1
|
Bressendorff S, Sjøgaard IMZ, Prestel A, Voutsinos V, Jansson MD, Ménard P, Lund AH, Hartmann-Petersen R, Kragelund BB, Poulsen C, Brodersen P. Importance of an N-terminal structural switch in the distinction between small RNA-bound and free ARGONAUTE. Nat Struct Mol Biol 2025; 32:625-638. [PMID: 39774835 DOI: 10.1038/s41594-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
ARGONAUTE (AGO) proteins bind to small non-coding RNAs to form RNA-induced silencing complexes. In the RNA-bound state, AGO is stable while RNA-free AGO turns over rapidly. Molecular features unique to RNA-free AGO that allow its specific recognition and degradation remain unknown. Here, we identify a confined, linear region in Arabidopsis AGO1 and human Ago2, the N-coil, as a structural switch with preferential accessibility in the RNA-free state. RNA-free Arabidopsis AGO1 interacts with the autophagy cargo receptor ATI1 by direct contact with specific N-coil amino acid residues whose mutation reduces the degradation rate of RNA-free AGO1 in vivo. The N-coil of human Ago2 has similar degron activity dependent on residues in positions equivalent to those required for the Arabidopsis AGO1-ATI1 interaction. These results elucidate the molecular basis for specific recognition and degradation of the RNA-free state of eukaryotic AGO proteins.
Collapse
Affiliation(s)
- Simon Bressendorff
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Marie Zobbe Sjøgaard
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Voutsinos
- Kaj Ulrik Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin D Jansson
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Kaj Ulrik Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Poulsen
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk, Måløv, Denmark
| | - Peter Brodersen
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
DuPrie ML, Palacio T, Calil FA, Kolodner RD, Putnam CD. Mlh1 interacts with both Msh2 and Msh6 for recruitment during mismatch repair. DNA Repair (Amst) 2022; 119:103405. [PMID: 36122480 PMCID: PMC9639671 DOI: 10.1016/j.dnarep.2022.103405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Eukaryotic DNA mismatch repair (MMR) initiates through mispair recognition by the MutS homologs Msh2-Msh6 and Msh2-Msh3 and subsequent recruitment of the MutL homologs Mlh1-Pms1 (human MLH1-PMS2). In bacteria, MutL is recruited by interactions with the connector domain of one MutS subunit and the ATPase and core domains of the other MutS subunit. Analysis of the S. cerevisiae and human homologs have only identified an interaction between the Msh2 connector domain and Mlh1. Here we investigated whether a conserved Msh6 ATPase/core domain-Mlh1 interaction and an Msh2-Msh6 interaction with Pms1 also act in MMR. Mutations in MLH1 affecting interactions with both the Msh2 and Msh6 interfaces caused MMR defects, whereas equivalent pms1 mutations did not cause MMR defects. Mutant Mlh1-Pms1 complexes containing Mlh1 amino acid substitutions were defective for recruitment to mispaired DNA by Msh2-Msh6, did not support MMR in reconstituted Mlh1-Pms1-dependent MMR reactions in vitro, but were proficient in Msh2-Msh6-independent Mlh1-Pms1 endonuclease activity. These results indicate that Mlh1, the common subunit of the Mlh1-Pms1, Mlh1-Mlh2, and Mlh1-Mlh3 complexes, but not Pms1, is recruited by Msh2-Msh6 through interactions with both of its subunits.
Collapse
Affiliation(s)
- Matthew L DuPrie
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Tatiana Palacio
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Felipe A Calil
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Cellular and Molecular Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Moores-UCSD Cancer Center University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Institute of Genomic Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA.
| |
Collapse
|
3
|
Sadr AS, Abdollahpour Z, Aliahmadi A, Eslahchi C, Nekouei M, Kiaei L, Kiaei M, Ghassempour A. Detection of structural and conformational changes in ALS-causing mutant profilin-1 with hydrogen/deuterium exchange mass spectrometry and bioinformatics techniques. Metab Brain Dis 2022; 37:229-241. [PMID: 34302583 DOI: 10.1007/s11011-021-00763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
The hydrogen/deuterium exchange (HDX) is a reliable method to survey the dynamic behavior of proteins and epitope mapping. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is a quantifying tool to assay for HDX in the protein of interest. We combined HDX-MALDI-TOF MS and molecular docking/MD simulation to identify accessible amino acids and analyze their contribution into the structural changes of profilin-1 (PFN-1). The molecular docking/MD simulations are computational tools for enabling the analysis of the type of amino acids that may be involved via HDX identified under the lowest binding energy condition. Glycine to valine amino acid (G117V) substitution mutation is linked to amyotrophic lateral sclerosis (ALS). This mutation is found to be in the actin-binding site of PFN-1 and prevents the dimerization/polymerization of actin and invokes a pathologic toxicity that leads to ALS. In this study, we sought to understand the PFN-1 protein dynamic behavior using purified wild type and mutant PFN-1 proteins. The data obtained from HDX-MALDI-TOF MS for PFN-1WT and PFN-1G117V at various time intervals, from seconds to hours, revealed multiple peaks corresponding to molecular weights from monomers to multimers. PFN-1/Benzaldehyde complexes identified 20 accessible amino acids to HDX that participate in the docking simulation in the surface of WT and mutant PFN-1. Consistent results from HDX-MALDI-TOF MS and docking simulation predict candidate amino acid(s) involved in the dimerization/polymerization of PFNG117V. This information may shed critical light on the structural and conformational changes with details of amino acid epitopes for mutant PFN-1s' dimerization, oligomerization, and aggregation.
Collapse
Affiliation(s)
- Ahmad Shahir Sadr
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
- Computer Science Department, Mathematical Sciences Faculty, Shahid Beheshti University, Tehran, Iran
| | - Zahra Abdollahpour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Atousa Aliahmadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Changiz Eslahchi
- Computer Science Department, Mathematical Sciences Faculty, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mina Nekouei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Lily Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, 72205, USA
| | - Mahmoud Kiaei
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Neurology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- RockGen Therapeutics, LLC, Little Rock, AR, 72205, USA.
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| |
Collapse
|
4
|
Chakraborty I, Kar RK, Sarkar D, Kumar S, Maiti NC, Mandal AK, Bhunia A. Solvent Relaxation NMR: A Tool for Real-Time Monitoring Water Dynamics in Protein Aggregation Landscape. ACS Chem Neurosci 2021; 12:2903-2916. [PMID: 34292711 DOI: 10.1021/acschemneuro.1c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Solvent dynamics strongly induce the fibrillation of an amyloidogenic system. Probing the solvation mechanism is crucial as it enables us to predict different proteins' functionalities, such as the aggregation propensity, structural flexibility, and toxicity. This work shows that a straightforward NMR method in conjunction with phenomenological models gives a global and qualitative picture of water dynamics at different concentrations and temperatures. Here, we study amyloid system Aβ40 and its fragment AV20 (A21-V40) and G37L (mutation at Gly37 → Leu of AV20), having different aggregation and toxic properties. The independent validation of this method is elucidated using all-atom classical MD simulation. These two state-of-the-art techniques are pivotal in linking the effect of solvent environment in the near hydration-shell to their aggregation nature. The time-dependent modulation in solvent dynamics probed with the NMR solvent relaxation method can be further adopted to gain insight into amyloidogenesis and link with their toxicity profiles.
