1
|
Zuiderweg ERP. Validating the 15N- 1H HSQC-ROESY experiment for detecting 1HN exchange broadening in proteated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107676. [PMID: 38815459 DOI: 10.1016/j.jmr.2024.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
It is advantageous to investigate milli-to-micro-second conformational exchange data contained in the solution NMR protein relaxation data other than 15N nuclei. Not only does one search under another lamp post, one also looks at dynamics at other time scales. The HSQC-ROESY 1HN relaxation dispersion experiment for amide protons as introduced by Ishima, et al (1998). J. Am. Soc. 120, 10534-10542, is such an experiment, but has by the authors been advised to only be used for perdeuterated proteins to avoid complication with the 1H-1H multiple-spin effects. This is regretful, since not all proteins can be perdeuterated. Here we analyze in detail the 1HN relaxation terms for this experiment for a fully proteated protein. Indeed, the 1HN relaxation theory is in this case complex and includes dipolar-dipolar relaxation interference and TOCSY transfers. With simulate both of these effects and show that the interference can be exploited for detecting exchange broadening. The TOCSY effect is shown to minor, and when it is not, a solution is provided. We apply the HSQC-ROESY experiment, with a small modification to suppress ROESY crosspeaks, to a 7 kDa GB1 protein that is just 15N and 13C labeled. At 10 °C we cannot detect any conformational exchange broadening: the 1HN R2 relaxation rates with 1.357 kHz spinlock field not larger than those recorded with a 12.136 kHz spinlock field. This means that there is no exchange broadening that can be differentially suppressed with the applied fields. Either there is no broadening, or the broadening is effectively suppressed by all fields, or the broadening cannot be suppressed by either of the fields. While initially this seems to be a disappointing result, we feel that this work establishes that the HSQC-ROESY experiment is very robust. It can indeed be utilized for proteated proteins upto about 30 kDa. This could be opening the study the milli-microsecond conformational dynamics as reported by 1HN exchange broadening for many more proteins.
Collapse
Affiliation(s)
- Erik R P Zuiderweg
- Radboud University, Institute for Molecules and Materials, Nijmegen, XZ 6525, The Netherlands; University of Michigan Medical School, Department of Biological Chemistry, Ann Arbor, MI 41109, USA.
| |
Collapse
|
2
|
Transition of Dephospho-DctD to the Transcriptionally Active State via Interaction with Dephospho-IIA
Glc. mBio 2022; 13:e0383921. [PMID: 35311533 PMCID: PMC9040800 DOI: 10.1128/mbio.03839-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Exopolysaccharides (EPSs), biofilm-maturing components of Vibrio vulnificus, are abundantly produced when the expression of two major EPS gene clusters is activated by an enhancer-binding transcription factor, DctD2, whose expression and phosphorylation are induced by dicarboxylic acids. Surprisingly, when glucose was supplied to V. vulnificus, similar levels of expression of these clusters occurred, even in the absence of dicarboxylic acids. This glucose-dependent activation was also mediated by DctD2, whose expression was sequentially activated by the transcription regulator NtrC. Most DctD2 in cells grown without dicarboxylic acids was present in a dephosphorylated state, known as the transcriptionally inactive form. However, in the presence of glucose, a dephosphorylated component of the glucose-specific phosphotransferase system, d-IIAGlc, interacted with dephosphorylated DctD2 (d-DctD2). While d-DctD2 did not show any affinity to a DNA fragment containing the DctD-binding sequences, the complex of d-DctD2 and d-IIAGlc exhibited specific and efficient DNA binding, similar to the phosphorylated DctD2. The d-DctD2-mediated activation of the EPS gene clusters’ expression was not fully achieved in cells grown with mannose. Furthermore, the degrees of expression of the clusters under glycerol were less than those under mannose. This was caused by an antagonistic and competitive effect of GlpK, whose expression was increased by glycerol, in forming a complex with d-DctD2 by d-IIAGlc. The data demonstrate a novel regulatory pathway for V. vulnificus EPS biosynthesis and biofilm maturation in the presence of glucose, which is mediated by d-DctD2 through its transition to the transcriptionally active state by interacting with available d-IIAGlc.
