1
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
2
|
DiStasio A, Paulding D, Chaturvedi P, Stottmann RW. Nubp2 is required for cranial neural crest survival in the mouse. Dev Biol 2019; 458:189-199. [PMID: 31733190 DOI: 10.1016/j.ydbio.2019.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022]
Abstract
The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2null). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.
Collapse
Affiliation(s)
| | | | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Tissue-specific FAH deficiency alters sleep-wake patterns and results in chronic tyrosinemia in mice. Proc Natl Acad Sci U S A 2019; 116:22229-22236. [PMID: 31611405 DOI: 10.1073/pnas.1904485116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) is the last enzyme in tyrosine catabolism, and mutations in the FAH gene are associated with hereditary tyrosinemia type I (HT1 or TYRSN1) in humans. In a behavioral screen of N-ethyl-N-nitrosourea mutagenized mice we identified a mutant line which we named "swingshift" (swst, MGI:3611216) with a nonsynonymous point mutation (N68S) in Fah that caused age-dependent disruption of sleep-wake patterns. Mice homozygous for the mutation had an earlier onset of activity (several hours before lights off) and a reduction in total activity and body weight when compared with wild-type or heterozygous mice. Despite abnormal behavioral entrainment to light-dark cycles, there were no differences in the period or phase of the central clock in mutant mice, indicating a defect downstream of the suprachiasmatic nucleus. Interestingly, these behavioral phenotypes became milder as the mice grew older and were completely rescued by the administration of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione], an inhibitor of 4-hydroxyphenylpyruvate dioxygenase, which is upstream of FAH. Mechanistically, the swst mutation had no effect on the enzymatic activity of FAH, but rather promoted the degradation of the mutant protein. This led to reduced FAH protein levels and enzymatic activity in the liver and kidney (but not the brain or fibroblasts) of homozygous mice. In addition, plasma tyrosine-but not methionine, phenylalanine, or succinylacetone-increased in homozygous mice, suggesting that swst mutants provide a model of mild, chronic HT1.
Collapse
|
4
|
Yuan J, Tickner J, Mullin BH, Zhao J, Zeng Z, Morahan G, Xu J. Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human. Front Genet 2019; 10:288. [PMID: 31001327 PMCID: PMC6455049 DOI: 10.3389/fgene.2019.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a complex condition with contributions from, and interactions between, multiple genetic loci and environmental factors. This review summarizes key advances in the application of genetic approaches for the identification of osteoporosis susceptibility genes. Genome-wide linkage analysis (GWLA) is the classical approach for identification of genes that cause monogenic diseases; however, it has shown limited success for complex diseases like osteoporosis. In contrast, genome-wide association studies (GWAS) have successfully identified over 200 osteoporosis susceptibility loci with genome-wide significance, and have provided most of the candidate genes identified to date. Phenome-wide association studies (PheWAS) apply a phenotype-to-genotype approach which can be used to complement GWAS. PheWAS is capable of characterizing the association between osteoporosis and uncommon and rare genetic variants. Another alternative approach, whole genome sequencing (WGS), will enable the discovery of uncommon and rare genetic variants in osteoporosis. Meta-analysis with increasing statistical power can offer greater confidence in gene searching through the analysis of combined results across genetic studies. Recently, new approaches to gene discovery include animal phenotype based models such as the Collaborative Cross and ENU mutagenesis. Site-directed mutagenesis and genome editing tools such as CRISPR/Cas9, TALENs and ZNFs have been used in functional analysis of candidate genes in vitro and in vivo. These resources are revolutionizing the identification of osteoporosis susceptibility genes through the use of genetically defined inbred mouse libraries, which are screened for bone phenotypes that are then correlated with known genetic variation. Identification of osteoporosis-related susceptibility genes by genetic approaches enables further characterization of gene function in animal models, with the ultimate aim being the identification of novel therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyu Zeng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Albrecht NE, Alevy J, Jiang D, Burger CA, Liu BI, Li F, Wang J, Kim SY, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gaspero A, Justice MJ, Westenskow PD, Yamamoto S, Seavitt JR, Beaudet AL, Dickinson ME, Samuel MA. Rapid and Integrative Discovery of Retina Regulatory Molecules. Cell Rep 2018; 24:2506-2519. [PMID: 30157441 PMCID: PMC6170014 DOI: 10.1016/j.celrep.2018.07.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Retinal function relies on precisely organized neurons and synapses and a properly patterned vasculature to support them. Alterations in these features can result in vision loss. However, our understanding of retinal organization pathways remains incomplete because of a lack of methods to rapidly identify neuron and vasculature regulators in mammals. Here we developed a pipeline for the identification of neural and synaptic integrity genes by high-throughput retinal screening (INSiGHT) that analyzes candidate expression, vascular patterning, cellular organization, and synaptic arrangement. Using this system, we examined 102 mutant mouse lines and identified 16 unique retinal regulatory genes. Fifteen of these candidates are identified as novel retina regulators, and many (9 of 16) are associated with human neural diseases. These results expand the genetic landscape involved in retinal circuit organization and provide a road map for continued discovery of mammalian retinal regulators and disease-causing alleles.