Collapse
Affiliation(s)
| | - Rajiv K. Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Dibakar Sarkar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| |
Collapse
|
5
|
Tabuchi Y, Sakai T. Thermodynamically stable structure of hydroxy alkane sulfonate surfactant monomers in water achieving high water solubility and a low CMC. RSC Adv 2021; 11:19836-19843. [PMID: 35479199 PMCID: PMC9033667 DOI: 10.1039/d1ra01046h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Although sodium internal olefin sulfonates (IOSs) derived from petrochemicals are known to act as anionic surfactants, these compounds have few practical applications and their interfacial properties have not been examined in detail because they have complex compositions and are challenging to prepare. However, IOSs obtained from vegetable oils have recently been applied to detergents. The present work represents the first study of the IOS sodium 5-hydroxyhexadecane-4-sulfonate (C16-4S-5OH) as a pure substance. The properties of C16-4S-5OH in aqueous solution were assessed by differential scanning calorimetry, equilibrium surface tension measurements, Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. This compound was found to have a low Krafft point and a low CMC, both of which are necessary for a modern sustainable surfactant. Although these two characteristics are normally difficult to achieve simultaneously, this work demonstrated that C16-4S-5OH in aqueous solution has a highly fixed stereostructure that enables both properties to be achieved. The C16 main carbon chain of this compound acts as a C12 and a C4 chain both oriented in the same direction, while the hydrophilic sulfo and hydroxy head groups form a rigid cyclic moiety including two carbons of the C16 alkyl chain based on hydrogen bonding. This highly fixed molecular structure of the C16-4S-5OH in water is maintained in the monomer and micellar states below and above the CMC, respectively. This highly fixed molecular structure of this aninonic surfactant (C16-4S-5OH) in water achieves a low Krafft point and a low CMC simultaneously both of which are necessary for a modern sustainable surfactant. ![]()
Collapse
Affiliation(s)
- Yukiko Tabuchi
- Material Science Research Laboratories
- Kao Corporation
- Wakayama-shi
- Japan
| | - Takaya Sakai
- Material Science Research Laboratories
- Kao Corporation
- Wakayama-shi
- Japan
| |
Collapse
|
6
|
Szekely O, Olsen GL, Novakovic M, Rosenzweig R, Frydman L. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J Am Chem Soc 2020; 142:9267-9284. [PMID: 32338002 PMCID: PMC7304870 DOI: 10.1021/jacs.0c00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Hyperpolarized water
can be a valuable aid in protein NMR, leading
to amide group 1H polarizations that are orders of magnitude
larger than their thermal counterparts. Suitable procedures can exploit
this to deliver 2D 1H–15N correlations
with good resolution and enhanced sensitivity. These enhancements
depend on the exchange rates between the amides and the water, thereby
yielding diagnostic information about solvent accessibility. This
study applied this “HyperW” method to four proteins
exhibiting a gamut of exchange behaviors: PhoA(350–471), an unfolded 122-residue fragment; barstar, a fully folded ribonuclease
inhibitor; R17, a 13.3 kDa system possessing folded and unfolded forms
under slow interconversion; and drkN SH3, a protein domain whose folded
and unfolded forms interchange rapidly and with temperature-dependent
population ratios. For PhoA4(350–471) HyperW sensitivity
enhancements were ≥300×, as expected for an unfolded protein
sequence. Though fully folded, barstar also exhibited substantial
enhancements; these, however, were not uniform and, according to CLEANEX
experiments, reflected the solvent-exposed residues. R17 showed the
expected superposition of ≥100-fold enhancements for its unfolded
form, coexisting with more modest enhancements for their folded counterparts.
Unexpected, however, was the behavior of drkN SH3, for which HyperW
enhanced the unfolded but, surprisingly, enhanced even more certain folded protein sites. These preferential enhancements were
repeatedly and reproducibly observed. A number of explanations—including
three-site exchange magnetization transfers between water and the
unfolded and folded states; cross-correlated relaxation processes
from hyperpolarized “structural” waters and labile side-chain
protons; and the possibility that faster solvent exchange rates characterize
certain folded sites over their unfolded counterparts—are considered
to account for them.
Collapse
|
7
|
Sun C, Cao S, Zhao P, Ma W, Guo Y, Zhao Y. The investigation on the N H reactivity of pentacoordinate spirophosphoranes by H/D exchange and NMR experiments. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xiao K, Zhao Y, Choi M, Liu H, Blanc A, Qian J, Cahill TJ, Li X, Xiao Y, Clark LJ, Li S. Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat Protoc 2018; 13:1403-1428. [PMID: 29844522 DOI: 10.1038/nprot.2018.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many cellular functions necessitate structural assemblies of two or more associated proteins. The structural characterization of protein complexes using standard methods, such as X-ray crystallography, is challenging. Herein, we describe an orthogonal approach using hydrogen-deuterium-exchange mass spectrometry (HDXMS), cross-linking mass spectrometry (CXMS), and disulfide trapping to map interactions within protein complexes. HDXMS measures changes in solvent accessibility and hydrogen bonding upon complex formation; a decrease in HDX rate could account for newly formed intermolecular or intramolecular interactions. To distinguish between inter- and intramolecular interactions, we use a CXMS method to determine the position of direct interface regions by trapping intermolecular residues in close proximity to various cross-linkers (e.g., disuccinimidyl adipate (DSA)) of different lengths and reactive groups. Both MS-based experiments are performed on high-resolution mass spectrometers (e.g., an Orbitrap Elite hybrid mass spectrometer). The physiological relevance of the interactions identified through HDXMS and CXMS is investigated by transiently co-expressing cysteine mutant pairs, one mutant on each protein at the discovered interfaces, in an appropriate cell line, such as HEK293. Disulfide-trapped protein complexes are formed within cells spontaneously or are facilitated by addition of oxidation reagents such as H2O2 or diamide. Western blotting analysis, in the presence and absence of reducing reagents, is used to determine whether the disulfide bonds are formed in the proposed complex interface in physiologically relevant milieus. The procedure described here requires 1-2 months. We demonstrate this approach using the β2-adrenergic receptor-β-arrestin1 complex as the model system.