Collapse
|
3
|
Ali MM, Provoost A, Mijnendonckx K, Van Houdt R, Charlier D. DNA-Binding and Transcription Activation by Unphosphorylated Response Regulator AgrR From Cupriavidus metallidurans Involved in Silver Resistance. Front Microbiol 2020; 11:1635. [PMID: 32765465 PMCID: PMC7380067 DOI: 10.3389/fmicb.2020.01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Even though silver and silver nanoparticles at low concentrations are considered safe for human health, their steadily increasing use and associated release in nature is not without risk since it may result in the selection of silver-resistant microorganisms, thus impeding the utilization of silver as antimicrobial agent. Furthermore, increased resistance to metals may be accompanied by increased antibiotic resistance. Inactivation of the histidine kinase and concomitant upregulation of the cognate response regulator (RR) of the AgrRS two-component system was previously shown to play an important role in the increased silver resistance of laboratory adapted mutants of Cupriavidus metallidurans. However, binding of AgrR, a member of the OmpR/PhoP family of RRs with a conserved phosphoreceiver aspartate residue, to potential target promoters has never been demonstrated. Here we identify differentially expressed genes in the silver-resistant mutant NA4S in non-selective conditions by RNA-seq and demonstrate sequence-specific binding of AgrR to six selected promoter regions of upregulated genes and divergent operons. We delimit binding sites by DNase I and in gel copper-phenanthroline footprinting of AgrR-DNA complexes, and establish a high resolution base-specific contact map of AgrR-DNA interactions using premodification binding interference techniques. We identified a 16-bp core AgrR binding site (AgrR box) arranged as an imperfect inverted repeat of 6 bp (ATTACA) separated by 4 bp variable in sequence (6-4-6). AgrR interacts with two major groove segments and the intervening minor groove, all aligned on one face of the helix. Furthermore, an additional in phase imperfect direct repeat of the half-site may be observed slightly up and/or downstream of the inverted repeat at some operators. Mutant studies indicated that both inverted and direct repeats contribute to AgrR binding in vitro and AgrR-mediated activation in vivo. From the position of the AgrR box it appears that AgrR may act as a Type II activator for most investigated promoters, including positive autoregulation. Furthermore, we show in vitro binding and in vivo activation with dephosphomimetic AgrR mutant D51A, indicating that unphosphorylated AgrR is the active form of the RR in mutant NA4S.
Collapse
Affiliation(s)
- Md Muntasir Ali
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ann Provoost
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Paithankar KS, Enderle M, Wirthensohn DC, Miller A, Schlesner M, Pfeiffer F, Rittner A, Grininger M, Oesterhelt D. Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation. Acta Crystallogr F Struct Biol Commun 2019; 75:576-585. [PMID: 31475924 PMCID: PMC6718144 DOI: 10.1107/s2053230x19010896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection.
Collapse
Affiliation(s)
- Karthik Shivaji Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Mathias Enderle
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - David C. Wirthensohn
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Arthur Miller
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Draughn GL, Milton ME, Feldmann EA, Bobay BG, Roth BM, Olson AL, Thompson RJ, Actis LA, Davies C, Cavanagh J. The Structure of the Biofilm-controlling Response Regulator BfmR from Acinetobacter baumannii Reveals Details of Its DNA-binding Mechanism. J Mol Biol 2018; 430:806-821. [PMID: 29438671 DOI: 10.1016/j.jmb.2018.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 01/19/2023]
Abstract
The rise of drug-resistant bacterial infections coupled with decreasing antibiotic efficacy poses a significant challenge to global health care. Acinetobacter baumannii is an insidious, emerging bacterial pathogen responsible for severe nosocomial infections aided by its ability to form biofilms. The response regulator BfmR, from the BfmR/S two-component system, is the master regulator of biofilm initiation in A. baumannii and is a tractable therapeutic target. Here we present the structure of A. baumannii BfmR using a hybrid approach combining X-ray crystallography, nuclear magnetic resonance spectroscopy, chemical crosslinking mass spectrometry, and molecular modeling. We also show that BfmR binds the previously proposed bfmRS promoter sequence with moderate affinity. While BfmR shares many traits with other OmpR/PhoB family response regulators, some unusual properties were observed. Most importantly, we observe that when phosphorylated, BfmR binds this promoter sequence with a lower affinity than when not phosphorylated. All other OmpR/PhoB family members studied to date show an increase in DNA-binding affinity upon phosphorylation. Understanding the structural and biochemical mechanisms of BfmR will aid in the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- G Logan Draughn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Department of Discovery Sciences, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Morgan E Milton
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Department of Discovery Sciences, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Erik A Feldmann
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Braden M Roth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Richele J Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John Cavanagh
- Department of Discovery Sciences, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Abstract
Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following Review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery.
Collapse
Affiliation(s)
- George P. Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
7
|
Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SHJ. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. PLoS One 2016; 11:e0149903. [PMID: 26930060 PMCID: PMC4773095 DOI: 10.1371/journal.pone.0149903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding.
Collapse
Affiliation(s)
- Sakshi Khosa
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
8
|
A network of molecular switches controls the activation of the two-component response regulator NtrC. Nat Commun 2015; 6:7283. [DOI: 10.1038/ncomms8283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
|
9
|
Boudes M, Sanchez D, Graille M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S. Structural insights into the dimerization of the response regulator ComE from Streptococcus pneumoniae. Nucleic Acids Res 2014; 42:5302-13. [PMID: 24500202 PMCID: PMC4005675 DOI: 10.1093/nar/gku110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/18/2022] Open
Abstract
Natural transformation contributes to the maintenance and to the evolution of the bacterial genomes. In Streptococcus pneumoniae, this function is reached by achieving the competence state, which is under the control of the ComD-ComE two-component system. We present the crystal and solution structures of ComE. We mimicked the active and non-active states by using the phosphorylated mimetic ComE(D58E) and the unphosphorylatable ComE(D58A) mutants. In the crystal, full-length ComE(D58A) dimerizes through its canonical REC receiver domain but with an atypical mode, which is also adopted by the isolated REC(D58A) and REC(D58E). The LytTR domain adopts a tandem arrangement consistent with the two direct repeats of its promoters. However ComE(D58A) is monomeric in solution, as seen by SAXS, by contrast to ComE(D58E) that dimerizes. For both, a relative mobility between the two domains is assumed. Based on these results we propose two possible ways for activation of ComE by phosphorylation.
