1
|
Chen X, Liu X, Gan X, Li S, Ma H, Zhang L, Wang P, Li Y, Huang T, Yang X, Fang L, Liang Y, Wu J, Chen T, Zhou Z, Liu X, Guo J. Differential regulation of phosphorylation, structure and stability of circadian clock protein FRQ isoforms. J Biol Chem 2023; 299:104597. [PMID: 36898580 PMCID: PMC10140173 DOI: 10.1016/j.jbc.2023.104597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
Neurospora crassa is an important model for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable at three temperatures, and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulation of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.
Collapse
Affiliation(s)
- Xianyun Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihui Gan
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Silin Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan Ma
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiliang Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunzhen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Huang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolin Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Fang
- Sun Yat-sen University Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongyue Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zengxuan Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhu Guo
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Srimani S, Schmidt CX, Gómez-Serranillos MP, Oster H, Divakar PK. Modulation of Cellular Circadian Rhythms by Secondary Metabolites of Lichens. Front Cell Neurosci 2022; 16:907308. [PMID: 35813500 PMCID: PMC9260025 DOI: 10.3389/fncel.2022.907308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.
Collapse
Affiliation(s)
- Soumi Srimani
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Maria Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Pradeep K. Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Díaz RD, Larrondo LF. A circadian clock in Neurospora crassa functions during plant cell wall deconstruction. Fungal Biol 2020; 124:501-508. [PMID: 32389313 DOI: 10.1016/j.funbio.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 01/24/2023]
Abstract
Circadian clocks are autonomous timers that are believed to confer organisms a selective advantage by enabling processes to occur at appropriate times of the day. In the model fungus Neurospora crassa, 20-40 % of its genes are reported to be under circadian regulation, as assayed in simple sugar media. Although it has been well-described that Neurospora efficiently deconstructs plant cell wall components, little is known regarding the status of the clock when Neurospora grows on cellulosic material, or whether such a clock has an impact on any of the genes involved in this process. Through luciferase-based reporters and fluorescent detection assays, we show that a clock is functioning when Neurospora grows on cellulose-containing wheat straw as the only carbon and nitrogen source. Additionally, we found that the major cellobiohydrolase encoding gene involved in plant cell wall deconstruction, cbh-1, is rhythmically regulated by the Neurospora clock, in a manner that depends on cellulose concentration and on the transcription factor CRE-1, known as a key player in carbon-catabolite repression in this fungus. Our findings are a step towards a more comprehensive understanding on how clock regulation modulates cellulose degradation, and thus Neurospora's physiology.
Collapse
Affiliation(s)
- Rodrigo D Díaz
- Millennium Institute for Integrative Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Luis F Larrondo
- Millennium Institute for Integrative Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
4
|
Lee SJ, Morse D, Hijri M. Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. MYCORRHIZA 2019; 29:403-412. [PMID: 31190278 DOI: 10.1007/s00572-019-00903-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Circadian clocks are nearly ubiquitous timing mechanisms that can orchestrate rhythmic behavior and gene expression in a wide range of organisms. Clock mechanisms are becoming well understood in fungal, animal, and plant model systems, yet many of these organisms are surrounded by a complex and diverse microbiota which should be taken into account when examining their biology. Of particular interest are the symbiotic relationships between organisms that have coevolved over time, forming a unit called a holobiont. Several studies have now shown linkages between the circadian rhythms of symbiotic partners. Interrelated regulation of holobiont circadian rhythms seems thus important to coordinate shifts in activity over the day for all the partners. Therefore, we suggest that the classical view of "chronobiological individuals" should include "a holobiont" rather than an organism. Unfortunately, mechanisms that may regulate interspecies temporal acclimation and the evolution of the circadian clock in holobionts are far from being understood. For the plant holobiont, our understanding is particularly limited. In this case, the holobiont encompasses two different ecosystems, one above and the other below the ground, with the two potentially receiving timing information from different synchronizing signals (Zeitgebers). The arbuscular mycorrhizal (AM) symbiosis, formed by plant roots and fungi, is one of the oldest and most widespread associations between organisms. By mediating the nutritional flux between the plant and the many microbes in the soil, AM symbiosis constitutes the backbone of the plant holobiont. Even though the importance of the AM symbiosis has been well recognized in agricultural and environmental sciences, its circadian chronobiology remains almost completely unknown. We have begun to study the circadian clock of arbuscular mycorrhizal fungi, and we compile and here discuss the available information on the subject. We propose that analyzing the interrelated temporal organization of the AM symbiosis and determining its underlying mechanisms will advance our understanding of the role and coordination of circadian clocks in holobionts in general.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Morse