Collapse
Affiliation(s)
- Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian I Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fenge Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julia Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seon-Young Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Uchechukwu Udensi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ritu Bohat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angelina Gaspero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J Justice
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter D Westenskow
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Strassman A, Schnütgen F, Dai Q, Jones JC, Gomez AC, Pitstick L, Holton NE, Moskal R, Leslie ER, von Melchner H, Beier DR, Bjork BC. Generation of a multipurpose Prdm16 mouse allele by targeted gene trapping. Dis Model Mech 2017; 10:909-922. [PMID: 28424158 PMCID: PMC5536910 DOI: 10.1242/dmm.029561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Gene trap mutagenesis is a powerful tool to create loss-of-function mutations in mice and other model organisms. Modifications of traditional gene trap cassettes, including addition of conditional features in the form of Flip-excision (FlEx) arrays to enable directional gene trap cassette inversions by Cre and Flpe site-specific recombinases, greatly enhanced their experimental potential. By taking advantage of these conditional gene trap cassettes, we developed a generic strategy for generating conditional mutations and validated this strategy in mice carrying a multipurpose allele of the Prdm16 transcription factor gene. We demonstrate that the gene trap insertion creates a null mutation replicating the Pierre Robin sequence-type cleft palate phenotype of other Prdm16 mutant mice. Consecutive breeding to Flpe and Emx1IREScre deleter mice spatially restricted Prdm16 loss to regions of the forebrain expressing the homeobox gene Emx1, demonstrating the utility of the technology for the analysis of tissue-specific gene functions. Summary: Described is the first targeting of an invertible gene trap to generate a conditional Prdm16 mouse allele and its use to assess phenotypic consequences of Prdm16 loss during craniofacial and brain development.
Collapse
Affiliation(s)
- Alexander Strassman
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Frank Schnütgen
- Department for Molecular Hematology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Qi Dai
- Department of Molecular Biosciences, The Wenner-Gren Institute, The University of Stockholm, SE-106 91 Stockholm, Sweden
| | - Jennifer C Jones
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Angela C Gomez
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Lenore Pitstick
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Nathan E Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Russell Moskal
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Erin R Leslie
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Harald von Melchner
- Department for Molecular Hematology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - David R Beier
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Bryan C Bjork
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
7
|
Gallego-Llamas J, Timms AE, Pitstick R, Peters J, Carlson GA, Beier DR. Improvement of ENU Mutagenesis Efficiency Using Serial Injection and Mismatch Repair Deficiency Mice. PLoS One 2016; 11:e0159377. [PMID: 27441645 PMCID: PMC4956170 DOI: 10.1371/journal.pone.0159377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/03/2016] [Indexed: 12/05/2022] Open
Abstract
ENU mutagenesis is a powerful method for generating novel lines of mice that are informative with respect to both fundamental biological processes and human disease. Rapid developments in genomic technology have made the task of identifying causal mutations by positional cloning remarkably efficient. One limitation of this approach remains the mutation frequency achievable using standard treatment protocols, which currently generate approximately 1–2 sequence changes per megabase when optimized. In this study we used two strategies to attempt to increase the number of mutations induced by ENU treatment. One approach employed mice carrying a mutation in the DNA repair enzyme Msh6. The second strategy involved injection of ENU to successive generations of mice. To evaluate the number of ENU-induced mutations, single mice or pooled samples were analyzed using whole exome sequencing. The results showed that there is considerable variability in the induced mutation frequency using these approaches, but an overall increase in ENU-induced variants from one generation to another was observed. The analysis of the mice deficient for Msh6 also showed an increase in the ENU-induced variants compared to the wild-type ENU-treated mice. However, in both cases the increase in ENU-induced mutation frequency was modest.