Collapse
Affiliation(s)
- Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Biomedical Mass Spectrometry Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yang Zhao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minjung Choi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adi Blanc
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiang Qian
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas J Cahill
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Xue Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Yunfang Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa J Clark
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sheng Li
- Department of Chemistry, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
E. Nazari Z, van de Weert M, Bou-Assaf G, Houde D, Weiskopf A, D. Rand K. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry. J Pharm Sci 2016; 105:3269-3277. [DOI: 10.1016/j.xphs.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023]
|
10
|
Abstract
The circadian system in higher organisms temporally orchestrates rhythmic changes in a vast number of genes and gene products in different organs. Complex interactions between these components, both within and among cells, ultimately lead to rhythmic behavior and physiology. Identifying the plethora of circadian targets and mapping their interactions with one another is therefore essential to comprehend the molecular mechanisms of circadian regulation. The emergence of new technology for unbiased identification of biomolecules and for mapping interactions at the genome-wide scale is offering powerful tools to decipher the regulatory networks underpinning circadian rhythms. In this review, the authors discuss the potential application of these genome-wide approaches in the study of circadian rhythms.
Collapse
Affiliation(s)
- Luciano De Haro
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
11
|
Shugrue CR, DeFrancisco JR, Metrano AJ, Brink BD, Nomoto RS, Linton BR. Detection of weak hydrogen bonding to fluoro and nitro groups in solution using H/D exchange. Org Biomol Chem 2016; 14:2223-7. [PMID: 26782121 DOI: 10.1039/c5ob02360b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen/deuterium (H/D) exchange can be a sensitive technique for measuring the strength of hydrogen bonding to neutral organic nitro and fluoro groups. The slower rates of reaction in comparison to suitable controls suggest that hydrogen bonding is present, albeit rather weak.
Collapse
Affiliation(s)
- C R Shugrue
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Engen JR, Wales TE. Analytical Aspects of Hydrogen Exchange Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:127-48. [PMID: 26048552 PMCID: PMC4989240 DOI: 10.1146/annurev-anchem-062011-143113] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article reviews the analytical aspects of measuring hydrogen exchange by mass spectrometry (HX MS). We describe the nature of analytical selectivity in hydrogen exchange, then review the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in HX MS depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that can be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115;
| | | |
Collapse
|
13
|
Iacob RE, Chen G, Ahn J, Houel S, Wei H, Mo J, Tao L, Cohen D, Xie D, Lin Z, Morin PE, Doyle ML, Tymiak AA, Engen JR. The influence of adnectin binding on the extracellular domain of epidermal growth factor receptor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2093-2102. [PMID: 25223306 PMCID: PMC4224629 DOI: 10.1007/s13361-014-0973-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.ᅟ
Collapse
Affiliation(s)
- Roxana E. Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Joomi Ahn
- Waters Corporation, Milford, MA, USA
| | | | - Hui Wei
- Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Jingjie Mo
- Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Li Tao
- Biologics Manufacturing and Process Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Hopewell, NJ, USA
| | - Daniel Cohen
- Protein Science, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Dianlin Xie
- Protein Science, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Zheng Lin
- Protein Science, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Paul E. Morin
- Protein Science, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Michael L. Doyle
- Protein Science, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Adrienne A. Tymiak
- Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA USA
| |
Collapse
|
14
|
|
15
|
Abdelkarim H, Brunsteiner M, Neelarapu R, Bai H, Madriaga A, van Breemen RB, Blond SY, Gaponenko V, Petukhov PA. Photoreactive "nanorulers" detect a novel conformation of full length HDAC3-SMRT complex in solution. ACS Chem Biol 2013; 8:2538-49. [PMID: 24010878 DOI: 10.1021/cb400601g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylase 3 (HDAC3) is a promising epigenetic drug target for multiple therapeutic applications. Direct interaction between the Deacetylase Activating Domain of the silencing mediator for retinoid or thyroid-hormone receptors (SMRT-DAD) is required for activation of enzymatic activity of HDAC3. The structure of this complex and the nature of interactions with HDAC inhibitors in solution are unknown. Using novel photoreactive HDAC probes, "nanorulers", we determined the distance between the catalytic site of the full-length HDAC3 and SMRT-DAD in solution at physiologically relevant conditions and found it to be substantially different from that predicted by the X-ray model with a Δ379-428 aa truncated HDAC3. Further experiments indicated that in solution this distance might change in response to chemical stimuli, while the enzymatic activity remained unaffected. These observations were further validated by Saturation Transfer Difference (STD) NMR experiments. We propose that the observed changes in the distance are an important part of the histone code that remains to be explored. Mapping direct interactions and distances between macromolecules with such "nanorulers" as a function of cellular events facilitates better understanding of basic biology and ways for its manipulation in a cell- and tissue-specific manner.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Michael Brunsteiner
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Raghupathi Neelarapu
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - He Bai
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Antonett Madriaga
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Richard B. van Breemen
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | - Pavel A. Petukhov
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
16
|
Schneider TL, Halloran KT, Hillner JA, Conry RR, Linton BR. Application of H/D Exchange to Hydrogen Bonding in Small Molecules. Chemistry 2013; 19:15101-4. [DOI: 10.1002/chem.201302354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Indexed: 11/09/2022]
|
17
|
Schmidt J, Kass SR. Zwitterion vs Neutral Structures of Amino Acids Stabilized by a Negatively Charged Site: Infrared Photodissociation and Computations of Proline–Chloride Anion. J Phys Chem A 2013; 117:4863-9. [DOI: 10.1021/jp402267c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jacob Schmidt
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Houde D, Engen JR. Conformational analysis of recombinant monoclonal antibodies with hydrogen/deuterium exchange mass spectrometry. Methods Mol Biol 2013; 988:269-89. [PMID: 23475726 PMCID: PMC3713497 DOI: 10.1007/978-1-62703-327-5_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Understanding the conformation of antibodies, especially those of therapeutic value, is of great interest. Many of the current analytical methods used to probe protein conformation face issues in the analysis of antibodies, either due to the nature of the antibody itself or due to the limitations of the method. One method that has recently been utilized for conformational analysis of antibodies is hydrogen/deuterium exchange mass spectrometry (H/DX MS). H/DX MS can be used to probe the conformation and dynamics of proteins in solution, requires small sample quantities, is compatible with many buffer systems, and provides peptide-level resolution. The application of H/DX MS to immunoglobulin gamma 1 (IgG1) recombinant monoclonal antibodies can provide information about IgG1 conformation, dynamics, and changes to conformation as a result of protein modification(s), changes in storage conditions, purification procedures, formulation, and many other parameters. In this article we provide a comprehensive H/DX MS protocol for the analysis of an antibody.
