1
|
Dupont C, Schäffers OJ, Tan BF, Merzouk S, Bindels EM, Zwijsen A, Huylebroeck D, Gribnau J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. SCIENCE ADVANCES 2023; 9:eadd2913. [PMID: 36652512 PMCID: PMC9848479 DOI: 10.1126/sciadv.add2913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier J. M. Schäffers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Beatrice F. Tan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Kuno T, Tachibana M, Fujimine-Sato A, Fue M, Higashi K, Takahashi A, Kurosawa H, Nishio K, Shiga N, Watanabe Z, Yaegashi N. A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model. Int J Mol Sci 2019; 20:ijms20225650. [PMID: 31726651 PMCID: PMC6888687 DOI: 10.3390/ijms20225650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
We have developed an automated device for the measurement of oxygen consumption rate (OCR) called Chip-sensing Embryo Respiratory Measurement system (CERMs). To verify the safety and the significance of the OCR measurement by CERMs, we conducted comprehensive tests using a mouse model prior to clinical trials in a human in vitro fertilization (IVF) program. Embryo transfer revealed that the OCR measured by CERMs did not compromise the full-term development of mice or their future fertility, and was positively correlated with adenosine triphosphate (ATP) production and the mitochondrial membrane potential (ΔΨm), thereby indirectly reflecting mitochondrial oxidative phosphorylation (OXPHOS) activity. We demonstrated that the OCR is independent of embryo morphology (the size) and number of mitochondria (mitochondrial DNA copy number). The OCR correlated with the total cell numbers, whereas the inner cell mass (ICM) cell numbers and the fetal developmental rate were not. Thus, the OCR may serve as an indicator of the numbers of trophectoderm (TE) cells, rather than number or quality of ICM cells. However, implantation ability was neither correlated with the OCR, nor the embryo size in this model. This can probably be attributed to the limitation that chimeric embryos contain non-physiological high TE cells counts that are beneficial for implantation. CERMs can be safely employed in clinical IVF owing to it being a safe, highly effective, non-invasive, accurate, and quantitative tool for OCR measurement. Utilization of CERMs for clinical testing of human embryos would provide further insights into the nature of oxidative metabolism and embryonic viability.
Collapse
Affiliation(s)
- Takashi Kuno
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Masahito Tachibana
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
- Correspondence: ; Tel.: +81-22-717-7251; Fax: +81-22-717-7258
| | - Ayako Fujimine-Sato
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Misaki Fue
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Higashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Aiko Takahashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Hiroki Kurosawa
- Department of Obstetrics and Gynecology, Tohoku Medical and pharmaceutical university, Wakabayashi hospital, Sendai 984-8560, Japan;
| | - Keisuke Nishio
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Naomi Shiga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (T.K.); (A.F.-S.); (M.F.); (K.H.); (A.T.); (N.S.); (Z.W.); (N.Y.)
| |
Collapse
|
3
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Sumiyama K, Matsumoto N, Garçon-Yoshida J, Ukai H, Ueda HR, Tanaka Y. Easy and efficient production of completely embryonic-stem-cell-derived mice using a micro-aggregation device. PLoS One 2018; 13:e0203056. [PMID: 30231034 PMCID: PMC6145547 DOI: 10.1371/journal.pone.0203056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
There is an increasing demand for genetically modified mice produced without crossing, for rapid phenotypic screening studies at the organismal level. For this purpose, generation of completely embryonic-stem-cell (ESC)-derived chimeric mice without crossing is now possible using a microinjection or aggregation method with 3i culture medium. However, the microinjection of ESCs into blastocyst, morula, or 8-cell-stage embryos requires a highly skilled operator. The aggregation method is an easier alternative, but the conventional aggregation protocol still requires special skills. To make the aggregation method easier and more precise, here we developed a micro-aggregation device. Unlike conventional 3-dimensional culture, which uses hanging-drop devices for aggregation, we fabricated a polystyrene funnel-like structure to smoothly drop ESCs into a small area (300-μm in diameter) at the bottom of the device. The bottom area was designed so that the surface tension of the liquid-air interface prevents the cells from falling. After aggregation, the cells can be recovered by simply exerting pressure on the liquid from the top. The microdevice can be set upon a regular 96-well plate, so it is compatible with multichannel pipette use or machine operation. Using the microdevice, we successfully obtained chimeric blastocysts, which when transplanted resulted in completely ESC-derived chimeric mice with high efficiency. By changing the number of ESCs in the aggregate, we found that the optimum number of co-cultured ESCs was around 90~120 per embryo. Under this condition, the efficiency of generating completely ESC-derived mice was the same or better than that of the injection method. These results indicated that our microdevice can be used to produce completely ESC-derived chimeric mice easily and with a high success rate, and thus represents a promising alternative to the conventional microinjection or aggregation method, especially for high-throughput, parallel experimental applications.