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
5
|
High-throughput format for the phenotyping of fungi on solid substrates. Sci Rep 2017; 7:4289. [PMID: 28655890 PMCID: PMC5487330 DOI: 10.1038/s41598-017-03598-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
Filamentous fungi naturally grow on solid surfaces, yet most genetic and biochemical analyses are still performed in liquid cultures. Here, we report a multiplexing platform using high-throughput photometric continuous reading that allows parallel quantification of hyphal growth and reporter gene expression directly on solid medium, thereby mimicking natural environmental conditions. Using this system, we have quantified fungal growth and expression of secondary metabolite GFP-based reporter genes in saprophytic Aspergillus and phytopathogenic Fusarium species in response to different nutrients, stress conditions and epigenetic modifiers. With this method, we provide not only novel insights into the characteristic of fungal growth but also into the metabolic and time-dependent regulation of secondary metabolite gene expression.
Collapse
|
6
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
7
|
Dovzhenok AA, Baek M, Lim S, Hong CI. Mathematical modeling and validation of glucose compensation of the neurospora circadian clock. Biophys J 2016; 108:1830-1839. [PMID: 25863073 DOI: 10.1016/j.bpj.2015.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 01/09/2015] [Indexed: 11/26/2022] Open
Abstract
Autonomous circadian oscillations arise from transcriptional-translational feedback loops of core clock components. The period of a circadian oscillator is relatively insensitive to changes in nutrients (e.g., glucose), which is referred to as "nutrient compensation". Recently, a transcription repressor, CSP-1, was identified as a component of the circadian system in Neurospora crassa. The transcription of csp-1 is under the circadian regulation. Intriguingly, CSP-1 represses the circadian transcription factor, WC-1, forming a negative feedback loop that can influence the core oscillator. This feedback mechanism is suggested to maintain the circadian period in a wide range of glucose concentrations. In this report, we constructed a mathematical model of the Neurospora circadian clock incorporating the above WC-1/CSP-1 feedback loop, and investigated molecular mechanisms of glucose compensation. Our model shows that glucose compensation exists within a narrow range of parameter space where the activation rates of csp-1 and wc-1 are balanced with each other, and simulates loss of glucose compensation in csp-1 mutants. More importantly, we experimentally validated rhythmic oscillations of the wc-1 gene expression and loss of glucose compensation in the wc-1(ov) mutant as predicted in the model. Furthermore, our stochastic simulations demonstrate that the CSP-1-dependent negative feedback loop functions in glucose compensation, but does not enhance the overall robustness of oscillations against molecular noise. Our work highlights predictive modeling of circadian clock machinery and experimental validations employing Neurospora and brings a deeper understanding of molecular mechanisms of glucose compensation.
Collapse
Affiliation(s)
- Andrey A Dovzhenok
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Mokryun Baek
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
8
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Abstract
Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment.
Collapse
|
10
|
Regulation of gene expression in Neurospora crassa with a copper responsive promoter. G3-GENES GENOMES GENETICS 2013; 3:2273-80. [PMID: 24142928 PMCID: PMC3852388 DOI: 10.1534/g3.113.008821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Precise control of gene expression is a powerful method to elucidate biological function, and protein overexpression is an important tool for industry and biochemistry. Expression of the Neurospora crassa tcu-1 gene (NCU00830), encoding a high-affinity copper transporter, is tightly controlled by copper availability. Excess copper represses, and copper depletion, via the use of a copper chelator, activates expression. The kinetics of induction and repression of tcu-1 are rapid, and the effects are long lived. We constructed a plasmid carrying the bar gene (for glufosinate selection) fused to the tcu-1 promoter. This plasmid permits the generation of DNA fragments that can direct integration of Ptcu-1 into any desired locus. We use this strategy to integrate Ptcu-1 in front of wc-1, a circadian oscillator and photoreceptor gene. The addition of excess copper to the Ptcu-1::wc-1 strain phenocopies a Δwc-1 strain, and the addition of the copper chelator, bathocuproinedisulfonic acid, phenocopies a wc-1 overexpression strain. To test whether copper repression can recapitulate the loss of viability that an essential gene knockout causes, we placed Ptcu-1 upstream of the essential gene, hpt-1. The addition of excess copper drastically reduced the growth rate as expected. Thus, this strategy will be useful to probe the biological function of any N. crassa gene through controlled expression.
