1
|
Liu Y, Jia F, Li K, Liang C, Li Y, Geng W. Roles of VWA1 and Rac2 in compensatory and decompensatory responses via FGF9/FGFR3 and p38 MAPK signaling pathways in condylar chondrocytes under distinct mechanical stress. Arthritis Res Ther 2025; 27:118. [PMID: 40450276 DOI: 10.1186/s13075-025-03579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/17/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND/PURPOSE Few studies paid attention to compensatory and decompensatory responses of condylar cartilage under different mechanical conditions and the underlying mechanism. MATERIALS AND METHODS Compensatory and decompensatory models were established. In vivo compensatory (0.5 mm occlusal elevation) and decompensatory (1.5 mm elevation) models were established in rats using zirconia occlusal plates. Parallel in vitro models subjected condylar chondrocytes to physiological (6%) or pathological (18%) cyclic tensile strain (CTS). Pivotal candidates that mediate the states of compensation and decompensation were screened through proteomic analysis, and validated through qRT-PCR, Western blot analyses, immunohistochemistry, and Alcian blue staining. RESULTS Compensatory phenotypes dominated in 0.5 mm iOVD and 6% CTS groups, characterized by upregulated VWA1 expression and FGF9/FGFR3 pathway activation. Conversely, decompensation markers prevailed in 1.5 mm iOVD and 18% CTS groups, showing Rac2 elevation and p38 MAPK pathway induction. Further validation revealed that Vwa1 silencing attenuated compensatory responses under 6% CTS, while exogenous FGF9 restored them. Conversely, Vwa1 overexpression mitigated decompensation under 18% CTS, an effect nullified by FGFR3 inhibition. Rac2 knockdown reduced decompensatory responses to 18% CTS, whereas p38 MAPK activation reinstated these effects. Rac2 overexpression exacerbated decompensation under 6% CTS, reversible via p38 MAPK inhibition. CONCLUSION VWA1 can modulate compensatory responses in condylar cartilage via regulating FGF9/FGFR3 signaling pathway, while Rac2 can mediate decompensatory responses via the modulation of p38 MAPK signaling pathway, which provide prospects for developing precise diagnostic and therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA). CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Fengtai District, Beijing, 100071, People's Republic of China
| | - Fangwen Jia
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Fengtai District, Beijing, 100071, People's Republic of China
| | - Kangya Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Fengtai District, Beijing, 100071, People's Republic of China
| | - Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Fengtai District, Beijing, 100071, People's Republic of China.
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
2
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. J Cell Sci 2024; 137:jcs262315. [PMID: 39056156 PMCID: PMC11361645 DOI: 10.1242/jcs.262315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sibaji K. Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Plant Genome Engineering, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Electrostatic Forces Mediate the Specificity of RHO GTPase-GDI Interactions. Int J Mol Sci 2021; 22:ijms222212493. [PMID: 34830380 PMCID: PMC8622166 DOI: 10.3390/ijms222212493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.
