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Kabita Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ilana R Olin
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Owen T Tuck
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Karen D Moulton
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College 6600 College Station Brunswick ME 04011 USA
| |
Collapse
|
16
|
Shen L, Cai K, Yu J, Cheng J. Novel Liposomal Azido Mannosamine Lipids on Metabolic Cell Labeling and Imaging via Cu-Free Click Chemistry. Bioconjug Chem 2019; 30:2317-2322. [PMID: 31403278 DOI: 10.1021/acs.bioconjchem.9b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In comparison with the popular Ac4ManNAz applied as cell labels via Cu-free click chemistry, two novel azido mannosamine lipids with C6 and C12 esters on anomeric hydroxyl groups were prepared and encapsulated in a liposome delivery system, which enhanced chemical stabilities and showed good cell-metabolizable labeling efficiency on MDA-MB-231 cells with strong fluorescence after the treatment of DBCO-Cy5 by triazole formation via click chemistry.
Collapse
Affiliation(s)
- Li Shen
- Ocean College , Zhejiang University , Zhoushan 316021 , China.,Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign Urbana , Illinois 61801 , United States
| | - Kaimin Cai
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign Urbana , Illinois 61801 , United States
| | - Jin Yu
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign Urbana , Illinois 61801 , United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign Urbana , Illinois 61801 , United States
| |
Collapse
|
17
|
Li Q, Xie Y, Xu G, Lebrilla CB. Identification of potential sialic acid binding proteins on cell membranes by proximity chemical labeling. Chem Sci 2019; 10:6199-6209. [PMID: 31360427 PMCID: PMC6585875 DOI: 10.1039/c9sc01360a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/14/2019] [Indexed: 01/28/2023] Open
Abstract
A “protein oxidation of sialic acid environments” (POSE) mapping tool is developed for sialic acid binding protein discovery.
The cell membrane contains a highly interactive glycan surface on a scaffold of proteins and lipids. Sialic acids are negatively charged monosaccharides, and the proteins that bind to sialic acids play an important role in maintaining the integrity and collective functions of this interactive space. Sialic acid binding proteins are not readily identified and have nearly all been discovered empirically. In this research, we developed a proximity labeling method to characterize proteins with oxidation by localized radicals produced in situ. The sites of oxidation were identified and quantified using a standard proteomic workflow. In this method, a clickable probe was synthesized and attached to modified sialic acids on the cell membrane, which functioned as a catalyst for the localized formation of radicals from hydrogen peroxide. The proteins in the sialic acid environment were labeled through amino acid oxidation, and were categorized into three groups including sialylated proteins, non-sialylated proteins with transmembrane domains, and proteins that are associated with the membrane with neither sialylated nor transmembrane domains. The analysis of the last group of proteins showed that they were associated with binding functions including carbohydrate binding, anion binding, and cation binding, thereby revealing the nature of the sialic acid–protein interaction. This new tool identified potential sialic acid-binding proteins in the extracellular space and proteins that were organized around sialylated glycans in cells.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry , University of California, Davis , Davis , California , USA .
| | - Yixuan Xie
- Department of Chemistry , University of California, Davis , Davis , California , USA .
| | - Gege Xu
- Department of Chemistry , University of California, Davis , Davis , California , USA .
| | - Carlito B Lebrilla
- Department of Chemistry , University of California, Davis , Davis , California , USA . .,Department of Biochemistry , University of California, Davis , Davis , California , USA
| |
Collapse
|
18
|
Gutmann M, Bechold J, Seibel J, Meinel L, Lühmann T. Metabolic Glycoengineering of Cell-Derived Matrices and Cell Surfaces: A Combination of Key Principles and Step-by-Step Procedures. ACS Biomater Sci Eng 2018; 5:215-233. [DOI: 10.1021/acsbiomaterials.8b00865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Julian Bechold
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
19
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Sun L, Ishihara M, Middleton DR, Tiemeyer M, Avci FY. Metabolic labeling of HIV-1 envelope glycoprotein gp120 to elucidate the effect of gp120 glycosylation on antigen uptake. J Biol Chem 2018; 293:15178-15194. [PMID: 30115684 DOI: 10.1074/jbc.ra118.004798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Indexed: 12/21/2022] Open
Abstract
The glycan shield on the envelope glycoprotein gp120 of HIV-1 has drawn immense attention as a vulnerable site for broadly neutralizing antibodies and for its significant impact on host adaptive immune response to HIV-1. Glycosylation sites and glycan composition/structure at each site on gp120 along with the interactions of gp120 glycan shield with broadly neutralizing antibodies have been extensively studied. However, a method for directly and selectively tracking gp120 glycans has been lacking. Here, we integrate metabolic labeling and click chemistry technology with recombinant gp120 expression to demonstrate that gp120 glycans could be specifically labeled and directly detected. Selective labeling of gp120 by N-azidoacetylmannosamine (ManNAz) and N-azidoacetylgalactosamine (GalNAz) incorporation into the gp120 glycan shield was characterized by MS of tryptic glycopeptides. By using metabolically labeled gp120, we investigated the impact of gp120 glycosylation on its interaction with host cells and demonstrated that oligomannose enrichment and sialic acid deficiency drastically enhanced gp120 uptake by bone marrow-derived dendritic cells. Collectively, our data reveal an effective labeling and detection method for gp120, serving as a tool for functional characterization of the gp120 glycans and potentially other glycosylated proteins.