Collapse
|
11
|
Belden WJ, Lewis ZA, Selker EU, Loros JJ, Dunlap JC. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet 2011; 7:e1002166. [PMID: 21811413 PMCID: PMC3140994 DOI: 10.1371/journal.pgen.1002166] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/18/2011] [Indexed: 12/21/2022] Open
Abstract
Circadian-regulated gene expression is predominantly controlled by a transcriptional negative feedback loop, and it is evident that chromatin modifications and chromatin remodeling are integral to this process in eukaryotes. We previously determined that multiple ATP-dependent chromatin-remodeling enzymes function at frequency (frq). In this report, we demonstrate that the Neurospora homologue of chd1 is required for normal remodeling of chromatin at frq and is required for normal frq expression and sustained rhythmicity. Surprisingly, our studies of CHD1 also revealed that DNA sequences within the frq promoter are methylated, and deletion of chd1 results in expansion of this methylated domain. DNA methylation of the frq locus is altered in strains bearing mutations in a variety of circadian clock genes, including frq, frh, wc-1, and the gene encoding the frq antisense transcript (qrf). Furthermore, frq methylation depends on the DNA methyltransferase, DIM-2. Phenotypic characterization of Δdim-2 strains revealed an approximate WT period length and a phase advance of approximately 2 hours, indicating that methylation plays only an ancillary role in clock-regulated gene expression. This suggests that DNA methylation, like the antisense transcript, is necessary to establish proper clock phasing but does not control overt rhythmicity. These data demonstrate that the epigenetic state of clock genes is dependent on normal regulation of clock components.
Collapse
Affiliation(s)
- William J. Belden
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Zachary A. Lewis
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009; 137:749-60. [PMID: 19450520 DOI: 10.1016/j.cell.2009.03.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/19/2009] [Accepted: 03/12/2009] [Indexed: 11/28/2022]
Abstract
Temperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzyme's Q(10). By contrast, other kinases and phosphatases implicated in clock function do not play appreciable roles in temperature compensation. CK2 exerts its effects on the clock by directly phosphorylating FREQUENCY (FRQ), and this phosphorylation is compromised in CK2 hypomorphs. Finally, mutation of certain putative CK2 phosphosites on FRQ, shown to be phosphorylated in vivo, predictably alters temperature compensation profiles effectively phenocopying CK2 mutants.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator. J Neurosci 2009; 29:466-75. [PMID: 19144847 DOI: 10.1523/jneurosci.4034-08.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases, and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the mitogen-activated protein kinase pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the casein kinase 2 regulatory subunit (CK2beta), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism.
