1
|
Suarez SC, Toffton SM, McCulloch SD. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A. PLoS One 2014; 9:e97382. [PMID: 24824831 PMCID: PMC4019591 DOI: 10.1371/journal.pone.0097382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022] Open
Abstract
DNA polymerase η (pol η) synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS), is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA), when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG) and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD). We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.
Collapse
Affiliation(s)
- Samuel C. Suarez
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Shannon M. Toffton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Scott D. McCulloch
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
2
|
Beardslee RA, Suarez SC, Toffton SM, McCulloch SD. Mutation of the little finger domain in human DNA polymerase η alters fidelity when copying undamaged DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:638-651. [PMID: 23913529 PMCID: PMC4120640 DOI: 10.1002/em.21807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
DNA polymerase η (pol η) synthesizes past cyclobutane pyrimidine dimer and possibly 7,8-dihydro-8-oxoguanine (8-oxoG) lesions during DNA replication. Loss of pol η is associated with an increase in mutation rate, demonstrating its indispensable role in mutation suppression. It has been recently reported that β-strand 12 (amino acids 316-324) of the little finger region correctly positions the template strand with the catalytic core of the enzyme. The authors hypothesized that modification of β-strand 12 residues would disrupt correct enzyme-DNA alignment and alter pol η's activity and fidelity. To investigate this, the authors purified proteins containing the catalytic core of the polymerase, incorporated single amino acid changes to select β-strand 12 residues, and evaluated DNA synthesis activity for each pol η. Lesion bypass efficiencies and replication fidelities when copying DNA-containing cis-syn cyclobutane thymine-thymine dimer and 8-oxoG lesions were determined and compared with the corresponding values for the wild-type polymerase. The results confirm the importance of the β-strand in polymerase function and show that fidelity is most often altered when undamaged DNA is copied. Additionally, it is shown that DNA-protein contacts distal to the active site can significantly affect the fidelity of synthesis.
Collapse
Affiliation(s)
- Renee A. Beardslee
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Samuel C. Suarez
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Shannon M. Toffton
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Scott D. McCulloch
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
3
|
Suarez SC, Beardslee RA, Toffton SM, McCulloch SD. Biochemical analysis of active site mutations of human polymerase η. Mutat Res 2013; 745-746:46-54. [PMID: 23499771 DOI: 10.1016/j.mrfmmm.2013.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
DNA polymerase η (pol η) plays a critical role in suppressing mutations caused by the bypass of cis-syn cyclobutane pyrimidine dimers (CPD) that escape repair. There is evidence this is also the case for the oxidative lesion 7,8-dihydro-8-oxo-guanine (8-oxoG). Both of these lesions cause moderate to severe blockage of synthesis when encountered by replicative polymerases, while pol η displays little no to pausing during translesion synthesis. However, since lesion bypass does not remove damaged DNA from the genome and can possibly be accompanied by errors in synthesis during bypass, the process is often called 'damage tolerance' to delineate it from classical DNA repair pathways. The fidelity of lesion bypass is therefore of importance when determining how pol η suppresses mutations after DNA damage. As pol η has been implicated in numerous in vivo pathways other than lesion bypass, we wanted to better understand the molecular mechanisms involved in the relatively low-fidelity synthesis displayed by pol η. To that end, we have created a set of mutant pol η proteins each containing a single amino acid substitution in the active site and closely surrounding regions. We determined overall DNA synthesis ability as well as the efficiency and fidelity of bypass of thymine-thymine CPD (T-T CPD) and 8-oxoG containing DNA templates. Our results show that several amino acids are critical for normal polymerase function, with changes in overall activity and fidelity being observed. Of the mutants that retain polymerase activity, we demonstrate that amino acids Q38, Y52, and R61 play key roles in determining polymerase fidelity, with substation of alanine causing both increases and decreases in fidelity. Remarkably, the Q38A mutant displays increased fidelity during synthesis opposite 8-oxoG but decreased fidelity during synthesis opposite a T-T CPD.
Collapse
Affiliation(s)
- Samuel C Suarez
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
4
|
McCulloch SD, Kokoska RJ, Garg P, Burgers PM, Kunkel TA. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucleic Acids Res 2009; 37:2830-40. [PMID: 19282446 PMCID: PMC2685079 DOI: 10.1093/nar/gkp103] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols δ and η. Yeast Pol δ and yeast Pol η both bypass 8-oxoG and misincorporate adenine during bypass. However, yeast Pol η is 10-fold more efficient than Pol δ, and following bypass Pol η switches to less processive synthesis, similar to that observed during bypass of a cis-syn thymine-thymine dimer. Moreover, yeast Pol η is at least 10-fold more accurate than yeast Pol δ during 8-oxoG bypass. These differences are maintained in the presence of the accessory proteins RFC, PCNA and RPA and are consistent with the established role of Pol η in suppressing ogg1-dependent mutagenesis in yeast. Surprisingly different results are obtained with human and mouse Pol η. Both mammalian enzymes bypass 8-oxoG efficiently, but they do so less processively, without a switch point and with much lower fidelity than yeast Pol η. The fact that yeast and mammalian Pol η have intrinsically different catalytic properties has potential biological implications.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research, NC 27709, USA
| | | | | | | | | |
Collapse
|
5
|
Zhong X, Pedersen LC, Kunkel TA. Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity. Nucleic Acids Res 2008; 36:3892-904. [PMID: 18503083 PMCID: PMC2475618 DOI: 10.1093/nar/gkn312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/28/2008] [Accepted: 05/01/2008] [Indexed: 11/25/2022] Open
Abstract
Changing a highly conserved amino acid in motif A of any of the four yeast family B DNA polymerases, DNA polymerase alpha, delta, epsilon or zeta, results in yeast strains with elevated mutation rates. In order to better understand this phenotype, we have performed structure-function studies of homologous mutants of RB69 DNA polymerase (RB69 pol), a structural model for family B members. When Leu415 in RB69 pol is replaced with phenylalanine or glycine, the mutant polymerases retain high-catalytic efficiency for correct nucleotide incorporation, yet have increased error rates due to increased misinsertion, increased mismatch extension and inefficient proofreading. The Leu415Phe mutant also has increased dNTP insertion efficiency opposite a template 8-oxoG and opposite an abasic site. The 2.5 A crystal structure of a ternary complex of RB69 L415F pol with a correctly base-paired incoming dTTP reveals that the phenylalanine ring is accommodated within a cavity seen in the wild-type enzyme, without steric clash or major change in active site geometry, consistent with retention of high-catalytic efficiency for correct incorporation. In addition, slight structural differences were observed that could be relevant to the reduced fidelity of L415F RB69 pol.