Collapse
Affiliation(s)
- Marion Boudes
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Dyana Sanchez
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Marc Graille
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Herman van Tilbeurgh
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Dominique Durand
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Sophie Quevillon-Cheruel
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| |
Collapse
|
10
|
Abstract
The question of how allostery works was posed almost 50 years ago. Since then it has been the focus of much effort. This is for two reasons: first, the intellectual curiosity of basic science and the desire to understand fundamental phenomena, and second, its vast practical importance. Allostery is at play in all processes in the living cell, and increasingly in drug discovery. Many models have been successfully formulated, and are able to describe allostery even in the absence of a detailed structural mechanism. However, conceptual schemes designed to qualitatively explain allosteric mechanisms usually lack a quantitative mathematical model, and are unable to link its thermodynamic and structural foundations. This hampers insight into oncogenic mutations in cancer progression and biased agonists' actions. Here, we describe how allostery works from three different standpoints: thermodynamics, free energy landscape of population shift, and structure; all with exactly the same allosteric descriptors. This results in a unified view which not only clarifies the elusive allosteric mechanism but also provides structural grasp of agonist-mediated signaling pathways, and guides allosteric drug discovery. Of note, the unified view reasons that allosteric coupling (or communication) does not determine the allosteric efficacy; however, a communication channel is what makes potential binding sites allosteric.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Villali J, Pontiggia F, Clarkson MW, Hagan MF, Kern D. Evidence against the "Y-T coupling" mechanism of activation in the response regulator NtrC. J Mol Biol 2014; 426:1554-67. [PMID: 24406745 DOI: 10.1016/j.jmb.2013.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 01/17/2023]
Abstract
The dominant theory on the mechanism of response regulators activation in two-component bacterial signaling systems is the "Y-T coupling" mechanism, wherein the χ1 rotameric state of a highly conserved aromatic residue correlates with the activation of the protein via structural rearrangements coupled to a conserved tyrosine. In this paper, we present evidence that, in the receiver domain of the response regulator nitrogen regulatory protein C (NtrC(R)), the interconversion of this tyrosine (Y101) between its rotameric states is actually faster than the rate of inactive/active conversion and is not correlated to the activation process. Data gathered from NMR relaxation dispersion experiments show that a subset of residues surrounding the conserved tyrosine sense a process that is occurring at a faster rate than the inactive/active conformational transition. We show that this process is related to χ1 rotamer exchange of Y101 and that mutation of this aromatic residue to a leucine eliminated this second faster process without affecting activation. Computational simulations of NtrC(R) in its active conformation further demonstrate that the rotameric state of Y101 is uncorrelated with the global conformational transition during activation. Moreover, the tyrosine does not appear to be involved in the stabilization of the active form upon phosphorylation and is not essential in propagating the signal downstream for ATPase activity of the central domain. Our data provide experimental evidence against the generally accepted "Y-T coupling" mechanism of activation in NtrC(R).
Collapse
Affiliation(s)
- Janice Villali
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA
| | - Francesco Pontiggia
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA
| | - Michael W Clarkson
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA 02452, USA
| | - Dorothee Kern
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA.
| |
Collapse
|
12
|
Sheftic SR, White E, Gage DJ, Alexandrescu AT. NMR structure of the HWE kinase associated response regulator Sma0114 in its activated state. Biochemistry 2014; 53:311-22. [PMID: 24364624 DOI: 10.1021/bi401497h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial receiver domains modulate intracellular responses to external stimuli in two-component systems. Sma0114 is the first structurally characterized representative from the family of receiver domains that are substrates for histidine-tryptophan-glutamate (HWE) kinases. We report the NMR structure of Sma0114 bound by Ca(2+) and BeF3(-), a phosphate analogue that stabilizes the activated state. Differences between the NMR structures of the inactive and activated states occur in helix α1, the active site loop that connects strand β3 and helix α3, and in the segment from strand β5 to helix α5 of the 455 (α4-β5-α5) face. Structural rearrangements of the 455 face typically make receiver domains competent for binding downstream target molecules. In Sma0114 the structural changes accompanying activation result in a more negatively charged surface for the 455 face. Coupling between the 455 face and active site phosphorylation is usually mediated through the rearrangement of a threonine and tyrosine residue, in a mechanism called Y-T coupling. The NMR structure indicates that Sma0114 lacks Y-T coupling and that communication between the active site and the 455 face is achieved through a conserved lysine residue that stabilizes the acyl phosphate in receiver domains. (15)N-NMR relaxation experiments were used to investigate the backbone dynamics of the Sma0114 apoprotein, the binary Sma0114·Ca(2+) complex, and the ternary Sma0114·Ca(2+)·BeF3(-) complex. The loss of entropy due to ligand binding at the active site is compensated by increased flexibility in the 455 face. The dynamic character of the 455 face in Sma0114, which results in part from the replacement of helix α4 by a flexible loop, may facilitate induced-fit recognition of target molecules.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs , Connecticut, United States
| | | | | | | |
Collapse
|
13
|
Tripathi S, Portman JJ. Allostery and Folding of the N-terminal Receiver Domain of Protein NtrC. J Phys Chem B 2013; 117:13182-93. [DOI: 10.1021/jp403181p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Swarnendu Tripathi
- Department
of Physics, University of Houston, Houston, Texas 77204, United States
| | - John J. Portman
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
14
|
Matena A, Sinnen C, van den Boom J, Wilms C, Dybowski JN, Maltaner R, Mueller JW, Link NM, Hoffmann D, Bayer P. Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands. Structure 2013; 21:1769-77. [PMID: 23972472 DOI: 10.1016/j.str.2013.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The mitotic regulator Pin1 plays an important role in protein quality control and age-related medical conditions such as Alzheimer disease and Parkinson disease. Although its cellular role has been thoroughly investigated during the past decade, the molecular mechanisms underlying its function remain elusive. We provide evidence for interactions between the two domains of Pin1. Several residues displayed unequivocal peak splits in nuclear magnetic resonance spectra, indicative of two different conformational states in equilibrium. Pareto analysis of paramagnetic relaxation enhancement data demonstrates that the two domains approach each other upon addition of a nonpeptidic ligand. Titration experiments with phosphorylated peptides monitored by fluorescence anisotropy and chemical shift perturbation indicate that domain interactions increase Pin1's affinity toward peptide ligands. We propose this interplay of the domains and ligands to be a general mechanism for a large class of two-domain proteins.