Collapse
|
14
|
Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 2009; 28:1029-42. [PMID: 19262566 DOI: 10.1038/emboj.2009.54] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 02/09/2009] [Indexed: 12/11/2022] Open
Abstract
White collar-1 (WC-1) and white collar-2 (WC-2) are essential for light-mediated responses in Neurospora crassa, but the molecular mechanisms underlying gene induction and the roles of other real and putative photoreceptors remain poorly characterized. Unsupervised hierarchical clustering of genome-wide microarrays reveals 5.6% of detectable transcripts, including several novel mediators, that are either early or late light responsive. Evidence is shown for photoreception in the absence of the dominant, and here confirmed, white collar complex (WCC) that regulates both types of light responses. VVD primarily modulates late responses, whereas light-responsive submerged protoperithecia-1 (SUB-1), a GATA family transcription factor, is essential for most late light gene expression. After a 15-min light stimulus, the WCC directly binds the sub-1 promoter. Bioinformatics analysis detects many early light response elements (ELREs), as well as identifying a late light response element (LLRE) required for wild-type activity of late light response promoters. The data provide a global picture of transcriptional response to light, as well as illuminating the cis- and trans-acting elements comprising the regulatory signalling cascade that governs the photobiological response.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | | | | | | | |
Collapse
|
15
|
A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neurospora. Proc Natl Acad Sci U S A 2007; 104:20102-7. [PMID: 18056807 DOI: 10.1073/pnas.0706631104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress could be masking output from the circadian system, although a caveat was that the CDO sometimes requires several days to become consolidated. To circumvent this and observe both oscillators simultaneously, we used an assay using a codon-optimized luciferase to follow the circadian oscillator. Under conditions where the long-period, uncompensated, CDO-driven developmental rhythm was expressed for weeks in growth tubes, the luciferase rhythm in the same cultures continued in a typical compensated manner with a circadian period length dependent on the allelic state of frq. Periodograms revealed no influence of the CDO on the circadian oscillator. Instead, the CDO appears as a cryptic metabolic oscillator that can, under appropriate conditions, assume control of growth and development, thereby masking output from the circadian system. frq-driven luciferase as a reporter of the circadian oscillator may in this way provide a means for assessing prospective role(s) of metabolic and/or ancillary oscillators within cellular circadian systems.
Collapse
|
16
|
Suh J, Jackson FR. Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 2007; 55:435-47. [PMID: 17678856 PMCID: PMC2034310 DOI: 10.1016/j.neuron.2007.06.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/31/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Previous studies suggest that glia may be required for normal circadian behavior, but glial factors required for rhythmicity have not been identified in any system. We show here that a circadian rhythm in Drosophila Ebony (N-beta-alanyl-biogenic amine synthetase) abundance can be visualized in adult glia and that glial expression of Ebony rescues the altered circadian behavior of ebony mutants. We demonstrate that molecular oscillator function and clock neuron output are normal in ebony mutants, verifying a role for Ebony downstream of the clock. Surprisingly, the ebony oscillation persists in flies lacking PDF neuropeptide, indicating it is regulated by an autonomous glial oscillator or another neuronal factor. The proximity of Ebony-containing glia to aminergic neurons and genetic interaction results suggest a function in dopaminergic signaling. We thus suggest a model for ebony function wherein Ebony glia participate in the clock control of dopaminergic function and the orchestration of circadian activity rhythms.
Collapse
Affiliation(s)
- Joowon Suh
- Department of Neuroscience, Tufts Center for Neuroscience Research and Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
17
|
Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. EUKARYOTIC CELL 2007; 7:28-37. [PMID: 17766461 PMCID: PMC2224151 DOI: 10.1128/ec.00257-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the complete reconstruction of the firefly luciferase gene, fully codon optimized for expression in Neurospora crassa. This reporter enhances light output by approximately 4 log orders over that with previously available versions, now producing light that is visible to the naked eye and sufficient for monitoring the activities of many poorly expressed genes. Time lapse photography of strains growing in race tubes, in which the frq or eas/ccg-2 promoter is used to drive luciferase, shows the highest levels of luciferase activity near the growth front and newly formed conidial bands. Further, we have established a sorbose medium colony assay that will facilitate luciferase-based screens. The signals from sorbose-grown colonies of strains in which the frq promoter drives luciferase exhibit the properties of circadian rhythms and can be tracked for many days to weeks. This reporter now makes it possible to follow the clock in real time, even in strains or under conditions in which the circadian rhythm in conidial banding is not expressed. This property has been used to discover short, ca. 15-h period rhythms at high temperatures, at which banding becomes difficult to observe in race tubes, and to generate a high-resolution temperature phase-response curve.