Collapse
Affiliation(s)
- Xuejun Zhong
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709, USA
| | - Lars C. Pedersen
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
McCulloch SD, Wood A, Garg P, Burgers PMJ, Kunkel TA. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. Biochemistry 2007; 46:8888-96. [PMID: 17608453 PMCID: PMC2288658 DOI: 10.1021/bi700234t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
7
|
Barone F, McCulloch SD, Macpherson P, Maga G, Yamada M, Nohmi T, Minoprio A, Mazzei F, Kunkel TA, Karran P, Bignami M. Replication of 2-hydroxyadenine-containing DNA and recognition by human MutSalpha. DNA Repair (Amst) 2007; 6:355-66. [PMID: 17188944 PMCID: PMC2111060 DOI: 10.1016/j.dnarep.2006.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 12/11/2022]
Abstract
2-Hydroxyadenine (2-OH-A), a product of DNA oxidation, is a potential source of mutations. We investigated how representative DNA polymerases from the A, B and Y families dealt with 2-OH-A in primer extension experiments. A template 2-OH-A reduced the rate of incorporation by DNA polymerase alpha (Pol alpha) and Klenow fragment (Kf(exo-)). Two Y family DNA polymerases, human polymerase eta (Pol eta) and the archeal Dpo4 polymerase were affected differently. Bypass by Pol eta was very inefficient whereas Dpo4 efficiently replicated 2-OH-A. Replication of a template 2-OH-A by both enzymes was mutagenic and caused base substitutions. Dpo4 additionally introduced single base deletions. Thermodynamic analysis showed that 2-OH-A forms stable base pairs with T, C and G, and to a lesser extent with A. Oligonucleotides containing 2-OH-A base pairs, including the preferred 2-OH-A:T, were recognized by the human MutSalpha mismatch repair (MMR). MutSalpha also recognized 2-OH-A located in a repeat sequence that mimics a frameshift intermediate.
Collapse
Affiliation(s)
- Flavia Barone
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Scott D. McCulloch
- Laboratory of Molecular Genetics and Structural Biology, National Institute of Environmental Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Peter Macpherson
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Masami Yamada
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokio 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokio 158-8501, Japan
| | - Anna Minoprio
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Filomena Mazzei
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Structural Biology, National Institute of Environmental Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Peter Karran
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - Margherita Bignami
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
McCulloch SD, Kunkel TA. Multiple solutions to inefficient lesion bypass by T7 DNA polymerase. DNA Repair (Amst) 2006; 5:1373-83. [PMID: 16876489 PMCID: PMC1892196 DOI: 10.1016/j.dnarep.2006.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
We hypothesize that enzymatic switching during translesion synthesis (TLS) to relieve stalled replication forks occurs during transitions from preferential to disfavored use of damaged primer-templates, and that the polymerase or 3'-exonuclease used for each successive nucleotide incorporated is the one whose properties result in the highest efficiency and the highest fidelity of bypass. Testing this hypothesis requires quantitative determination of the relative lesion bypass ability of both TLS polymerases and major replicative polymerases. As a model of the latter, here we measure the efficiency and fidelity of cis-syn TT dimer and abasic site bypass using the structurally well-characterized T7 DNA polymerase. No bypass of either lesion occurred during a single round of synthesis, and the exonuclease activity of wild-type T7 DNA polymerase was critical in preventing TLS. When repetitive cycling of the exonuclease-deficient enzyme was allowed, limited bypass did occur but hundreds to thousands of cycles were required to achieve even a single bypass event. Analysis of TLS fidelity indicated that these rare bypass events involved rearrangements of the template and primer strands, insertions opposite the lesion, and combinations of these events, with the choice among these strongly depending on the sequence context of the lesion. Moreover, the presence of a lesion affected the fidelity of copying adjacent undamaged template bases, even when lesion bypass itself was correct. The results also indicate that a TT dimer presents a different type of block to the polymerase than an abasic site, even though both lesions are extremely potent blocks to processive synthesis. The approaches used here to quantify the efficiency and fidelity of TLS can be applied to other polymerase-lesion combinations, to provide guidance as to which of many possible polymerases is most likely to bypass various lesions in biological contexts.
Collapse
Affiliation(s)
- Scott D. McCulloch
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|