Collapse
|
5
|
Xia N, Tenzer S, Lunov O, Karl M, Simmet T, Daiber A, Münzel T, Reifenberg G, Förstermann U, Li H. Regulation of NADPH Oxidase-Mediated Superoxide Production by Acetylation and Deacetylation. Front Physiol 2021; 12:693702. [PMID: 34456745 PMCID: PMC8387964 DOI: 10.3389/fphys.2021.693702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Oral treatment of apolipoprotein E-knockout (ApoE-KO) mice with the putative sirtuin 1 (SIRT1) activator resveratrol led to a reduction of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in the heart. In contrast, the SIRT1 inhibitor EX527 enhanced the superoxide production in isolated human polymorphonuclear granulocytes. In human monocytic THP-1 cells, phorbol ester-stimulated superoxide production was enhanced by inhibitors of histone deacetylases (HDACs; including quisinostat, trichostatin A (TSA), PCI34051, and tubastatin A) and decreased by inhibitors of histone acetyltransferases [such as garcinol, curcumin, and histone acetyltransferase (HAT) Inhibitor II]. These results indicate that protein acetylation and deacetylation may represent crucial mechanisms regulating NADPH oxidase-mediated superoxide production. In cell-free systems, incubation of recombinant Rac1 with SIRT1 resulted in decreased Rac1 acetylation. Mass spectrometry analyses identified lysine 166 (K166) in Rac1 as a residue targeted by SIRT1. Deacetylation of Rac1 by SIRT1 markedly reduced the interaction of Rac1 with p67phox in in vitro assays. Computational modeling analyses revealed that K166 deacetylation of Rac1 led to a 5-fold reduction in its binding affinity to guanosine-5'-triphosphate, and a 21-fold decrease in its binding potential to p67phox. The latter is crucial for Rac1-mediated recruitment of p67phox to the membrane and for p67phox activation. In conclusion, both SIRT1 and non-sirtuin deacetylases play a role in regulating NADPH oxidase activity. Rac1 can be directly deacetylated by SIRT1 in a cell-free system, leading to an inhibition of Rac1-p67phox interaction. The downstream targets of non-sirtuin deacetylases are still unknown. The in vivo significance of these findings needs to be investigated in future studies.
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Stefan Tenzer
- Department of Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Oleg Lunov
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany.,Department of Optical and Biophysical Systems, Institute of Physics ASCR, Prague, Czechia
| | - Martin Karl
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
6
|
Manco M, Ala U, Cantarella D, Tolosano E, Medico E, Altruda F, Fagoonee S. The RNA-Binding Protein ESRP1 Modulates the Expression of RAC1b in Colorectal Cancer Cells. Cancers (Basel) 2021; 13:4092. [PMID: 34439247 PMCID: PMC8392041 DOI: 10.3390/cancers13164092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
RNA binding proteins are well recognized as critical regulators of tumorigenic processes through their capacity to modulate RNA biogenesis, including alternative splicing, RNA stability and mRNA translation. The RNA binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) can act as a tumor suppressor or promoter in a cell type- and disease context-dependent manner. We have previously shown that elevated expression of ESRP1 in colorectal cancer cells can drive tumor progression. To gain further insights into the pro-tumorigenic mechanism of action of ESRP1, we performed cDNA microarray analysis on two colorectal cells lines modulated for ESRP1 expression. Intriguingly, RAC1b was highly expressed, both at mRNA and protein levels, in ESRP1-overexpressing cells, while the opposite trend was observed in ESRP1-silenced CRC cells. Moreover, RAC1 and RAC1b mRNA co-immunoprecipitate with ESRP1 protein. Silencing of RAC1b expression significantly reduced the number of soft agar colonies formed by ESRP1-overexpressing cells, suggesting that ESRP1 acted, at least partially, through RAC1b in its tumor-promoting activities in CRC cells. Thus, our data provide molecular cues on targetable candidates in CRC cases with high ESRP1 expression.
Collapse
Affiliation(s)
- Marta Manco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.)
| | - Ugo Ala
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Daniela Cantarella
- Department of Oncology, University of Torino, S.P. 142, km 3.95, Torino, 10060 Candiolo, Italy; (D.C.); (E.M.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.)
| | - Enzo Medico
- Department of Oncology, University of Torino, S.P. 142, km 3.95, Torino, 10060 Candiolo, Italy; (D.C.); (E.M.)