Collapse
Affiliation(s)
- Van D Gooch
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC. The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 2007; 21:1494-505. [PMID: 17575051 PMCID: PMC1891427 DOI: 10.1101/gad.1551707] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
band, an allele enabling clear visualization of circadianly regulated spore formation (conidial banding), has remained an integral tool in the study of circadian rhythms for 40 years. bd was mapped using single-nucleotide polymorphisms (SNPs), cloned, and determined to be a T79I point mutation in ras-1. Alterations in light-regulated gene expression in the ras-1(bd) mutant suggests that the Neurospora photoreceptor WHITE COLLAR-1 is a target of RAS signaling, and increases in transcription of both wc-1 and fluffy show that regulators of conidiation are elevated in ras-1(bd). Comparison of ras-1(bd) with dominant active and dominant-negative ras-1 mutants and biochemical assays of RAS function indicate that RAS-1(bd) displays a modest enhancement of GDP/GTP exchange and no change in GTPase activity. Because the circadian clock in ras-1(bd) appears to be normal, ras-1(bd) apparently acts to amplify a subtle endogenous clock output signal under standard assay conditions. Reactive oxygen species (ROS), which can affect and be affected by RAS signaling, increase conidiation, suggesting a link between generation of ROS and RAS-1 signaling; surprisingly, however, ROS levels are not elevated in ras-1(bd). The data suggest that interconnected RAS- and ROS-responsive signaling pathways regulate the amplitude of circadian- and light-regulated gene expression in Neurospora.
Collapse
Affiliation(s)
- William J. Belden
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Luis F. Larrondo
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Allan C. Froehlich
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Mi Shi
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Chen-Hui Chen
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Jennifer J. Loros
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Jay C. Dunlap
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
- Corresponding author.E-MAIL ; FAX (603) 650-1233
| |
Collapse
|
19
|
Abstract
The filamentous fungus Neurospora crassa is one of a handful of model organisms that has proven tractable for dissecting the molecular basis of a eukaryotic circadian clock. Work on Neurospora and other eukaryotic and prokaryotic organisms has revealed that a limited set of clock genes and clock proteins are required for generating robust circadian rhythmicity. This molecular clockwork is tuned to the daily rhythms in the environment via light- and temperature-sensitive pathways that adjust its periodicity and phase. The circadian clockwork in turn transduces temporal information to a large number of clock-controlled genes that ultimately control circadian rhythms in physiology and behavior. In summarizing our current understanding of the molecular basis of the Neurospora circadian system, this chapter aims to elucidate the basic building blocks of model eukaryotic clocks as we understand them today.
Collapse
Affiliation(s)
- Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
20
|
Simonetta SH, Golombek DA. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. J Neurosci Methods 2007; 161:273-80. [PMID: 17207862 DOI: 10.1016/j.jneumeth.2006.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/09/2006] [Accepted: 11/28/2006] [Indexed: 11/27/2022]
Abstract
Automation of simple behavioral patterns, such as locomotor activity, is fundamental for pharmacological and genetic screening studies. Recently, circadian behaviors in locomotor activity and stress responses were reported in the nematode Caenorhabditis elegans, a well-known model in genetics and developmental studies. Here we present a new method for long-term recordings of C. elegans (as well as other similar-sized animals) locomotor activity based on an infrared microbeam scattering. Individual nematodes were cultured in a 96-well microtiter plate; we tested L15, CeMM and E. coli liquid cultures in long-term activity tracking experiments, and found CeMM to be the optimal medium. Treatment with 0.2% azide caused an immediate decrease in locomotor activity as recorded with our system. In addition to the validation of the method (including hardware and software details), we report its application in chronobiological studies. Circadian rhythms in animals entrained to light-dark and constant dark conditions (n=48 and 96 worms, respectively) at 16 degrees C, were analyzed by LS periodograms. We obtained a 24.2+/-0.44 h period (52% of significantly rhythmic animals) in LD, and a 23.1+/-0.40 h period (37.5% of significantly rhythmic animals) under DD. The system is automateable using microcontrollers, of low-cost construction and highly reproducible.