Collapse
Affiliation(s)
- Lina Sun
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Dustin R Middleton
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Fikri Y Avci
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and .,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
21
|
Feigman MJS, Pires MM. Synthetic Immunobiotics: A Future Success Story in Small Molecule-Based Immunotherapy? ACS Infect Dis 2018; 4:664-672. [PMID: 29431421 DOI: 10.1021/acsinfecdis.7b00261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug resistance to our current stock of antibiotics is projected to increase to levels that threaten our ability to reduce and eliminate bacterial infections, which is now considered one of the primary health care crises of the 21st century. Traditional antibiotic agents (e.g., penicillin) paved the way for massive advances in human health, but we need novel strategies to maintain the upper hand in the battle against pathogenic bacteria. Nontraditional strategies, such as targeted immunotherapies, could prove fruitful in complementing our antibiotic arsenal.
Collapse
Affiliation(s)
- Mary J. Sabulski Feigman
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
22
|
Gutmann M, Braun A, Seibel J, Lühmann T. Bioorthogonal Modification of Cell Derived Matrices by Metabolic Glycoengineering. ACS Biomater Sci Eng 2018; 4:1300-1306. [DOI: 10.1021/acsbiomaterials.8b00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Alexandra Braun
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
23
|
Mustafa SK, AlSharif MA. Copper (Cu) an Essential Redox-Active Transition Metal in Living System—A Review Article. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajac.2018.91002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Du Y, Xie R, Sun Y, Fan X, Chen X. Liposome-Assisted Metabolic Glycan Labeling With Cell and Tissue Selectivity. Methods Enzymol 2018; 598:321-353. [DOI: 10.1016/bs.mie.2017.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat Chem Biol 2017; 13:415-424. [PMID: 28192414 DOI: 10.1038/nchembio.2297] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne-doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.
Collapse
|
26
|
Ravasco JMJM, Monteiro CM, Trindade AF. Cyclopropenes: a new tool for the study of biological systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00054e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclopropenes have become an important mini-tag tool in chemical biology, participating in fast inverse electron demand Diels–Alder and photoclick reactions in biological settings.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Alexandre F. Trindade
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
27
|
Clark EL, Emmadi M, Krupp KL, Podilapu AR, Helble JD, Kulkarni SS, Dube DH. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria. ACS Chem Biol 2016; 11:3365-3373. [PMID: 27766829 DOI: 10.1021/acschembio.6b00790] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.
Collapse
Affiliation(s)
- Emily L. Clark
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Madhu Emmadi
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Katharine L. Krupp
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Ananda R. Podilapu
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Jennifer D. Helble
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
28
|
Li J, Wang J, Wen L, Zhu H, Li S, Huang K, Jiang K, Li X, Ma C, Qu J, Parameswaran A, Song J, Zhao W, Wang PG. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells. ACS Chem Biol 2016; 11:3002-3006. [PMID: 27622469 DOI: 10.1021/acschembio.6b00678] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac34dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac34dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.
Collapse
Affiliation(s)
- Jing Li
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Jiajia Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
- School
of Food and Drug, Luoyang Normal University, Luoyang, People’s Republic of China
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Shanshan Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Kenneth Huang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Kuan Jiang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Xu Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Jingyao Qu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Aishwarya Parameswaran
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| | - Wei Zhao
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Peng George Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, Georgia 30303, United States
| |
Collapse
|
29
|
Mertsch A, Letschert S, Memmel E, Sauer M, Seibel J. Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates. ACTA ACUST UNITED AC 2016; 71:347-354. [DOI: 10.1515/znc-2016-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/28/2016] [Indexed: 02/03/2023]
Abstract
Abstract
The synthesis of cyanine dyes addressing absorption wavelengths at 550 and 648 nm is reported. Alkyne functionalized dyes were used for bioorthogonal click reactions by labeling of metabolically incorporated sugar-azides on the surface of living neuroblastoma cells, which were applied to direct stochastic optical reconstruction microscopy (dSTORM) for the visualization of cell-surface glycans in the nm-range.