| | - Fiorella Altruda
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR) c/o Molecular Biotechnology Center, 10126 Turin, Italy
| |
Collapse
|
7
|
Melzer C, Hass R, Lehnert H, Ungefroren H. RAC1B: A Rho GTPase with Versatile Functions in Malignant Transformation and Tumor Progression. Cells 2019; 8:21. [PMID: 30621237 PMCID: PMC6356296 DOI: 10.3390/cells8010021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
RAC1B is an alternatively spliced isoform of the monomeric GTPase RAC1. It differs from RAC1 by a 19 amino acid in frame insertion, termed exon 3b, resulting in an accelerated GDP/GTP-exchange and an impaired GTP-hydrolysis. Although RAC1B has been ascribed several protumorigenic functions such as cell cycle progression and apoptosis resistance, its role in malignant transformation, and other functions driving tumor progression like epithelial-mesenchymal transition, migration/invasion and metastasis are less clear. Insertion of exon 3b endows RAC1B with specific biochemical properties that, when compared to RAC1, encompass both loss-of-functions and gain-of-functions with respect to the type of upstream activators, downstream targets, and binding partners. In its extreme, this may result in RAC1B and RAC1 acting in an antagonistic fashion in regulating a specific cellular response with RAC1B behaving as an endogenous inhibitor of RAC1. In this review, we strive to provide the reader with a comprehensive overview, rather than critical discussions, on various aspects of RAC1B biology in eukaryotic cells.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
8
|
Witte D, Otterbein H, Förster M, Giehl K, Zeiser R, Lehnert H, Ungefroren H. Negative regulation of TGF-β1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b. Sci Rep 2017; 7:17313. [PMID: 29229918 PMCID: PMC5725500 DOI: 10.1038/s41598-017-15170-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 01/26/2023] Open
Abstract
Prompted by earlier findings that the Rac1-related isoform Rac1b inhibits transforming growth factor (TGF)-β1-induced canonical Smad signalling, we studied here whether Rac1b also impacts TGF-β1-dependent non-Smad signalling such as the MKK6-p38 and MEK-ERK mitogen-activated protein kinase (MAPK) pathways and epithelial-mesenchymal transition (EMT). Transient depletion of Rac1b protein in pancreatic cancer cells by RNA interference increased the extent and duration of TGF-β1-induced phosphorylation of p38 MAPK in a Smad4-independent manner. Rac1b depletion also strongly increased basal ERK activation - independent of the kinase function of the TGF-β type I receptor ALK5 - and sensitised cells towards further upregulation of phospho-ERK levels by TGF-β1, while ectopic overexpression of Rac1b had the reverse effect. Rac1b depletion increased an EMT phenotype as evidenced by cell morphology, gene expression of EMT markers, cell migration and growth inhibition. Inhibition of MKK6-p38 or MEK-ERK signalling partially relieved the Rac1b depletion-dependent increase in TGF-β1-induced gene expression and cell migration. Rac1b depletion also enhanced TGF-β1 autoinduction of crucial TGF-β pathway components and decreased that of TGF-β pathway inhibitors. Our results show that Rac1b antagonises TGF-β1-dependent EMT by inhibiting MKK6-p38 and MEK-ERK signalling and by controlling gene expression in a way that favors attenuation of TGF-β signalling.
Collapse
Affiliation(s)
- David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck, 23538, Lübeck, Germany
| | - Hannah Otterbein
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck, 23538, Lübeck, Germany
| | - Maria Förster
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck, 23538, Lübeck, Germany
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, 79106, Freiburg i.Br., Germany
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck, 23538, Lübeck, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck, 23538, Lübeck, Germany. .,Department of General and Thoracic Surgery, UKSH, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
9
|
Zeitz M, Kierfeld J. Feedback mechanism for microtubule length regulation by stathmin gradients. Biophys J 2016; 107:2860-2871. [PMID: 25517152 DOI: 10.1016/j.bpj.2014.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/22/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switchlike regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT-length distribution for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast-growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe-promoting stathmin, we do not find bistability.