Collapse
Affiliation(s)
- Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka, Japan
- * E-mail: (KS); (YT)
| | - Naomi Matsumoto
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka, Japan
| | - Junko Garçon-Yoshida
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka, Japan
- Department of Systems Pharmacology, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka, Japan
- * E-mail: (KS); (YT)
| |
Collapse
|
5
|
Abstract
The system-level identification and analysis of molecular networks in mammals can be accelerated by 'next-generation' genetics, defined as genetics that does not require crossing of multiple generations of animals in order to achieve the desired genetic makeup. We have established a highly efficient procedure for producing knock-in (KI) mice within a single generation, by optimizing the genome-editing protocol for KI embryonic stem (ES) cells and the protocol for the generation of fully ES-cell-derived mice (ES mice). Using this protocol, the production of chimeric mice is eliminated, and, therefore, there is no requirement for the crossing of chimeric mice to produce mice that carry the KI gene in all cells of the body. Our procedure thus shortens the time required to produce KI ES mice from about a year to ∼3 months. Various kinds of KI ES mice can be produced with a minimized amount of work, facilitating the elucidation of organism-level phenomena using a systems biology approach. In this report, we describe the basic technologies and protocols for this procedure, and discuss the current challenges for next-generation mammalian genetics in organism-level systems biology studies.
Collapse
|
6
|
Lee KH. Generating chimeric mice from embryonic stem cells via vial coculturing or hypertonic microinjection. Methods Mol Biol 2014; 1194:77-111. [PMID: 25064099 DOI: 10.1007/978-1-4939-1215-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The generation of a fertile embryonic stem cell (ESC)-derived or F0 (100 % coat color chimerism) mice is the final criterion in proving that the ESC is truly pluripotent. Many methods have been developed to produce chimeric mice. To date, the most popular methods for generating chimeric embryos is well sandwich aggregation between zona pellucida (ZP) removed (denuded) 2.5-day post-coitum (dpc) embryos and ESC clumps, or direct microinjection of ESCs into the cavity (blastocoel) of 3.5-dpc blastocysts. However, due to systemic limitations and the disadvantages of conventional microinjection, aggregation, and coculturing, two novel methods (vial coculturing and hypertonic microinjection) were developed in recent years at my laboratory.Coculturing 2.5-dpc denuded embryos with ESCs in 1.7-mL vials for ~3 h generates chimeras that have significantly high levels of chimerism (including 100 % coat color chimerism) and germline transmission. This method has significantly fewer instrumental and technological limitations than existing methods, and is an efficient, simple, inexpensive, and reproducible method for "mass production" of chimeric embryos. For laboratories without a microinjection system, this is the method of choice for generating chimeric embryos. Microinjecting ESCs into a subzonal space of 2.5-dpc embryos can generate germline-transmitted chimeras including 100 % coat color chimerism. However, this method is adopted rarely due to the very small and tight space between ZP and blastomeres. Using a laser pulse or Piezo-driven instrument/device to help introduce ESCs into the subzonal space of 2.5-dpc embryos demonstrates the superior efficiency in generating ESC-derived (F0) chimeras. Unfortunately, due to the need for an expensive instrument/device and extra fine skill, not many studies have used either method. Recently, ESCs injected into the large subzonal space of 2.5-dpc embryos in an injection medium containing 0.2-0.3 M sucrose very efficiently generated viable, healthy, and fertile chimeric mice with 100 % coat color chimerism.Both vial coculture and hypertonic microinjection methods are useful and effective alternatives for producing germline chimeric or F0 mice efficiently and reliably. Furthermore, both novel methods are also good for induced pluripotent stem cells (iPSCs) to generate chimeric embryos.