Collapse
Affiliation(s)
- Alexander Mertsch
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sebastian Letschert
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Elisabeth Memmel
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
30
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
31
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
32
|
Shah L, Laughlin ST, Carrico IS. Light-Activated Staudinger-Bertozzi Ligation within Living Animals. J Am Chem Soc 2016; 138:5186-9. [PMID: 27010217 DOI: 10.1021/jacs.5b13401] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to regulate small molecule chemistry in vivo will enable new avenues of exploration in imaging and pharmacology. However, realization of these goals will require reactions with high specificity and precise control. Here we demonstrate photocontrol over the highly specific Staudinger-Bertozzi ligation in vitro and in vivo. Our simple approach, photocaging the key phosphine atom, allows for the facile production of reagents with photochemistry that can be engineered for specific applications. The resulting compounds, which are both stable and efficiently activated, enable the spatial labeling of metabolically introduced azides in vitro and on live zebrafish.
Collapse
Affiliation(s)
- Lisa Shah
- Department of Chemistry and ‡Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Scott T Laughlin
- Department of Chemistry and ‡Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Isaac S Carrico
- Department of Chemistry and ‡Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook , Stony Brook, New York 11794-3400, United States
| |
Collapse
|
33
|
Oum YH, Desai TM, Marin M, Melikyan GB. Click labeling of unnatural sugars metabolically incorporated into viral envelope glycoproteins enables visualization of single particle fusion. J Virol Methods 2016; 233:62-71. [PMID: 27033181 DOI: 10.1016/j.jviromet.2016.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Enveloped viruses infect target cells by fusing their membrane with cellular membrane through a process that is mediated by specialized viral glycoproteins. The inefficient and highly asynchronous nature of viral fusion complicates studies of virus entry on a population level. Single virus imaging in living cells has become an important tool for delineating the entry pathways and for mechanistic studies of viral fusion. We have previously demonstrated that incorporation of fluorescent labels into the viral membrane and trapping fluorescent proteins in the virus interior enables the visualization of single virus fusion in living cells. Here, we implement a new approach to non-invasively label the viral membrane glycoproteins through metabolic incorporation of unnatural sugars followed by click-reaction with organic fluorescent dyes. This approach allows for efficient labeling of diverse viral fusion glycoproteins on the surface of HIV pseudoviruses. Incorporation of a content marker into surface-labeled viral particles enables sensitive detection of single virus fusion with live cells.
Collapse
Affiliation(s)
- Yoon Hyeun Oum
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA
| | - Tanay M Desai
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA
| | - Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
34
|
Gutmann M, Memmel E, Braun AC, Seibel J, Meinel L, Lühmann T. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells. Chembiochem 2016; 17:866-75. [PMID: 26818821 DOI: 10.1002/cbic.201500582] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/09/2022]
Abstract
Bio-orthogonal copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been widely used to modify azide- or alkyne-bearing monosaccharides on metabolic glyco-engineered mammalian cells. Here, we present a systematic study to elucidate the design space for the cytotoxic effects of the copper catalyst on NIH 3T3 fibroblasts and on HEK 293-F cells. Monitoring membrane integrity by flow cytometry and RT-PCR analysis with apoptotic and anti-apoptotic markers elucidated the general feasibility of CuAAC, with exposure time of the CuAAC reaction mixture having the major influence on biocompatibility. A high labeling efficiency of HEK 293-F cells with a fluorescent alkyne dye was rapidly achieved by CuAAC in comparison to copper free strain-promoted azide-alkyne cycloaddition (SPAAC). The study details effective and biocompatible conditions for CuAAC-based modification of glyco-engineered cells in comparison to its copper free alternative.