Collapse
Affiliation(s)
| | - John R. Engen
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115
| |
Collapse
|
19
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
20
|
Zinn N, Hopf C, Drewes G, Bantscheff M. Mass spectrometry approaches to monitor protein-drug interactions. Methods 2012; 57:430-40. [PMID: 22687620 DOI: 10.1016/j.ymeth.2012.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/16/2012] [Accepted: 05/28/2012] [Indexed: 12/16/2022] Open
Abstract
Recent advances in mass spectrometry-based approaches have enabled the investigation of drug-protein interactions in various ways including the direct detection of drug-target complexes, the examination of drug-induced changes in the target protein structure, and the monitoring of enzymatic target activity. Mass spectrometry-based proteomics methods also permit the unbiased analysis of changes in protein abundance and post-translational modifications induced by drug action. Finally, chemoproteomic affinity enrichment studies enable the deconvolution of drug targets under close to physiological conditions. This review provides an overview of current methods for the characterization of drug-target interactions by mass spectrometry and describes a protocol for chemoproteomic target binding studies using immobilized bioactive molecules.
Collapse
Affiliation(s)
- Nico Zinn
- Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Amato AA, Rajagopalan S, Lin JZ, Carvalho BM, Figueira ACM, Lu J, Ayers SD, Mottin M, Silveira RL, Souza PCT, Mourão RHV, Saad MJA, Togashi M, Simeoni LA, Abdalla DSP, Skaf MS, Polikparpov I, Lima MCA, Galdino SL, Brennan RG, Baxter JD, Pitta IR, Webb P, Phillips KJ, Neves FAR. GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain. J Biol Chem 2012; 287:28169-79. [PMID: 22584573 PMCID: PMC3431672 DOI: 10.1074/jbc.m111.332106] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby “ideal” PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects.
Collapse
Affiliation(s)
- Angélica A Amato
- Laboratório de Farmacologia Molecular, Departamento de Ciências Farmacêuticas, Faculdade de Ciências da Saúde, Universidade de Brasília, 70919-970 Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pan Y, Piyadasa H, O'Neil JD, Konermann L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J Mol Biol 2011; 416:400-13. [PMID: 22227391 DOI: 10.1016/j.jmb.2011.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
Glycerol facilitator (GF) is a tetrameric membrane protein responsible for the selective permeation of glycerol and water. Each of the four GF subunits forms a transmembrane channel. Every subunit consists of six helices that completely span the lipid bilayer, as well as two half-helices (TM7 and TM3). X-ray crystallography has revealed that the selectivity of GF is due to its unique amphipathic channel interior. To explore the structural dynamics of GF, we employ hydrogen/deuterium exchange (HDX) and oxidative labeling with mass spectrometry (MS). HDX-MS reveals that transmembrane helices are generally more protected than extramembrane segments, consistent with data previously obtained for other membrane proteins. Interestingly, TM7 does not follow this trend. Instead, this half-helix undergoes rapid deuteration, indicative of a highly dynamic local structure. The oxidative labeling behavior of most GF residues is consistent with the static crystal structure. However, the side chains of C134 and M237 undergo labeling although they should be inaccessible according to the X-ray structure. In agreement with our HDX-MS data, this observation attests to the fact that TM7 is only marginally stable. We propose that the highly mobile nature of TM7 aids in the efficient diffusion of guest molecules through the channel ("molecular lubrication"). In the absence of such dynamics, host-guest molecular recognition would favor semipermanent binding of molecules inside the channel, thereby impeding transport. The current work highlights the complementary nature of HDX, covalent labeling, and X-ray crystallography for the characterization of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|
23
|
Malapaka RRV, Khoo S, Zhang J, Choi JH, Zhou XE, Xu Y, Gong Y, Li J, Yong EL, Chalmers MJ, Chang L, Resau JH, Griffin PR, Chen YE, Xu HE. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem 2011; 287:183-195. [PMID: 22039047 DOI: 10.1074/jbc.m111.294785] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARα, -β/δ, and -γ) are a subfamily of nuclear receptors that plays key roles in glucose and lipid metabolism. PPARγ is the molecular target of the thiazolidinedione class of antidiabetic drugs that has many side effects. PPARγ is also activated by long chain unsaturated or oxidized/nitrated fatty acids, but its relationship with the medium chain fatty acids remains unclear even though the medium chain triglyceride oils have been used to control weight gain and glycemic index. Here, we show that decanoic acid (DA), a 10-carbon fatty acid and a major component of medium chain triglyceride oils, is a direct ligand of PPARγ. DA binds and partially activates PPARγ without leading to adipogenesis. Crystal structure reveals that DA occupies a novel binding site and only partially stabilizes the AF-2 helix. DA also binds weakly to PPARα and PPARβ/δ. Treatments with DA and its triglyceride form improve glucose sensitivity and lipid profiles without weight gain in diabetic mice. Together, these results suggest that DA is a modulating ligand for PPARs, and the structure can aid in designing better and safer PPARγ-based drugs.
Collapse
Affiliation(s)
- Raghu R V Malapaka
- Laboratories of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, 49503.
| | - SokKean Khoo
- Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, Michigan, 49503; Laboratory of Analytical, Cellular, and Molecular Microscopy, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Jang H Choi
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - X Edward Zhou
- Laboratories of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, 49503
| | - Yong Xu
- Laboratories of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, 49503
| | - Yinhan Gong
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119228
| | - Jun Li
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119228
| | - Eu-Leong Yong
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119228
| | - Michael J Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Lin Chang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - James H Resau
- Laboratory of Analytical, Cellular, and Molecular Microscopy, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109.
| | - H Eric Xu
- Laboratories of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, 49503; VARI-SIMM Center for Drug Discovery, Center for Structures and Function of Drug Targets, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
24
|
Uetrecht C, Heck AJR. Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew Chem Int Ed Engl 2011; 50:8248-62. [PMID: 21793131 PMCID: PMC7159578 DOI: 10.1002/anie.201008120] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 01/04/2023]
Abstract
Over a century since its development, the analytical technique of mass spectrometry is blooming more than ever, and applied in nearly all aspects of the natural and life sciences. In the last two decades mass spectrometry has also become amenable to the analysis of proteins and even intact protein complexes, and thus begun to make a significant impact in the field of structural biology. In this Review, we describe the emerging role of mass spectrometry, with its different technical facets, in structural biology, focusing especially on structural virology. We describe how mass spectrometry has evolved into a tool that can provide unique structural and functional information about viral-protein and protein-complex structure, conformation, assembly, and topology, extending to the direct analysis of intact virus capsids of several million Dalton in mass. Mass spectrometry is now used to address important questions in virology ranging from how viruses assemble to how they interact with their host.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
- Present address: Molecular Biophysics, Uppsala University, Uppsala (Sweden)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
| |
Collapse
|
25
|
Uetrecht C, Heck AJR. Moderne biomolekulare Massenspektrometrie und ihre Bedeutung für die Erforschung der Struktur, der Dynamik und des Aufbaus von Viren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Mitra P, Pal D. Combining Bayes classification and point group symmetry under Boolean framework for enhanced protein quaternary structure inference. Structure 2011; 19:304-12. [PMID: 21397182 DOI: 10.1016/j.str.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
Abstract
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces ≥90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.