Collapse
Affiliation(s)
- Maria Zeitz
- Physics Department, TU Dortmund University, Dortmund, Germany
| | - Jan Kierfeld
- Physics Department, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
10
|
Rac1b negatively regulates TGF-β1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signalling. Oncotarget 2014; 5:277-90. [PMID: 24378395 PMCID: PMC3960208 DOI: 10.18632/oncotarget.1696] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor (TGF)-β1 promotes progression of pancreatic ductal adenocarcinoma (PDAC) by enhancing epithelial-mesenchymal transition, cell migration/invasion, and metastasis, in part by cooperating with the small GTPase Rac1. Prompted by the observation of higher expression of Rac1b, an alternatively spliced Rac1 isoform, in pancreatic ductal epithelial cells and in patients with chronic pancreatitis vs. PDAC, as well as in long-time vs. short-time survivors among PDAC patients, we asked whether Rac1b might negatively affect TGF-β1 prometastatic function. Interestingly, the non-malignant pancreatic ductal epithelial cell line H6c7 exhibited a higher ratio of active Rac1b to total Rac1b than the TGF-β1-responsive PDAC cell lines Panc-1 and Colo357. Notably, siRNA-mediated silencing of Rac1b increased TGF-β1/Smad-dependent migratory activities in H6c7, Colo357, and Panc-1 cells, while ectopic overexpression of Rac1b in Panc-1 cells attenuated TGF-β1-induced cell motility. Depletion of Rac1b in Panc-1 cells enhanced TGF-β1/Smad-dependent expression of promoter-reporter genes and of the endogenous Slug gene. Moreover, Rac1b depletion resulted in a higher and more sustained C-terminal phosphorylation of Smad3 and Smad2, suggesting that Rac1b is involved in Smad2/3 dephosphorylation/inactivation. Since pharmacologic or siRNA-mediated inhibition of Smad3 but not Smad2 was able to alleviate the Rac1b siRNA effect on TGF-β1-induced cell migration, our results suggests that Rac1b inhibits TGF-β1-induced cell motility in pancreatic ductal epithelial cells by blocking the function of Smad3. Moreover, Rac1b may act as an endogenous inhibitor of Rac1 in TGF-β1-mediated migration and possibly metastasis. Hence, it could be exploited for diagnostic/prognostic purposes or even therapeutically in late-stage PDAC as an antimetastatic agent.
Collapse
|
11
|
Kumar S, Das A, Sen S. Extracellular matrix density promotes EMT by weakening cell–cell adhesions. ACTA ACUST UNITED AC 2014; 10:838-50. [DOI: 10.1039/c3mb70431a] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper probes the influence of extracellular matrix density on cell–cell adhesion and its relevance to EMT.
Collapse
Affiliation(s)
- Sandeep Kumar
- WRCBB
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai, India
| | - Alakesh Das
- WRCBB
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai, India
| | - Shamik Sen
- WRCBB
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai, India
| |
Collapse
|
12
|
Niebel B, Wosnitza CI, Famulok M. RNA-aptamers that modulate the RhoGEF activity of Tiam1. Bioorg Med Chem 2013; 21:6239-46. [PMID: 23757206 DOI: 10.1016/j.bmc.2013.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/26/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
Abstract
Rho GTPases regulate the actin cytoskeleton and thereby control cell migration, cell morphology, cell motility, and other cellular functions. The gene product of the oncogene Tiam1 acts as a guanine nucleotide exchange factor (GEF) for the Rho GTPase Rac. Like other RhoGEFs, Tiam1 is involved in cancer progression, but it also counteracts invasion in different cancer cell types. Hence, further investigations are required to unravel the functions of Tiam1 in the context of cancer initiation and progression, which appear to be cell specific. Although RhoGEFs in general seem to be attractive therapeutic targets, not many inhibitors have been described, yet. Here we report the identification and characterization of inhibitory RNA aptamers that specifically target Tiam1. After 16 selection rounds three aptamers sharing a 15 nucleotides consensus motif were identified. The clones K91 and K11 inhibited the Tiam1-mediated activation of the GTPase Rac2 in vitro. The tightest binder K91 neither bound the Rho GEF Vav1 nor the Arf GEF Cytohesin-2. In the presence of Rac1, the binding of K91 to Tiam1 was impaired indicating that the binding motif on Tiam1 overlaps with the GTPase binding site. K91 and K11 are the first reported inhibitory molecules targeting the GEF function of Tiam1. Due to their specificity over related GEF proteins they may represent promising tools for further elucidation of the biological functions of Tiam1. We anticipated that these aptamers will prove useful in validating the ambiguous roles of Tiam1 in cancer biology.