Collapse
Affiliation(s)
- Anja Matena
- Research Group Structural and Medicinal Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc Natl Acad Sci U S A 2013; 110:12867-74. [PMID: 23868852 DOI: 10.1073/pnas.1305688110] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of dynamics to biomolecular function is becoming increasingly clear. A description of the structure-function relationship must, therefore, include the role of motion, requiring a shift in paradigm from focus on a single static 3D picture to one where a given biomolecule is considered in terms of an ensemble of interconverting conformers, each with potentially diverse activities. In this Perspective, we describe how recent developments in solution NMR spectroscopy facilitate atomic resolution studies of sparsely populated, transiently formed biomolecular conformations that exchange with the native state. Examples of how this methodology is applied to protein folding and misfolding, ligand binding, and molecular recognition are provided as a means of illustrating both the power of the new techniques and the significant roles that conformationally excited protein states play in biology.
Collapse
|
16
|
Werbeck ND, Kirkpatrick J, Hansen DF. Probing arginine side-chains and their dynamics with carbon-detected NMR spectroscopy: application to the 42 kDa human histone deacetylase 8 at high pH. Angew Chem Int Ed Engl 2013; 52:3145-7. [PMID: 23401322 PMCID: PMC4016738 DOI: 10.1002/anie.201209385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Indexed: 11/20/2022]
Affiliation(s)
- Nicolas D Werbeck
- Institute of Structural and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK
| | | | | |
Collapse
|
17
|
Werbeck ND, Kirkpatrick J, Hansen DF. Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Vugmeyster L, Ostrovsky D, Penland K, Hoatson GL, Vold RL. Glassy dynamics of protein methyl groups revealed by deuteron NMR. J Phys Chem B 2013; 117:1051-61. [PMID: 23301823 DOI: 10.1021/jp311112j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated site-specific dynamics of key methyl groups in the hydrophobic core of chicken villin headpiece subdomain (HP36) over the temperature range between 298 and 140 K using deuteron solid-state NMR longitudinal relaxation measurements. The relaxation of the longitudinal magnetization is weakly nonexponential (glassy) at high temperatures and exhibits a stronger degree of nonexponentiality below about 175 K. In addition, the characteristic relaxation times deviate from the simple Arrhenius law. We interpret this behavior via the existence of distribution of activation energy barriers for the three-site methyl jumps, which originates from somewhat different methyl environments within the local energy landscape. The width of the distribution of the activation barriers for methyl jumps is rather significant, about 1.4 kJ/mol. Our experimental results and modeling allow for the description of the apparent change at about 175 K without invoking a specific transition temperature. For most residues in the core, the relaxation behavior at high temperatures points to the existence of conformational exchange between the substates of the landscape, and our model takes into account the kinetics of this process. The observed dynamics are the same for dry and hydrated protein. We also looked at the effect of F58L mutation inside the hydrophobic core on the dynamics of one of the residues and observed a significant increase in its conformational exchange rate constant at high temperatures.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska 99508, USA.