Collapse
Affiliation(s)
- Pralay Mitra
- Bioinformatics Centre, Supercomputer Education Research Centre, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
27
|
Konermann L, Pan J, Liu YH. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 2010; 40:1224-34. [PMID: 21173980 DOI: 10.1039/c0cs00113a] [Citation(s) in RCA: 633] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) has become a key technique for monitoring structural and dynamic aspects of proteins in solution. This approach relies on the fact that exposure of a protein to D(2)O induces rapid amide H → D exchange in disordered regions that lack stable hydrogen-bonding. Tightly folded elements are much more protected from HDX, resulting in slow isotope exchange that is mediated by the structural dynamics ("breathing motions") of the protein. MS-based peptide mapping is a well established technique for measuring the mass shifts of individual protein segments. This tutorial review briefly discusses basic fundamentals of HDX/MS, before highlighting a number of recent developments and applications. Gas phase fragmentation strategies represent a promising alternative to the traditional proteolysis-based approach, but experimentalists have to be aware of scrambling phenomena that can be encountered under certain conditions. Electron-based dissociation methods provide a solution to this problem. We also discuss recent advances that facilitate the applicability of HDX/MS to membrane proteins, and to the characterization of short-lived protein folding intermediates. It is hoped that this review will provide a starting point for novices, as well as a useful reference for practitioners, who require an overview of some recent trends in HDX/MS.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | | | | |
Collapse
|
28
|
Hernández G, Anderson JS, LeMaster DM. Assessing the native state conformational distribution of ubiquitin by peptide acidity. Biophys Chem 2010; 153:70-82. [PMID: 21055867 PMCID: PMC3092376 DOI: 10.1016/j.bpc.2010.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/08/2010] [Accepted: 10/10/2010] [Indexed: 11/18/2022]
Abstract
At equilibrium, every energetically feasible conformation of a protein occurs with a non-zero probability. Quantitative analysis of protein flexibility is thus synonymous with determining the proper Boltzmann-weighting of this conformational distribution. The exchange reactivity of solvent-exposed amide hydrogens greatly varies with conformation, while the short-lived peptide anion intermediate implies an insensitivity to the dynamics of conformational motion. Amides that are well-exposed in model conformational ensembles of ubiquitin vary a million-fold in exchange rates which continuum dielectric methods can predict with an rmsd of 3. However, the exchange rates for many of the more rarely exposed amides are markedly overestimated in the PDB-deposited 2K39 and 2KN5 ubiquitin ensembles, while the 2NR2 ensemble predictions are largely consistent with those of the Boltzmann-weighted conformational distribution sampled at the level of 1%. The correlation between the fraction of solvent-accessible conformations for a given amide hydrogen and the exchange rate constant for that residue provides a useful monitor of the degree of completeness with which a given ensemble has sampled the energetically accessible conformational space. These exchange predictions correlate with the degree to which each ensemble deviates from a set of 46 ubiquitin X-ray structures. Kolmogorov-Smirnov analysis for the distribution of intra- and inter-ensemble pairwise structural rmsd values assisted the identification of a subensemble of 2K39 that eliminates the overestimations of hydrogen exchange rates observed for the full ensemble. The relative merits of incorporating experimental restraints into the conformational sampling process are compared to using these restraints as filters to select subpopulations consistent with the experimental data.
Collapse
Affiliation(s)
- Griselda Hernández
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York 12201 USA
| | - Janet S. Anderson
- Department of Chemistry, Union College, Schenectady, New York 12308 USA
| | - David M. LeMaster
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York 12201 USA
| |
Collapse
|
29
|
Intertwined Structured and Unstructured Regions of exRAGE Identified by Monitoring Hydrogen–Deuterium Exchange. J Mol Biol 2010; 403:52-65. [DOI: 10.1016/j.jmb.2010.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
|
30
|
Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M, Griffin PR, Spiegelman BM. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 2010; 466:451-6. [PMID: 20651683 PMCID: PMC2987584 DOI: 10.1038/nature09291] [Citation(s) in RCA: 721] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/24/2010] [Indexed: 12/22/2022]
Abstract
Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARgamma (peroxisome proliferator-activated receptor gamma), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARgamma does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARgamma by Cdk5 is blocked by anti-diabetic PPARgamma ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARgamma phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARgamma may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARgamma.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Alexander S. Banks
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Jennifer L. Estall
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Shingo Kajimura
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Pontus Bostrom
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Dina Laznik
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Jorge L. Ruas
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Michael J. Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Theodore M. Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthias Bluher
- Department of Medicine, University of Leipzig, Liebigstr. 20, Leipzig, Germany
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Bruce M. Spiegelman
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
31
|
Bennett MJ, Barakat K, Huzil JT, Tuszynski J, Schriemer DC. Discovery and Characterization of the Laulimalide-Microtubule Binding Mode by Mass Shift Perturbation Mapping. ACTA ACUST UNITED AC 2010; 17:725-34. [DOI: 10.1016/j.chembiol.2010.05.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 01/25/2023]
|
32
|
Marcsisin SR, Engen JR. Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 2010; 397:967-72. [PMID: 20195578 PMCID: PMC2868954 DOI: 10.1007/s00216-010-3556-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
Abstract
Proteins are undoubtedly some of the most essential molecules of life. While much is known about many proteins, some aspects still remain mysterious. One particularly important aspect of understanding proteins is determining how structure helps dictate function. Continued development and implementation of biophysical techniques that provide information about protein conformation and dynamics is essential. In this review, we discuss hydrogen exchange mass spectrometry and how this method can be used to learn about protein conformation and dynamics. The basic concepts of the method are described, the workflow illustrated, and a few examples of its application are provided.