Collapse
Affiliation(s)
- Björn Niebel
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str 1, 53121 Bonn, Germany
| | | | | |
Collapse
|
13
|
Mahankali M, Henkels KM, Gomez-Cambronero J. A GEF-to-phospholipase molecular switch caused by phosphatidic acid, Rac and JAK tyrosine kinase that explains leukocyte cell migration. J Cell Sci 2013; 126:1416-28. [PMID: 23378025 PMCID: PMC3644142 DOI: 10.1242/jcs.117960] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 12/22/2022] Open
Abstract
Phospholipase D2 (PLD2) is a cell-signaling molecule that bears two activities: a guanine-nucleotide exchange factor (GEF) and a lipase that reside in the PX/PH domains and in two HKD domains, respectively. Upon cell stimulation, the GEF activity yields Rac2-GTP and the lipase activity yields phosphatidic acid (PA). In the present study, we show for the first time that these activities regulate one another. Upon cell stimulation, both GEF and lipase activities are quickly (within ∼3 min) elevated. As soon as it is produced, PA positively feeds back on the GEF and further activates it. Rac2-GTP, on the other hand, is inhibitory to the lipase activity. PLD2 would remain downregulated if it were not for the contribution of the tyrosine kinase Janus kinase 3 (JAK3), which restores lipase action (by phosphorylation at Y415). Conversely, the GEF is inhibited upon phosphorylation by JAK3 and is effectively terminated by this action and by the increasing accumulation of PA at >15 min of cell stimulation. This PA interferes with the ability of the GEF to bind to its substrate (Rac2-GTP). Thus, both temporal inter-regulation and phosphorylation-dependent mechanisms are involved in determining a GEF-lipase switch within the same molecule. Human neutrophils stimulated by interleukin-8 follow a biphasic pattern of GEF and lipase activation that can be explained by such an intramolecular switch. This is the first report of a temporal inter-regulation of two enzymatic activities that reside in the same molecule with profound biological consequences in leukocyte cell migration.
Collapse
Affiliation(s)
| | | | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, OH 45435, USA
| |
Collapse
|
14
|
Jaiswal M, Dvorsky R, Ahmadian MR. Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins. J Biol Chem 2012; 288:4486-500. [PMID: 23255595 DOI: 10.1074/jbc.m112.429746] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies.
Collapse
Affiliation(s)
- Mamta Jaiswal
- Institut für Biochemie and Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
15
|
Perez SE, Getova DP, He B, Counts SE, Geula C, Desire L, Coutadeur S, Peillon H, Ginsberg SD, Mufson EJ. Rac1b increases with progressive tau pathology within cholinergic nucleus basalis neurons in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:526-40. [PMID: 22142809 PMCID: PMC3349868 DOI: 10.1016/j.ajpath.2011.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/05/2011] [Accepted: 10/11/2011] [Indexed: 01/19/2023]
Abstract
Cholinergic basal forebrain (CBF) nucleus basalis (NB) neurons display neurofibrillary tangles (NFTs) during Alzheimer's disease (AD) progression, yet the mechanisms underlying this selective vulnerability are currently unclear. Rac1, a member of the Rho family of GTPases, may interact with the proapoptotic pan-neurotrophin receptor p75(NTR) to induce neuronal cytoskeletal abnormalities in AD NB neurons. Herein, we examined the expression of Rac1b, a constitutively active splice variant of Rac1, in NB cholinergic neurons during AD progression. CBF tissues harvested from people who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment, or AD were immunolabeled for both p75(NTR) and Rac1b. Rac1b appeared as cytoplasmic diffuse granules, loosely aggregated filaments, or compact spheres in p75(NTR)-positive NB neurons. Although Rac1b colocalized with tau cytoskeletal markers, the percentage of p75(NTR)-immunoreactive neurons expressing Rac1b was significantly increased only in AD compared with both mild cognitive impairment and NCI. Furthermore, single-cell gene expression profiling with custom-designed microarrays showed down-regulation of caveolin 2, GNB4, and lipase A in AD Rac1b-positive/p75(NTR)-labeled NB neurons compared with Rac1b-negative/p75(NTR)-positive perikarya in NCI. These proteins are involved in Rac1 pathway/cell cycle progression and lipid metabolism. These data suggest that Rac1b expression acts as a modulator or transducer of various signaling pathways that lead to NFT formation and membrane dysfunction in a subgroup of CBF NB neurons in AD.