Collapse
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Elisabeth Memmel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra C Braun
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
35
|
Extracellular Toxoplasma gondii tachyzoites metabolize and incorporate unnatural sugars into cellular proteins. Microbes Infect 2015; 18:199-210. [PMID: 26687036 DOI: 10.1016/j.micinf.2015.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects all nucleated cell types in diverse warm-blooded organisms. Many of the surface antigens and effector molecules secreted by the parasite during invasion and intracellular growth are modified by glycans. Glycosylated proteins in the nucleus and cytoplasm have also been reported. Despite their prevalence, the complete inventory and biological significance of glycosylated proteins in Toxoplasma remain unknown. In this study, we aimed to globally profile parasite glycoproteins using a bioorthogonal chemical reporter strategy. This strategy involves the metabolic incorporation of unnatural functional groups (i.e., "chemical reporters") into Toxoplasma glycans, followed by covalent labeling with visual probes or affinity tags. The two-step approach enables the visualization and identification of newly biosynthesized glycoconjugates in the parasite. Using a buffer that mimics intracellular conditions, extracellular Toxoplasma tachyzoites were found to metabolize and incorporate unnatural sugars (equipped with bioorthogonal functional groups) into diverse proteins. Covalent chemistries were used to visualize and retrieve these labeled structures. Subsequent mass spectrometry analysis revealed 89 unique proteins. This survey identified novel proteins as well as previously characterized proteins from lectin affinity analyses.
Collapse
|
36
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Chu Y, Oum YH, Carrico IS. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 2015; 487:95-103. [PMID: 26499046 DOI: 10.1016/j.virol.2015.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation.
Collapse
Affiliation(s)
- Yanjie Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Yoon Hyeun Oum
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Isaac S Carrico
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
38
|
Liu S, Edgar KJ. Staudinger Reactions for Selective Functionalization of Polysaccharides: A Review. Biomacromolecules 2015; 16:2556-71. [DOI: 10.1021/acs.biomac.5b00855] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shu Liu
- Departments of †Chemistry, §Sustainable Biomaterials and the Macromolecules and Interfaces Institute, Virginia Tech, 230 Cheatham Hall, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Departments of †Chemistry, §Sustainable Biomaterials and the Macromolecules and Interfaces Institute, Virginia Tech, 230 Cheatham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
39
|
Tang TSM, Yip AMH, Zhang KY, Liu HW, Wu PL, Li KF, Cheah KW, Lo KKW. Bioorthogonal Labeling, Bioimaging, and Photocytotoxicity Studies of Phosphorescent Ruthenium(II) Polypyridine Dibenzocyclooctyne Complexes. Chemistry 2015; 21:10729-40. [DOI: 10.1002/chem.201501040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/12/2022]
|
40
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Rong J, Han J, Dong L, Tan Y, Yang H, Feng L, Wang QW, Meng R, Zhao J, Wang SQ, Chen X. Glycan Imaging in Intact Rat Hearts and Glycoproteomic Analysis Reveal the Upregulation of Sialylation during Cardiac Hypertrophy. J Am Chem Soc 2014; 136:17468-76. [DOI: 10.1021/ja508484c] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Rong
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | | | | | - Lianshun Feng
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | - Jing Zhao
- School
of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- State
Key
Laboratory of Pharmaceutical Biotechnology, School of Life Sciences,
Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
42
|
King M, Wagner A. Developments in the Field of Bioorthogonal Bond Forming Reactions—Past and Present Trends. Bioconjug Chem 2014; 25:825-39. [DOI: 10.1021/bc500028d] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathias King
- Laboratory of Functional
Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg - CNRS, 74 Route du Rhin, BP 60024, 67401 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Laboratory of Functional
Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg - CNRS, 74 Route du Rhin, BP 60024, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
43
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Patterson DM, Jones KA, Prescher JA. Improved cyclopropene reporters for probing protein glycosylation. MOLECULAR BIOSYSTEMS 2014; 10:1693-7. [DOI: 10.1039/c4mb00092g] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Josa-Culleré L, Wainman YA, Brindle KM, Leeper FJ. Diazo group as a new chemical reporter for bioorthogonal labelling of biomolecules. RSC Adv 2014. [DOI: 10.1039/c4ra08861a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Diazoacetyl groups undergo spontaneous cycloaddition with strained alkenes and alkynes and can be bioorthogonal reporter groups labelling proteins and glycans.