Collapse
Affiliation(s)
- Sean R. Marcsisin
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
- 341 Mugar Life Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115-5000, USA
| |
Collapse
|
33
|
Fang J, Rand KD, Silva MC, Wales TE, Engen JR, Beuning PJ. Conformational dynamics of the Escherichia coli DNA polymerase manager proteins UmuD and UmuD'. J Mol Biol 2010; 398:40-53. [PMID: 20206636 PMCID: PMC2853235 DOI: 10.1016/j.jmb.2010.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/24/2023]
Abstract
The expression of Escherichia coli umuD gene products is upregulated as part of the SOS response to DNA damage. UmuD is initially produced as a 139-amino-acid protein, which subsequently cleaves off its N-terminal 24 amino acids in a reaction dependent on RecA/single-stranded DNA, giving UmuD'. The two forms of the umuD gene products play different roles in the cell. UmuD is implicated in a primitive DNA damage checkpoint and prevents DNA polymerase IV-dependent -1 frameshift mutagenesis, while the cleaved form facilitates UmuC-dependent mutagenesis via formation of DNA polymerase V (UmuD'(2)C). Thus, the cleavage of UmuD is a crucial switch that regulates replication and mutagenesis via numerous protein-protein interactions. A UmuD variant, UmuD3A, which is noncleavable but is a partial biological mimic of the cleaved form UmuD', has been identified. We used hydrogen-deuterium exchange mass spectrometry (HXMS) to probe the conformations of UmuD, UmuD', and UmuD3A. In HXMS experiments, backbone amide hydrogens that are solvent accessible or not involved in hydrogen bonding become labeled with deuterium over time. Our HXMS results reveal that the N-terminal arm of UmuD, which is truncated in the cleaved form UmuD', is dynamic. Residues that are likely to contact the N-terminal arm show more deuterium exchange in UmuD' and UmuD3A than in UmuD. These observations suggest that noncleavable UmuD3A mimics the cleaved form UmuD' because, in both cases, the arms are relatively unbound from the globular domain. Gas-phase hydrogen exchange experiments, which specifically probe the exchange of side-chain hydrogens and are carried out on shorter timescales than solution experiments, show that UmuD' incorporates more deuterium than either UmuD or UmuD3A. This work indicates that these three forms of the UmuD gene products are highly flexible, which is of critical importance for their many protein interactions.
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Kasper D. Rand
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Michelle C. Silva
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Thomas E. Wales
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
34
|
Li J, Dangott LJ, Fitzpatrick PF. Regulation of phenylalanine hydroxylase: conformational changes upon phenylalanine binding detected by hydrogen/deuterium exchange and mass spectrometry. Biochemistry 2010; 49:3327-35. [PMID: 20307070 PMCID: PMC2855537 DOI: 10.1021/bi1001294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenylalanine acts as an allosteric activator of the tetrahydropterin-dependent enzyme phenylalanine hydroxylase. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into local conformational changes accompanying activation of rat phenylalanine hydroxylase by phenylalanine. Peptides in the regulatory and catalytic domains that lie in the interface between these two domains show large increases in the extent of deuterium incorporation from solvent in the presence of phenylalanine. In contrast, the effects of phenylalanine on the exchange kinetics of a mutant enzyme lacking the regulatory domain are limited to peptides surrounding the binding site for the amino acid substrate. These results support a model in which the N-terminus of the protein acts as an inhibitory peptide, with phenylalanine binding causing a conformational change in the regulatory domain that alters the interaction between the catalytic and regulatory domains.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77843-2128
| | - Lawrence J. Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station TX 77843-2128
| | - Paul F. Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas, Health Science Center at San Antonio, San Antonio TX 78229-3900
| |
Collapse
|
35
|
Pan Y, Konermann L. Membrane protein structural insights from chemical labeling and mass spectrometry. Analyst 2010; 135:1191-200. [DOI: 10.1039/b924805f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Pan J, Han J, Borchers CH, Konermann L. Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 2009; 131:12801-8. [PMID: 19670873 DOI: 10.1021/ja904379w] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amide H/D exchange (HDX) mass spectrometry (MS) is widely used for protein structural studies. Traditionally, this technique involves protein labeling in D(2)O, followed by acid quenching, proteolytic digestion, and analysis of peptide deuteration levels by HPLC/MS. There is great interest in the development of alternative HDX approaches involving the top-down fragmentation of electrosprayed protein ions, instead of relying on enzymatic cleavage and solution-phase separations. A number of recent studies have demonstrated that electron capture dissociation (ECD) results in fragmentation of gaseous protein ions with little or no H/D scrambling. However, the successful application of this approach for in-depth protein conformational studies has not yet been demonstrated. The current work uses horse myoglobin as a model system for assessing the suitability of HDX-MS with top-down ECD for experiments of this kind. It is found that ECD can pinpoint the locations of protected amides with an average resolution of less than two residues for this 17 kDa protein. Native holo-myoglobin (hMb) shows considerable protection from exchange in all of its helices, whereas loops are extensively deuterated. Fraying is observable at some helix termini. Removal of the prosthetic heme group from hMb produces apo-myoglobin (aMb). Both hMb and aMb share virtually the same HDX protection pattern in helices A-E, whereas helix F is unfolded in aMb. In addition, destabilization is evident for some residues close to the beginning of helix G, the end of helix H, and the C-terminus of the protein. The structural changes reported herein are largely consistent with earlier NMR data for sperm whale myoglobin, although small differences between the two systems are evident. Our findings demonstrate that the level of structural information obtainable with top-down ECD for small to medium-sized proteins considerably surpasses that of traditional HDX-MS experiments, while at the same time greatly reducing undesired amide back exchange.
Collapse
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | | | |
Collapse
|
37
|
Mobley JA, Poliakov A. Detection of early unfolding events in a dimeric protein by amide proton exchange and native electrospray mass spectrometry. Protein Sci 2009; 18:1620-7. [PMID: 19554628 DOI: 10.1002/pro.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligomeric proteins generally undergo unfolding through a dissociation/denaturation mechanism wherein the subunits first dissociate and then unfold. This mechanism can be detected by the fact that the proteins exhibit a concentration dependence of the denaturation curve. However, the concentration dependence does not answer the question of whether there are thermally induced conformational changes that facilitate subunit dissociation. To fully probe these mechanisms it is desirable to have an analytical approach that is capable of measuring both subunit dissociation and protein denaturation in a highly sensitive manner. In this article, we demonstrate that the combined use of native mass spectrometry to detect subunit mixing, and amide hydrogen/deuterium exchange to detect transient unfolding events can provide a very unique insight into the pre-melting transitions in a protein oligomer. Both methods keep an isotopic record of each transformation event, without the dependence on equilibrium of the unfolding reaction. Here, we use a combined form of H/D exchange/mass spectrometry and isotopic labeling/native electrospray mass spectrometry to study the pre-unfolding events of Bacillus subtilis NAD(+) synthetase, a symmetrical dimer protein, which plays a vital role in the lifecycle of the bacteria. In the experimental outcome provided, we were able to clearly illustrate that at elevated temperatures, the NAD synthetase dimer undergoes reversible dissociation without monomer unfolding, while at temperatures where monomer unfolding is observed to take place, the rate of dimer dissociation still yet exceeds the rate of unfolding. Information provided by combining these two mass spectrometric methods was found to be very robust, and allowed us to establish an NAD synthetase unfolding model, where primary dissociation occurs prior to the complete unfolding of the NAD(+) synthetase.