| | | | | | | | | |
Collapse
|
19
|
Sheftic SR, Garcia PP, White E, Robinson VL, Gage DJ, Alexandrescu AT. Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti. Biochemistry 2012; 51:6932-41. [PMID: 22880754 DOI: 10.1021/bi300922z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
20
|
Vugmeyster L, Ostrovsky D, Khadjinova A, Ellden J, Hoatson GL, Vold RL. Slow motions in the hydrophobic core of chicken villin headpiece subdomain and their contributions to configurational entropy and heat capacity from solid-state deuteron NMR measurements. Biochemistry 2011; 50:10637-46. [PMID: 22085262 PMCID: PMC3366553 DOI: 10.1021/bi201515b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated microsecond to millisecond time scale dynamics in several key hydrophobic core methyl groups of chicken villin headpiece subdomain protein (HP36) using a combination of single-site labeling, deuteron solid-state NMR line shape analysis, and computational modeling. Deuteron line shapes of hydrated powder samples are dominated by rotameric jumps and show a large variability of rate constants, activation energies, and rotameric populations. Site-specific activation energies vary from 6 to 38 kJ/mol. An additional mode of diffusion on a restricted arc is significant for some sites. In dry samples, the dynamics is quenched. Parameters of the motional models allow for calculations of configurational entropy and heat capacity, which, together with the rate constants, allow for observation of interplay between thermodynamic and kinetic picture of the landscape. Mutations at key phenylalanine residues at both distal (F47L&F51L) and proximal (F58L) locations to a relatively rigid side chain of L69 have a pronounced effect on alleviating the rigidity of this side chain at room temperature and demonstrate the sensitivity of the hydrophobic core environment to such perturbations.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Alaska, Anchorage, Alaska 99508, United States.
| | | | | | | | | | | |
Collapse
|
21
|
Tripet BP, Goel A, Copié V. Internal dynamics of the tryptophan repressor (TrpR) and two functionally distinct TrpR variants, L75F-TrpR and A77V-TrpR, in their l-Trp-bound forms. Biochemistry 2011; 50:5140-53. [PMID: 21553830 PMCID: PMC3113449 DOI: 10.1021/bi200389k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Backbone amide dynamics of the Escherichia coli tryptophan repressor protein (WT-TrpR) and two functionally distinct variants, L75F-TrpR and A77V-TrpR, in their holo (l-tryptophan corepressor-bound) form have been characterized using (15)N nuclear magnetic resonance (NMR) relaxation. The three proteins possess very similar structures, ruling out major conformational differences as the source of their functional differences, and suggest that changes in protein flexibility are at the origin of their distinct functional properties. Comparison of site specific (15)N-T(1), (15)N-T(2), (15)N-{(1)H} nuclear Overhauser effect, reduced spectral density, and generalized order (S(2)) parameters indicates that backbone dynamics in the three holo-repressors are overall very similar with a few notable and significant exceptions for backbone atoms residing within the proteins' DNA-binding domain. We find that flexibility is highly restricted for amides in core α-helices (i.e., helices A-C and F), and a comparable "stiffening" is observed for residues in the DNA recognition helix (helix E) of the helix D-turn-helix E (HTH) DNA-binding domain of the three holo-repressors. Unexpectedly, amides located in helix D and in adjacent turn regions remain flexible. These data support the concept that residual flexibility in TrpR is essential for repressor function, DNA binding, and molecular recognition of target operators. Comparison of the (15)N NMR relaxation parameters of the holo-TrpRs with those of the apo-TrpRs indicates that the single-point amino acid substitutions, L75F and A77V, perturb the flexibility of backbone amides of TrpR in very different ways and are most pronounced in the apo forms of the three repressors. Finally, we present these findings in the context of other DNA-binding proteins and the role of protein flexibility in molecular recognition.
Collapse
Affiliation(s)
| | | | - Valérie Copié
- To whom correspondence should be addressed: Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman MT 59717. , Phone: (406) 994-7244, Fax: (406) 994-5407
| |
Collapse
|
22
|
Kirk KL, Wang W. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J Biol Chem 2011; 286:12813-9. [PMID: 21296873 PMCID: PMC3075628 DOI: 10.1074/jbc.r111.219634] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ion channel in that its gating is coupled to an intrinsic enzymatic activity (ATP hydrolysis). This enzymatic activity derives from the evolutionary origin of CFTR as an ATP-binding cassette transporter. CFTR gating is distinct from that of a typical ligand-gated channel because its ligand (ATP) is usually consumed during the gating cycle. However, recent findings indicate that CFTR gating exhibits allosteric properties that are common to conventional ligand-gated channels (e.g. unliganded openings and constitutive mutations). Here, we provide a unified view of CFTR gating that combines the allosterism of a ligand-gated channel with its unique enzymatic activity.
Collapse
Affiliation(s)
- Kevin L Kirk
- Department of Physiology and Biophysics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
23
|
Otten R, Villali J, Kern D, Mulder FAA. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). J Am Chem Soc 2010; 132:17004-14. [PMID: 21058670 PMCID: PMC2991065 DOI: 10.1021/ja107410x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Indexed: 11/29/2022]
Abstract
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 ± 0.5) × 10(3) per second (i.e., τ(ex) = 64.7 ± 1.9 μs). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by (1)H CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone (15)N relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins.
Collapse
|
24
|
Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 2010; 285:32325-35. [PMID: 20702407 PMCID: PMC2952233 DOI: 10.1074/jbc.m110.157164] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/29/2010] [Indexed: 11/17/2022] Open
Abstract
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.
Collapse
Affiliation(s)
- Christopher M. Barbieri
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Timothy R. Mack
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Graduate School of Biomedical Sciences, and
| | - Victoria L. Robinson
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Matthew T. Miller
- From the Center for Advanced Biotechnology and Medicine
- the Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Ann M. Stock
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| |
Collapse
|
25
|
Deupi X, Kobilka BK. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda) 2010; 25:293-303. [PMID: 20940434 PMCID: PMC3056154 DOI: 10.1152/physiol.00002.2010] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile signaling molecules that mediate the majority of physiological responses to hormones and neurotransmitters. Recent high-resolution structural insights into GPCR structure and dynamics are beginning to shed light on the molecular basis of this versatility. We use energy landscapes to conceptualize the link between structure and function.