Collapse
Affiliation(s)
| | | | - Kevin M. Brindle
- Cancer Research UK
- Cambridge Institute
- Li Ka Shing Centre
- Cambridge CB2 0RE, UK
| | | |
Collapse
|
46
|
Mun JY, Lee KJ, Seo H, Sung MS, Cho YS, Lee SG, Kwon O, Oh DB. Efficient Adhesion-Based Plasma Membrane Isolation for Cell Surface N-Glycan Analysis. Anal Chem 2013; 85:7462-70. [DOI: 10.1021/ac401431u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Min-Sun Sung
- Biosystems and
Bioengineering
Program, University of Science and Technology (UST), Daejeon 305-350, South Korea
| | | | - Seung-Goo Lee
- Biosystems and
Bioengineering
Program, University of Science and Technology (UST), Daejeon 305-350, South Korea
| | - Ohsuk Kwon
- Biosystems and
Bioengineering
Program, University of Science and Technology (UST), Daejeon 305-350, South Korea
| | - Doo-Byoung Oh
- Biosystems and
Bioengineering
Program, University of Science and Technology (UST), Daejeon 305-350, South Korea
| |
Collapse
|
47
|
Kaewsapsak P, Esonu O, Dube DH. Recruiting the host's immune system to target Helicobacter pylori's surface glycans. Chembiochem 2013; 14:721-6. [PMID: 23512824 DOI: 10.1002/cbic.201300006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 01/01/2023]
Abstract
Due to the increased prevalence of bacterial strains that are resistant to existing antibiotics, there is an urgent need for new antibacterial strategies. Bacterial glycans are an attractive target for new treatments, as they are frequently linked to pathogenesis and contain distinctive structures that are absent in humans. We set out to develop a novel targeting strategy based on surface glycans present on the gastric pathogen Helicobacter pylori (Hp). In this study, metabolic labeling of bacterial glycans with an azide-containing sugar allowed selective delivery of immune stimulants to azide-covered Hp. We established that Hp's surface glycans are labeled by treatment with the metabolic substrate peracetylated N-azidoacetylglucosamine (Ac4 GlcNAz). By contrast, mammalian cells treated with Ac4 GlcNAz exhibited no incorporation of the chemical label within extracellular glycans. We further demonstrated that the Staudinger ligation between azides and phosphines proceeds under acidic conditions with only a small loss of efficiency. We then targeted azide-covered Hp with phosphines conjugated to the immune stimulant 2,4-dinitrophenyl (DNP), a compound capable of directing a host immune response against these cells. Finally, we report that immune effector cells catalyze selective damage in vitro to DNP-covered Hp in the presence of anti-DNP antibodies. The technology reported herein represents a novel strategy to target Hp based on its glycans.
Collapse
Affiliation(s)
- Pornchai Kaewsapsak
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | | | | |
Collapse
|
48
|
Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA. Functionalized Cyclopropenes As Bioorthogonal Chemical Reporters. J Am Chem Soc 2012; 134:18638-43. [DOI: 10.1021/ja3060436] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David M. Patterson
- Departments
of Chemistry, ‡Molecular Biology and Biochemistry, and §Pharmaceutical Science, University of California - Irvine, Irvine,
California 92697, United States
| | - Lidia A. Nazarova
- Departments
of Chemistry, ‡Molecular Biology and Biochemistry, and §Pharmaceutical Science, University of California - Irvine, Irvine,
California 92697, United States
| | - Bryan Xie
- Departments
of Chemistry, ‡Molecular Biology and Biochemistry, and §Pharmaceutical Science, University of California - Irvine, Irvine,
California 92697, United States
| | - David N. Kamber
- Departments
of Chemistry, ‡Molecular Biology and Biochemistry, and §Pharmaceutical Science, University of California - Irvine, Irvine,
California 92697, United States
| | - Jennifer A. Prescher
- Departments
of Chemistry, ‡Molecular Biology and Biochemistry, and §Pharmaceutical Science, University of California - Irvine, Irvine,
California 92697, United States
| |
Collapse
|
49
|
Xie R, Hong S, Feng L, Rong J, Chen X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J Am Chem Soc 2012; 134:9914-7. [PMID: 22646989 DOI: 10.1021/ja303853y] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cell-specific metabolic glycan labeling strategy has been developed using azidosugars encapsulated in ligand-targeted liposomes. The ligands are designed to bind specific cell-surface receptors that are only expressed or up-regulated in target cells, which mediates the intracellular delivery of azidosugars. The delivered azidosugars are metabolically incorporated into cell-surface glycans, which are then imaged via a bioorthogonal reaction.
Collapse
Affiliation(s)
- Ran Xie
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
50
|
Dehnert KW, Baskin JM, Laughlin ST, Beahm BJ, Naidu NN, Amacher SL, Bertozzi CR. Imaging the sialome during zebrafish development with copper-free click chemistry. Chembiochem 2012; 13:353-7. [PMID: 22262667 PMCID: PMC3385855 DOI: 10.1002/cbic.201100649] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Karen W Dehnert
- Department of Chemistry, University of California, B84 Hildebrand Hall 1460, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|