Collapse
Affiliation(s)
- James A Mobley
- Department of Surgery/Urology, Laboratory of Clinical Proteomics, University of Alabama, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
38
|
Liu YH, Belcheva A, Konermann L, Golemi-Kotra D. Phosphorylation-Induced Activation of the Response Regulator VraR from Staphylococcus aureus: Insights from Hydrogen Exchange Mass Spectrometry. J Mol Biol 2009; 391:149-63. [DOI: 10.1016/j.jmb.2009.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/26/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
|
39
|
Zencheck WD, Xiao H, Nolen BJ, Angeletti R, Pollard TD, Almo SC. Nucleotide- and activator-dependent structural and dynamic changes of arp2/3 complex monitored by hydrogen/deuterium exchange and mass spectrometry. J Mol Biol 2009; 390:414-27. [PMID: 19298826 PMCID: PMC2983480 DOI: 10.1016/j.jmb.2009.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/03/2009] [Indexed: 11/16/2022]
Abstract
Arp2/3 complex plays a central role in the de novo nucleation of filamentous actin as branches on existing filaments. The complex must bind ATP, protein activators [e.g., Wiskott-Aldrich syndrome protein (WASp)], and the side of an actin filament to form a new actin filament. Amide hydrogen/deuterium exchange coupled with mass spectrometry was used to examine the structural and dynamic properties of the mammalian Arp2/3 complex in the presence of both ATP and the activating peptide segment from WASp. Changes in the rate of hydrogen exchange indicate that ATP binding causes conformational rearrangements of Arp2 and Arp3 that are transmitted allosterically to the Arp complex (ARPC)1, ARPC2, ARPC4, and ARPC5 subunits. These data are consistent with the closure of nucleotide-binding cleft of Arp3 upon ATP binding, resulting in structural rearrangements that propagate throughout the complex. Binding of the VCA domain of WASp to ATP-Arp2/3 further modulates the rates of hydrogen exchange in these subunits, indicating that a global conformational reorganization is occurring. These effects may include the direct binding of activators to Arp3, Arp2, and ARPC1; alterations in the relative orientations of Arp2 and Arp3; and the long-range transmission of activator-dependent signals to segments proposed to be involved in binding the F-actin mother filament.
Collapse
Affiliation(s)
- Wendy D. Zencheck
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
| | - Hui Xiao
- Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
| | - Bradley J. Nolen
- Department of Chemistry and the Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Ruth Angeletti
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
| | - Thomas D. Pollard
- Departments of Molecular Cellular and Developmental Biology, of Cell Biology and of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
| |
Collapse
|
40
|
An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 2009; 16:582-8. [DOI: 10.1038/nsmb.1592] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Avenier P, Solans-Monfort X, Veyre L, Renili F, Basset JM, Eisenstein O, Taoufik M, Quadrelli EA. H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2. Top Catal 2009. [DOI: 10.1007/s11244-009-9295-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem 2009; 81:2644-51. [PMID: 19265386 PMCID: PMC2779575 DOI: 10.1021/ac802575y] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein function is dictated by protein conformation. For the protein biopharmaceutical industry, therefore, it is important to have analytical tools that can detect changes in protein conformation rapidly, accurately, and with high sensitivity. In this paper we show that hydrogen/deuterium exchange mass spectrometry (H/DX-MS) can play an important role in fulfilling this need within the industry. H/DX-MS was used to assess both global and local conformational behavior of a recombinant monoclonal IgG1 antibody, a major class of biopharmaceuticals. Analysis of exchange into the intact, glycosylated IgG1 (and the Fab and Fc regions thereof) showed that the molecule was folded, highly stable, and highly amenable to analysis by this method using less than a nanomole of material. With improved chromatographic methods, peptide identification algorithms and data-processing steps, the analysis of deuterium levels in peptic peptides produced after labeling was accomplished in 1-2 days. On the basis of peptic peptide data, exchange was localized to specific regions of the antibody. Changes to IgG1 conformation as a result of deglycosylation were determined by comparing exchange into the glycosylated and deglycosylated forms of the antibody. Two regions of the IgG1 (residues 236-253 and 292-308) were found to have altered exchange properties upon deglycosylation. These results are consistent with previous findings concerning the role of glycosylation in the interaction of IgG1 with Fc receptors. Moreover, the data clearly illustrate how H/DX-MS can provide important characterization information on the higher order structure of antibodies and conformational changes that these molecules may experience upon modification.
Collapse
Affiliation(s)
- Damian Houde
- Biogen Idec, Inc. Cambridge, MA 02142
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
- Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115
| | | | | | | | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
- Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115
| |
Collapse
|
43
|
Abstract
Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.
Collapse
Affiliation(s)
- Markus C Wahl
- Makromolekulare Röntgenkristallographie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
44
|
Malmstroem L, Hou L, Atkins WM, Goodlett DR. On the use of hydrogen/deuterium exchange mass spectrometry data to improve de novo protein structure prediction. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:459-461. [PMID: 19125403 DOI: 10.1002/rcm.3882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
45
|
Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 2008; 456:350-6. [PMID: 19043829 PMCID: PMC2743566 DOI: 10.1038/nature07413] [Citation(s) in RCA: 631] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nuclear receptors are multi-domain transcription factors that bind to DNA elements from which they regulate gene expression. The peroxisome proliferator-activated receptors (PPARs) form heterodimers with the retinoid X receptor (RXR), and PPAR-gamma has been intensively studied as a drug target because of its link to insulin sensitization. Previous structural studies have focused on isolated DNA or ligand-binding segments, with no demonstration of how multiple domains cooperate to modulate receptor properties. Here we present structures of intact PPAR-gamma and RXR-alpha as a heterodimer bound to DNA, ligands and coactivator peptides. PPAR-gamma and RXR-alpha form a non-symmetric complex, allowing the ligand-binding domain (LBD) of PPAR-gamma to contact multiple domains in both proteins. Three interfaces link PPAR-gamma and RXR-alpha, including some that are DNA dependent. The PPAR-gamma LBD cooperates with both DNA-binding domains (DBDs) to enhance response-element binding. The A/B segments are highly dynamic, lacking folded substructures despite their gene-activation properties.
Collapse
Affiliation(s)
- Vikas Chandra
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Poliakov A, Jardine P, Prevelige PE. Hydrogen/deuterium exchange on protein solutions containing nucleic acids: utility of protamine sulfate. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2423-2428. [PMID: 18634111 DOI: 10.1002/rcm.3627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Obtaining global hydrogen/deuterium (H/D) exchange data on proteins is an important first step in amide proton exchange experiments. Important information such as the mode of exchange, the cooperativity of folding/unfolding reactions, and the effects of ligand binding can be readily obtained in global exchange experiments. Many interesting biological systems are complexes containing both proteins and nucleic acids. The low pH conditions required to quench H/D exchange reactions result in the formation of stable protein/nucleic acid precipitates which interfere with the liquid chromatography step of the experiment and preclude obtaining mass spectrometric data. In this work we show that the precipitation of proteins and nucleic acids is electrostatic in nature and can be prevented by high ionic strength and by removing nucleic acids by protamine sulfate. Using protamine sulfate in quenching solution, we were able to obtain global H/D data with protein samples containing large amounts of DNA or RNA.