Collapse
Affiliation(s)
- Xavier Deupi
- Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Catalunya, Spain
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
26
|
Bobay BG, Thompson RJ, Hoch JA, Cavanagh J. Long range dynamic effects of point-mutations trap a response regulator in an active conformation. FEBS Lett 2010; 584:4203-7. [PMID: 20828564 DOI: 10.1016/j.febslet.2010.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/25/2022]
Abstract
When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This 'conformational trapping' results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site.
Collapse
Affiliation(s)
- Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, NC 27695, USA
| | | | | | | |
Collapse
|
27
|
Vugmeyster L, Ostrovsky D, Li Y. Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant. JOURNAL OF BIOMOLECULAR NMR 2010; 47:155-162. [PMID: 20396930 DOI: 10.1007/s10858-010-9417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/29/2010] [Indexed: 05/29/2023]
Abstract
We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse C'/C'-C(alpha) CSA/dipolar and C'/C'-N CSA/dipolar cross-correlated rates, while (15)N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that C' relaxation reports on a different subset of fast motions compared to those probed at N-H bond vectors in the same peptide planes. (13)C' order parameters are on the average 0.08 lower than (15)N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon the S74E mutation can be seen from the (15)N order parameters but not from the (13)C order parameters. Internal correlation times at (13)C' sites are on the average an order of magnitude longer than those at (15)N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable average internal correlation times.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry and Environment and Natural Resources Institute, University of Alaska at Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.
| | | | | |
Collapse
|
28
|
Interactions between PTB RRMs induce slow motions and increase RNA binding affinity. J Mol Biol 2010; 397:260-77. [PMID: 20080103 DOI: 10.1016/j.jmb.2009.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/19/2009] [Accepted: 12/24/2009] [Indexed: 11/23/2022]
Abstract
Polypyrimidine tract binding protein (PTB) participates in a variety of functions in eukaryotic cells, including alternative splicing, mRNA stabilization, and internal ribosomal entry site-mediated translation initiation. Its mechanism of RNA recognition is determined in part by the novel geometry of its two C-terminal RNA recognition motifs (RRM3 and RRM4), which interact with each other to form a stable complex (PTB1:34). This complex itself is unusual among RRMs, suggesting that it performs a specific function for the protein. In order to understand the advantage it provides to PTB, the fundamental properties of PTB1:34 are examined here as a comparative study of the complex and its two constituent RRMs. Both RRM3 and RRM4 adopt folded structures that NMR data show to be similar to their structure in PRB1:34. The RNA binding properties of the domains differ dramatically. The affinity of each separate RRM for polypyrimidine tracts is far weaker than that of PTB1:34, and simply mixing the two RRMs does not create an equivalent binding platform. (15)N NMR relaxation experiments show that PTB1:34 has slow, microsecond motions throughout both RRMs including the interdomain linker. This is in contrast to the individual domains, RRM3 and RRM4, where only a few backbone amides are flexible on this time scale. The slow backbone dynamics of PTB1:34, induced by packing of RRM3 and RRM4, could be essential for high-affinity binding to a flexible polypyrimidine tract RNA and also provide entropic compensation for its own formation.
Collapse
|
29
|
Abstract
How do proteins efficiently and precisely shift from one conformation to another? Gardino et al. (2009) show that transient hydrogen bonds are critical to the conformational transition of the nitrogen regulatory protein NtrC between its native state and its active state.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
30
|
Gardino AK, Villali J, Kivenson A, Lei M, Liu CF, Steindel P, Eisenmesser EZ, Labeikovsky W, Wolf-Watz M, Clarkson MW, Kern D. Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 2010; 139:1109-18. [PMID: 20005804 DOI: 10.1016/j.cell.2009.11.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/03/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022]
Abstract
Phosphorylation is a common mechanism for activating proteins within signaling pathways. Yet, the molecular transitions between the inactive and active conformational states are poorly understood. Here we quantitatively characterize the free-energy landscape of activation of a signaling protein, nitrogen regulatory protein C (NtrC), by connecting functional protein dynamics of phosphorylation-dependent activation to protein folding and show that only a rarely populated, pre-existing active conformation is energetically stabilized by phosphorylation. Using nuclear magnetic resonance (NMR) dynamics, we test an atomic scale pathway for the complex conformational transition, inferred from molecular dynamics simulations (Lei et al., 2009). The data show that the loss of native stabilizing contacts during activation is compensated by non-native transient atomic interactions during the transition. The results unravel atomistic details of native-state protein energy landscapes by expanding the knowledge about ground states to transition landscapes.