Collapse
Affiliation(s)
- Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, 23, Chunan (35053), Miaoli, Taiwan,
| |
Collapse
|
7
|
Malan D, Fleischmann BK. Functional expression and modulation of the L-type Ca2+ current in embryonic heart cells. Pediatr Cardiol 2012; 33:907-15. [PMID: 22639002 DOI: 10.1007/s00246-012-0360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/28/2022]
Abstract
Voltage-dependent L-type Ca2+ channels (VDCCs) are critically involved in excitation contraction coupling and regulation of the force of contraction. An important mechanism contributing to the adaptation of heart function is modulation of the L-type Ca2+ current (I(Ca-L)) by hormones of the autonomous nervous system. The signaling pathways underlying this regulation in the adult heart are well understood. However, VDCC expression and its regulation in the embryonic heart are less understood. This report therefore provides a short overview of the current knowledge on this topic using embryonic stem cells and the mouse as model systems.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | | |
Collapse
|
8
|
Belizário JE, Akamini P, Wolf P, Strauss B, Xavier-Neto J. New routes for transgenesis of the mouse. J Appl Genet 2012; 53:295-315. [PMID: 22569888 DOI: 10.1007/s13353-012-0096-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/01/2012] [Accepted: 04/05/2012] [Indexed: 12/19/2022]
Abstract
Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2010; 138:65-74. [PMID: 21098558 DOI: 10.1242/dev.058727] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes. Mafb (Kreisler, Krml1, valentino), a basic domain leucine zipper transcription factor, is required for development of r5 and r6 and is the first gene to show restricted expression within these two segments. The homeodomain protein vHnf1 (Hnf1b) directly activates Mafb expression. vHnf1 and Mafb share an anterior expression limit at the r4/r5 boundary but vHnf1 expression extends beyond the posterior limit of Mafb and, therefore, cannot establish the posterior Mafb expression boundary. Upon identifying regulatory sequences responsible for posterior Mafb repression, we have used in situ hybridization, immunofluorescence and chromatin immunoprecipitation (ChIP) analyses to determine that Cdx1 directly inhibits early Mafb expression in the neural tube posterior of the r6/r7 boundary, which is the anteriormost boundary of Cdx1 expression in the hindbrain. Cdx1 dependent repression of Mafb is transient. After the 10-somite stage, another mechanism acts to restrict Mafb expression in its normal r5 and r6 domain, even in the absence of Cdx1. Our findings identify Mafb as one of the earliest direct targets of Cdx1 and show that Cdx1 plays a direct role in early hindbrain patterning. Thus, just as Cdx2 and Cdx4 govern the trunk-to-tail transition, Cdx1 may regulate the hindbrain-to-spinal cord transition.
Collapse
Affiliation(s)
- Kendra Sturgeon
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Nuclear reprogramming of somatic cells with ectopic stemness factors to bioengineer pluripotent autologous stem cells signals a new era in regenerative medicine. The study of developmental biology has provided a roadmap for cardiac differentiation from embryonic tissue formation to adult heart muscle rejuvenation. Understanding the molecular mechanisms of stem-cell-derived cardiogenesis enables the reproducible generation, isolation, and monitoring of progenitors that have the capacity to recapitulate embryogenesis and differentiate into mature cardiac tissue. With the advent of induced pluripotent stem (iPS) cell technology, patient-specific stem cells provide a reference point to systematically decipher cardiogenic differentiation through discrete stages of development. Interrogation of iPS cells and their progeny from selected cohorts of patients is an innovative approach towards uncovering the molecular mechanisms of disease. Thus, the principles of cardiogenesis can now be applied to regenerative medicine in order to optimize personalized therapeutics, diagnostics, and discovery-based science for the development of novel clinical applications.
Collapse
|