Collapse
Affiliation(s)
- Sergio H Simonetta
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, National Research Council (CONICET), R.S. Peña 352, B1876BXD Bernal, Buenos Aires, Argentina.
| | | |
Collapse
|
21
|
Belden WJ, Loros JJ, Dunlap JC. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 2007; 25:587-600. [PMID: 17317630 DOI: 10.1016/j.molcel.2007.01.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/09/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
In the Neurospora circadian system, the transcription factors White Collar-1 (WC-1) and White Collar-2 (WC-2) activate expression of frq, whose gene product inhibits its own expression. The WC proteins are thought to form an obligate complex; however, chromatin immunoprecipitation (ChIP) indicates that WC-2 binds to the frq promoter in a rhythmic fashion, whereas WC-1 is bound continuously. Small oscillations in histone acetylation are detected over the circadian cycle with a marked reduction upon light-induced activation. Nuclease accessibility experiments indicate chromatin rearrangement at the frq promoter; therefore, 19 genes with homology to ATP-dependent chromatin-remodeling enzymes were deleted and the strains examined for clock phenotypes. One gene, designated clockswitch (csw-1), is required for clock function; its product localizes to the frq promoter, is required for proper frq expression, and has an impact on chromatin structure. The data suggest that CSW-1 regulates accessibility of promoter DNA, thus generating the sharp transition from the transcriptionally active to the repressed state.
Collapse
Affiliation(s)
- William J Belden
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
22
|
Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:201-14. [PMID: 18419278 PMCID: PMC3671946 DOI: 10.1101/sqb.2007.72.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed.
Collapse
|
24
|
Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian C, Baştürkmen M, Altamirano L, Xu J. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. ADVANCES IN GENETICS 2007; 57:49-96. [PMID: 17352902 PMCID: PMC3673015 DOI: 10.1016/s0065-2660(06)57002-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dunlap JC, Loros JJ. How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 2006; 9:579-87. [PMID: 17064954 DOI: 10.1016/j.mib.2006.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 10/11/2006] [Indexed: 02/07/2023]
Abstract
The circadian system in Neurospora remains a premier model system for understanding circadian rhythms, and evidence has now begun to accumulate suggesting broad conservation of rhythmicity amongst the filamentous fungi. A well-described transcription-translation-based negative feedback loop involving the FREQUENCY, WHITE COLLAR-1 and WHITE COLLAR-2 proteins is integral to the Neurospora system. Recent advances include descriptions of the surprisingly complex frequency transcription unit, an enhanced appreciation of the roles of kinases and their regulation in the generation of the circadian rhythm and their links to the cell cycle, and strong evidence for an additional WHITE COLLAR-associated feedback loop. Documentation of sequence homologs of integral circadian and photoresponsive proteins amongst the 42 available sequenced fungal genomes suggests unexpected roles for circadian timing among both pathogens and saprophytes.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
26
|
Youssar L, Avalos J. Light-dependent regulation of the gene cut-1 of Neurospora, involved in the osmotic stress response. Fungal Genet Biol 2006; 43:752-63. [PMID: 16807008 DOI: 10.1016/j.fgb.2006.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 11/25/2022]
Abstract
The gene cut-1 from Neurospora encodes a protein of the haloacid dehalogenase (HAD) family, a group of enzymes usually associated to phosphatase or phosphotransferase activities. Loss of cut-1 function results in an osmosensitive phenotype and its transcription is induced by high osmotic pressure or heat-shock, but not by other stressing conditions tested. Unexpectedly, cut-1 transcript levels markedly decrease following illumination in the wild type and in some mutants tested, such as bd and vvd. The reduction was less pronounced in wc-1 and wc-2 mutants, indicating that this photoresponse is principally mediated by the WC system, a conclusion further supported by the lack of effect of blue light in a wc-1 mutant. Additionally, cut-1 mRNA levels are much higher in the dark in wc, vvd, bd, and cut mutants, showing the involvement of these genes in a cut-1 down-regulation mechanism. In the cases investigated, the mRNA levels of these strains increased further under high osmotic conditions, indicating an independent derepression effect. The environmental or genetic factors influencing cut-1 expression have no significant effect on the mRNA levels of two additional Neurospora genes encoding HAD proteins.
Collapse
Affiliation(s)
- Loubna Youssar
- Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | | |
Collapse
|