Collapse
Affiliation(s)
- Alexandra K Gardino
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02452, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lei M, Velos J, Gardino A, Kivenson A, Karplus M, Kern D. Segmented transition pathway of the signaling protein nitrogen regulatory protein C. J Mol Biol 2009; 392:823-36. [PMID: 19576227 PMCID: PMC2765875 DOI: 10.1016/j.jmb.2009.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Recent advances in experimental methods provide increasing evidence that proteins sample the conformational substates that are important for function in the absence of their ligands. An example is the receiver domain of nitrogen regulatory protein C, a member of the phosphorylation-mediated signaling family of "two-component systems." The receiver domain of nitrogen regulatory protein C samples both inactive conformation and the active conformation before phosphorylation. Here we determine a possible pathway of interconversion between the active state and the inactive state by targeted molecular dynamics simulations and quasi-harmonic analysis; these methods are used because the experimental conversion rate is in the high microsecond range, longer than those that are easily accessible to atomistic molecular dynamics simulations. The calculated pathway is found to be composed of four consecutive stages described by different progress variables. The lowest quasi-harmonic principal components from unbiased molecular dynamics simulations on the active state correspond to the first stage, but not to the subsequent stages of the transition. The targeted molecular dynamics pathway suggests that several transient nonnative hydrogen bonds may facilitate the transition.
Collapse
Affiliation(s)
- Ming Lei
- Department of Biochemistry, Brandeis University, Howard Hughes Medical Institute, Waltham MA 02454
| | - Janice Velos
- Department of Biochemistry, Brandeis University, Howard Hughes Medical Institute, Waltham MA 02454
| | - Alexandra Gardino
- Department of Biochemistry, Brandeis University, Howard Hughes Medical Institute, Waltham MA 02454
| | - Alexsandr Kivenson
- Department of Biochemistry, Brandeis University, Howard Hughes Medical Institute, Waltham MA 02454
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
- Laboratoire de Chimie Biophysique, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Howard Hughes Medical Institute, Waltham MA 02454
| |
Collapse
|
32
|
Davies KM, Lowe ED, Vénien-Bryan C, Johnson LN. The HupR receiver domain crystal structure in its nonphospho and inhibitory phospho states. J Mol Biol 2009; 385:51-64. [PMID: 18977359 DOI: 10.1016/j.jmb.2008.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/30/2008] [Accepted: 10/08/2008] [Indexed: 11/23/2022]
Abstract
Hydrogen uptake protein regulator (HupR) is a member of the nitrogen regulatory protein C (NtrC) family of response regulators. These proteins activate transcription by RNA polymerase (RNAP) in response to a change in environment. This change is detected through the phosphorylation of their receiver domain as part of a two-component signalling pathway. HupR is an unusual member of this family as it activates transcription when unphosphorylated, and transcription is inhibited by phosphorylation. Also, HupR activates transcription through the more general sigma(70) transcription initiation factor, which does not require activation by ATPase, in contrast to other NtrC family members that utilise sigma(54). Hence, its mode of action is expected to be different from those of the more conventional NtrC family members. We have determined the structures of the unphosphorylated N-terminal receiver domain of wild-type HupR, the mutant HupR(D55E)(N) (which cannot be phosphorylated and down-regulated), and HupR in the presence of the phosphorylation mimic BeF(3)(-). The structures show a typical response regulator fold organised as a dimer whose interface involves alpha4-beta5-alpha5 elements. The interactions across the interface are slightly different between apo and phospho mimics, and these reflect a rearrangement of key conserved residues around the active site aspartate that have been implicated in domain activation in other receiver domain proteins. We also show that the wild-type HupR receiver domain forms a weak dimer in solution, which is strengthened in the presence of the phosphorylation mimic BeF(3)(-). The results indicate many features similar to those that have been observed in other systems, including NtrC (where phosphorylation is activatory), and indicate that recognition properties, which allow HupR to be active in the absence of phosphorylation, lie in the transmission of phosphorylation signals through the linker region to the other domains of the protein.
Collapse
Affiliation(s)
- Karen M Davies
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
33
|
Vugmeyster L, McKnight CJ. Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain. JOURNAL OF BIOMOLECULAR NMR 2009; 43:39-50. [PMID: 19030997 PMCID: PMC2796552 DOI: 10.1007/s10858-008-9289-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 10/20/2008] [Indexed: 05/27/2023]
Abstract
Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type 'headpiece' F-actin-binding domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame (15)N NMR relaxation, which is sensitive primarily to the ps-ns time scale, cross-correlated chemical shift modulation NMR relaxation detecting correlated mus-ms time scale motions of neighboring (13)C' and (15)N nuclei, and cross-correlated relaxation of two (15)N-(1)H dipole-dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Alaska at Anchorage, 99508, USA.