Collapse
Affiliation(s)
- Jabier Gallego-Llamas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Andrew E. Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - Janet Peters
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - George A. Carlson
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
8
|
A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects. PLoS Genet 2016; 12:e1005785. [PMID: 26859289 PMCID: PMC4747337 DOI: 10.1371/journal.pgen.1005785] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.
Collapse
|
9
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Menke C, Cionni M, Siggers T, Bulyk ML, Beier DR, Stottmann RW. Grhl2 is required in nonneural tissues for neural progenitor survival and forebrain development. Genesis 2015; 53:573-582. [PMID: 26177923 PMCID: PMC4713386 DOI: 10.1002/dvg.22875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022]
Abstract
Grainyhead-like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft-face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573-582, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chelsea Menke
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Megan Cionni
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Trevor Siggers
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biology, Boston University, Boston, MA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - David R. Beier
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Hospital, Seattle, WA
| | - Rolf W. Stottmann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
11
|
Cionni M, Menke C, Stottmann RW. The mouse MC13 mutant is a novel ENU mutation in collagen type II, alpha 1. PLoS One 2014; 9:e116104. [PMID: 25541700 PMCID: PMC4277458 DOI: 10.1371/journal.pone.0116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A combination of mapping the mutation with a high-density SNP panel and a candidate gene approach has identified a mutation in collagen type II, alpha I (Col2a1). Col2a1 has previously been studied in the mouse and our mutant phenotype closely resembles mutations made in the Col2a1 locus.
Collapse
Affiliation(s)
- Megan Cionni
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
| | - Chelsea Menke
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
| | - Rolf W. Stottmann
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
- * E-mail:
| |
Collapse
|
12
|
Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang B, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep 2014; 9:674-87. [PMID: 25373905 DOI: 10.1016/j.celrep.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.
Collapse
Affiliation(s)
- Karen Handschuh
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew Koss
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Maurizio Risolino
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michelle A Sahai
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Denis Bénazet
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiao P Peng
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK; Department of Othopaedic Surgery, UCSF, San Francisco, CA 94110, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA; Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Baolin Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Roberta Rivi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Vaccari
- IFOM-FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
13
|
Ha S, Stottmann RW, Furley AJ, Beier DR. A forward genetic screen in mice identifies mutants with abnormal cortical patterning. ACTA ACUST UNITED AC 2013; 25:167-79. [PMID: 23968836 DOI: 10.1093/cercor/bht209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Formation of a 6-layered cortical plate and axon tract patterning are key features of cerebral cortex development. Abnormalities of these processes may be the underlying cause for a range of functional disabilities seen in human neurodevelopmental disorders. To identify mouse mutants with defects in cortical lamination or corticofugal axon guidance, N-ethyl-N-nitrosourea (ENU) mutagenesis was performed using mice expressing LacZ reporter genes in layers II/III and V of the cortex (Rgs4-lacZ) or in corticofugal axons (TAG1-tau-lacZ). Four lines with abnormal cortical lamination have been identified. One of these was a splice site mutation in reelin (Reln) that results in a premature stop codon and the truncation of the C-terminal region (CTR) domain of reelin. Interestingly, this novel allele of Reln did not display cerebellar malformation or ataxia, and this is the first report of a Reln mutant without a cerebellar defect. Four lines with abnormal cortical axon development were also identified, one of which was found by whole-genome resequencing to carry a mutation in Lrp2. These findings demonstrated that the application of ENU mutagenesis to mice carrying transgenic reporters marking cortical anatomy is a sensitive and specific method to identify mutations that disrupt patterning of the developing brain.