Collapse
Affiliation(s)
- Sylvia E. Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Damianka P. Getova
- Department of Pharmacology and Clinical Pharmacology, Medical University, Plovdiv, Bulgaria
| | - Bin He
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Scott E. Counts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago Illinois
| | | | | | | | - Stephen D. Ginsberg
- Center for Dementia Research and Departments of Psychiatry and Physiology and Neuroscience, Nathan Kline Institute/New York University Langone Medical Center, New York, New York
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
16
|
Abstract
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.
Collapse
Affiliation(s)
- Jean Paul ten Klooster
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Jaiswal M, Gremer L, Dvorsky R, Haeusler LC, Cirstea IC, Uhlenbrock K, Ahmadian MR. Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). J Biol Chem 2011; 286:18202-12. [PMID: 21454492 DOI: 10.1074/jbc.m111.226431] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.
Collapse
Affiliation(s)
- Mamta Jaiswal
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Schmohl M, Rimmele S, Pötz O, Kloog Y, Gierschik P, Joos TO, Schneiderhan-Marra N. Protein-protein-interactions in a multiplexed, miniaturized format a functional analysis of Rho GTPase activation and inhibition. Proteomics 2010; 10:1716-20. [DOI: 10.1002/pmic.200900597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Derivery E, Lombard B, Loew D, Gautreau A. The Wave complex is intrinsically inactive. ACTA ACUST UNITED AC 2009; 66:777-90. [PMID: 19206172 DOI: 10.1002/cm.20342] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Wave proteins activate the Arp2/3 complex at the leading edge of migrating cells. The resulting actin polymerization powers the projection of the plasma membrane in lamellipodia and membrane ruffles. The Wave proteins are always found associated with partner proteins. The canonical Wave complex is a stable complex containing five subunits. Even though it is well admitted that this complex plays an essential regulatory role on Wave function, the mechanisms by which Wave proteins are regulated within the complex are still elusive. Even the constitutive activity or inactivity of the complex is controversial. The major difficulty of these assays resides in the long and difficult purification of the Wave complex by a combination of several chromatography steps, which gives an overall low yield and increases the chance of Wave complex denaturation. Here we report a greatly simplified approach to purify the human Wave complex using a stable cell line expressing a tagged subunit and affinity chromatography. This protocol provided us with sufficient amount of pure Wave complex for functional assays. These assays unambiguously established that the Wave complex in its native conformation is intrinsically inactive, indicating that, like WASP proteins, Wave proteins have a masked C-terminal Arp2/3 binding site at resting state. As a consequence, the Wave complex has to be recruited and activated at the plasma membrane to project migration structures. Importantly, the approach we describe here for multiprotein complex purification is likely applicable to a wide range of human multiprotein complexes.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Institut Curie, Centre de Recherche, Laboratory of Cell Morphogenesis and Intracellular Signaling, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
20
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
21
|
Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ. Specificity and Mechanism of Action of EHT 1864, a Novel Small Molecule Inhibitor of Rac Family Small GTPases. J Biol Chem 2007; 282:35666-78. [DOI: 10.1074/jbc.m703571200] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|