| | | |
Collapse
|
34
|
Abstract
Two-component signal transduction based on phosphotransfer from a histidine protein kinase to a response regulator protein is a prevalent strategy for coupling environmental stimuli to adaptive responses in bacteria. In both histidine kinases and response regulators, modular domains with conserved structures and biochemical activities adopt different conformational states in the presence of stimuli or upon phosphorylation, enabling a diverse array of regulatory mechanisms based on inhibitory and/or activating protein-protein interactions imparted by different domain arrangements. This review summarizes some of the recent structural work that has provided insight into the functioning of bacterial histidine kinases and response regulators. Particular emphasis is placed on identifying features that are expected to be conserved among different two-component proteins from those that are expected to differ, with the goal of defining the extent to which knowledge of previously characterized two-component proteins can be applied to newly discovered systems.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| |
Collapse
|
35
|
Slow motions in chicken villin headpiece subdomain probed by cross-correlated NMR relaxation of amide NH bonds in successive residues. Biophys J 2008; 95:5941-50. [PMID: 18820237 DOI: 10.1529/biophysj.108.134320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The villin headpiece subdomain (HP36) is a widely used system for protein-folding studies. Nuclear magnetic resonance cross-correlated relaxation rates arising from correlated fluctuations of two N-H(N) dipole-dipole interactions involving successive residues were measured at two temperatures at which HP36 is at least 99% folded. The experiment revealed the presence of motions slower than overall tumbling of the molecule. Based on the theoretical analysis of the spectral densities we show that the structural and dynamic contributions to the experimental cross-correlated relaxation rate can be separated under certain conditions. As a result, dynamic cross-correlated order parameters describing slow microsecond-to-millisecond motions of N-H bonds in neighboring residues can be introduced for any extent of correlations in the fluctuations of the two bond vectors. These dynamic cross-correlated order parameters have been extracted for HP36. The comparison of their values at two different temperatures indicates that when the temperature is raised, slow motions increase in amplitude. The increased amplitude of these fluctuations may reflect the presence of processes directly preceding the unfolding of the protein.
Collapse
|
36
|
Yao X, Rosen MK, Gardner KH. Estimation of the available free energy in a LOV2-J alpha photoswitch. Nat Chem Biol 2008; 4:491-7. [PMID: 18604202 PMCID: PMC2597337 DOI: 10.1038/nchembio.99] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/13/2008] [Indexed: 02/07/2023]
Abstract
Protein photosensors are versatile tools for studying ligand-regulated allostery and signaling. Fundamental to these processes is the amount of energy that can be provided by a photosensor to control downstream signaling events. Such regulation is exemplified by the phototropins--plant serine/threonine kinases that are activated by blue light via conserved LOV (light, oxygen and voltage) domains. The core photosensor of oat phototropin 1 is a LOV domain that interacts in a light-dependent fashion with an adjacent alpha-helix (J alpha) to control kinase activity. We used solution NMR measurements to quantify the free energy of the LOV domain-J alpha-helix binding equilibrium in the dark and lit states. These data indicate that light shifts this equilibrium by approximately 3.8 kcal mol(-1), thus quantifying the energy available through LOV-J alpha for light-driven allosteric regulation. This study provides insight into the energetics of light sensing by phototropins and benchmark values for engineering photoswitchable systems based on the LOV-J alpha interaction.
Collapse
Affiliation(s)
- Xiaolan Yao
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8816
| | - Michael K. Rosen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8816
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8816
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8816
| | - Kevin H. Gardner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8816
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8816
| |
Collapse
|
37
|
Szurmant H, Bobay BG, White RA, Sullivan DM, Thompson RJ, Hwa T, Hoch JA, Cavanagh J. Co-evolving motions at protein-protein interfaces of two-component signaling systems identified by covariance analysis. Biochemistry 2008; 47:7782-4. [PMID: 18588317 PMCID: PMC2830073 DOI: 10.1021/bi8009604] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Short-lived protein interactions determine signal transduction specificity among genetically amplified, structurally identical two-component signaling systems. Interacting protein pairs evolve recognition precision by varying residues at specific positions in the interaction surface consistent with constraints of charge, size, and chemical properties. Such positions can be detected by covariance analyses of two-component protein databases. Here, covariance is shown to identify a cluster of co-evolving dynamic residues in two-component proteins. NMR dynamics and structural studies of both wild-type and mutant proteins in this cluster suggest that motions serve to precisely arrange the site of phosphoryl transfer within the complex.
Collapse
Affiliation(s)
- Hendrik Szurmant
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Donaldson LW. The NMR structure of the Staphylococcus aureus response regulator VraR DNA binding domain reveals a dynamic relationship between it and its associated receiver domain. Biochemistry 2008; 47:3379-88. [PMID: 18293926 DOI: 10.1021/bi701844q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Staphylococcus aureus, a two-component signaling system consisting of the histidine kinase VraS and the response regulator VraR stimulates gene expression in response to antibiotics that inhibit cell wall formation. With respect to understanding the mechanism of the VraSR response and precise interaction of VraR at promoter sites, the structure of the VraR DNA binding domain (DBD) was determined using NMR methods. The DBD demonstrates a four-helix configuration that is shared with the NarL/FixJ family of response regulators and is monomeric in solution. Unobservable amide resonances in VraR NMR spectra coincided with a set of DNA backbone contact sites predicted from a model of a VraR-DNA complex. This observation suggests that a degree of conformational sampling is required to achieve a high-affinity interaction with DNA. On the basis of chemical shift differences and line broadening, an amino-terminal 3 10 helix and a portion of helix H4 identify a continuous surface that may link the DBD to the receiver domain. The full-length VraR protein thermally denatured with a single transition, suggesting that the receiver domain and DBD were integrated and not simply tethered. Of note, the DBD alone denatured at a temperature that was 21 degrees C higher than that of the full-length protein. Thus, the DBD appears to be thermodynamically and structurally sensitive to state of the receiver domain.
Collapse
Affiliation(s)
- Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|