Collapse
Affiliation(s)
- Anton Poliakov
- Department of Microbiology, University of Alabama at Birmingham, 1900 University Boulevard, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
47
|
Konermann L, Tong X, Pan Y. Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1021-1036. [PMID: 18523973 DOI: 10.1002/jms.1435] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry (MS) plays a central role in studies on protein structure and dynamics. This review highlights some of the recent developments in this area, with focus on applications involving the use of electrospray ionization (ESI) MS. Although this technique involves the transformation of analytes into highly nonphysiological species (desolvated gas-phase ions in the vacuum), ESI-MS can provide detailed insights into the solution-phase behavior of proteins. Notably, the ionization process itself occurs in a structurally sensitive manner. An increased degree of solution-phase unfolding is correlated with a higher level of protonation. Also, ESI allows the transfer of intact noncovalent complexes into the gas phase, thereby yielding information on binding partners, stoichiometries, and even affinities. A particular focus of this article is the use of hydrogen/deuterium exchange (HDX) methods and hydroxyl radical (.OH) labeling for monitoring dynamic and structural aspect of solution-phase proteins. Conceptual similarities and differences between the two methods are discussed. We describe a simple method for the computational simulation of protein HDX patterns, a tool that can be helpful for the interpretation of isotope exchange data recorded under mixed EX1/EX2 conditions. Important aspects of .OH labeling include a striking dependence on protein concentration, and the tendency of commonly used solvent additives to act as highly effective radical scavengers. If not properly controlled, both of these factors may lead to experimental artifacts.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
48
|
Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, Sackett DL, Schriemer DC. A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 2008; 378:1016-30. [PMID: 18405918 PMCID: PMC2441936 DOI: 10.1016/j.jmb.2008.03.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/08/2008] [Accepted: 03/11/2008] [Indexed: 11/25/2022]
Abstract
Microtubules are significant therapeutic targets for the treatment of cancer, where suppression of microtubule dynamicity by drugs such as paclitaxel forms the basis of clinical efficacy. Peloruside A, a macrolide isolated from New Zealand marine sponge Mycale hentscheli, is a microtubule-stabilizing agent that synergizes with taxoid drugs through a unique site and is an attractive lead compound in the development of combination therapies. We report here unique allosteric properties of microtubule stabilization via peloruside A and present a structural model of the peloruside-binding site. Using a strategy involving comparative hydrogen-deuterium exchange mass spectrometry of different microtubule-stabilizing agents, we suggest that taxoid-site ligands epothilone A and docetaxel stabilize microtubules primarily through improved longitudinal interactions centered on the interdimer interface, with no observable contributions from lateral interactions between protofilaments. The mode by which peloruside A achieves microtubule stabilization also involves the interdimer interface, but includes contributions from the alpha/beta-tubulin intradimer interface and protofilament contacts, both in the form of destabilizations. Using data-directed molecular docking simulations, we propose that peloruside A binds within a pocket on the exterior of beta-tubulin at a previously unknown ligand site, rather than on alpha-tubulin as suggested in earlier studies.
Collapse
Affiliation(s)
- J Torin Huzil
- Division of Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gabant G, Augier J, Armengaud J. Assessment of solvent residues accessibility using three Sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:360-370. [PMID: 17968972 DOI: 10.1002/jms.1328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
NHS-biotin modification as a specific lysine probe coupled to mass spectrometry detection is increasingly used over the past years for assessing amino acid accessibility of proteins or complexes as an alternative when well-established methods are challenged. We present a strategy based on usage in parallel of three commercially available reagents (Sulfo-NHS-biotin, Sulfo-NHS-LC-biotin, and Sulfo-NHS-LC-LC-biotin) to efficiently assess the solvent accessibility of amino acids using MALDI-TOF mass spectrometry. The same qualitative pattern of reactivity was observed for these three reagents on the THUMPalpha protein at four reagent/polypeptide molar ratios (2 : 1, 6 : 1, 13 : 1, and 26 : 1). Peptide assignment of the detected ions gains in accuracy because of the triple redundancy due to specific increments of monoisotopic mass. These reagents are a good alternative to isotope labeling when using only a single MALDI-TOF mass spectrometer. We observed that hydroxyl groups of serine and tyrosine residues were also modified by these Sulfo-NHS-biotin reagents. The low amount of protein required and the method's simplicity make this procedure accessible and affordable in order to obtain topological information on proteins difficult to purify. This method was used to identify two lysine residues of the TrmG10 methyltransferase from Pyrococcus abyssi that were differentially reactive, modified in the protein but not in the tRNA-protein complex.
Collapse
Affiliation(s)
- Guillaume Gabant
- CEA VALRHO, DSV, iBEB, SBTN, LBSP, Institut de Biologie environnementale et Biotechnologie, Service de Biochimie et Toxicologie Nucléaire, Laboratoire de Biochimie des Systèmes Perturbés, F-30207 Bagnols-sur-Cèze, France
| | | | | |
Collapse
|
50
|
Nemes P, Goyal S, Vertes A. Conformational and noncovalent complexation changes in proteins during electrospray ionization. Anal Chem 2007; 80:387-95. [PMID: 18081323 DOI: 10.1021/ac0714359] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrospray ion sources efficiently produce gas-phase ions from proteins and their noncovalent complexes. Charge-state distributions of these ions are increasingly used to gauge their conformations in the solution phase. Here we investigate how this correlation is affected by the spraying conditions at the early stage of droplet generation, prior to the ionization process. We followed the folding behavior of model proteins cytochrome c and ubiquitin and the dissociation of the noncovalent holomyoglobin complex. Spray current measurements, fast Taylor cone imaging, and mass analysis of the generated ions indicated that the protein structure experienced conformational or complexation changes upon variations in the spraying mode of the electrospray ionization source. These effects resulted in a departure from the original secondary, tertiary, and quaternary structure of proteins, possibly introducing artifacts in related studies. Therefore, if a particular gas-phase ion conformation is required or correlations with the liquid-phase conformations are studied, it is advantageous to maintain a particular spraying mode. Alternatively, spraying mode-induced changes can be utilized to alter the structure of proteins in, for example, time-resolved experiments for the study of protein folding dynamics.
Collapse
Affiliation(s)
- Peter Nemes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, D.C. 20052, USA
| | | | | |
Collapse
|