Collapse
Affiliation(s)
- Seungshin Ha
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Rolf W Stottmann
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and
| | - Andrew J Furley
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
14
|
Coles GL, Ackerman KG. Kif7 is required for the patterning and differentiation of the diaphragm in a model of syndromic congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2013; 110:E1898-905. [PMID: 23650387 PMCID: PMC3666741 DOI: 10.1073/pnas.1222797110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that results in a high degree of neonatal morbidity and mortality, but its pathological mechanisms are largely unknown. Therefore, we performed a forward genetic screen in mice to identify unique genes, models, and mechanisms of abnormal diaphragm development. We identified a mutant allele of kinesin family member 7 (Kif7), the disorganized diaphragm (dd). Embryos homozygous for the dd allele possess communicating diaphragmatic hernias, central tendon patterning defects, and increased cell proliferation with diaphragmatic tissue hyperplasia. Because the patterning of the central tendon is undescribed, we analyzed the expression of genes regulating tendonogenesis in dd/dd mutant embryos, and we determined that retinoic acid (RA) signaling was misregulautted. To further investigate the role of Kif7 and RA signaling in the development of the embryonic diaphragm, we established primary mesenchymal cultures of WT embryonic day 13.5 diaphragmatic cells. We determined that RA signaling is necessary for the expression of tendon markers as well as the expression of other CDH-associated genes. Knockdown of Kif7, and retinoic acid receptors alpha (Rara), beta (Rarb), and gamma (Rarg) indicated that RA signaling is dependent on these genes to promote tendonogenesis within the embryonic diaphragm. Taken together, our results provide evidence for a model in which inhibition of RA receptor signaling promotes CDH pathogenesis through a complex gene network.
Collapse
Affiliation(s)
| | - Kate G. Ackerman
- Department of Biomedical Genetics and
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
15
|
Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabě de Angelis M, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 2012; 23:600-10. [PMID: 22961258 PMCID: PMC3463797 DOI: 10.1007/s00335-012-9418-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
Collapse
Affiliation(s)
- Abdel Ayadi
- Institut Clinique de la Souris, PHENOMIN, IGBMC/ICS-MCI, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shi ML, Xu P, Yin XS, Yang WW, Gu ME, Yu LP, Liu GJ, Wu BJ. [Phenotype analysis and mutant gene location of ventral yellow mouse (VY(Slac))]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:290-7. [PMID: 22653857 DOI: 10.3724/sp.j.1141.2012.03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ventri-yellow pigmentation mouse (temporarily named VY(Slac)) arose spontaneously in the C57BL/6J inbred mouse strain, found and bred by Shanghai SLAC Laboratory Animal Co., Ltd. VY(Slac) presented a special phenotype marked by yellow coat on the ventral surface of neck and trunk that was without melanin deposition but maintained a normal structure. The number of melanocytes in epidermis and melanin in hair follicle of the abdominal skin of the mutant mouse were less than that of their background strain, while there was no significant difference between the dorsal skins of the two strains. This mutant phenotype was inherited as single-gene dominant inheritance, confirmed by genetic experiment, and there was no significant difference between VY(Slac) and B(6) for other biological parameters such as weight, anatomic and histological structures of major organs and blood physiology. When the linkage relationship between the genomic DNA samples of F(2) 48 mice (VY(Slac)D(2)F(1)×D(2)) and mutant phenotype were evaluated, the mutant gene was confirmed on chromosome 2 near D2Mit229. New microsatellite and SNP markers were selected to amplify genomic DNA samples of 196 F(2) mice and the mutant gene was narrowed down to 5.3 Mb region between rs13476833 and rs27310903 on chromosome 2. The preliminary results of our phenotype analysis and gene location provides a solid basis for further identification of this mutant gene.
Collapse
Affiliation(s)
- Mei-Lian Shi
- Shanghai SLAC Laboratory Animal Co., Ltd., Shanghai,China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Justice MJ, Siracusa LD, Stewart AF. Technical approaches for mouse models of human disease. Dis Model Mech 2011; 4:305-10. [PMID: 21558063 PMCID: PMC3097452 DOI: 10.1242/dmm.000901] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.
Collapse
Affiliation(s)
- Monica J Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Focusing forward genetics: a tripartite ENU screen for neurodevelopmental mutations in the mouse. Genetics 2011; 188:615-24. [PMID: 21515572 DOI: 10.1534/genetics.111.126862] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The control of growth, patterning, and differentiation of the mammalian forebrain has a large genetic component, and many human disease loci associated with cortical malformations have been identified. To further understand the genes involved in controlling neural development, we have performed a forward genetic screen in the mouse (Mus musculus) using ENU mutagenesis. We report the results from our ENU screen in which we biased our ascertainment toward mutations affecting neurodevelopment. Our screen had three components: a careful morphological and histological examination of forebrain structure, the inclusion of a retinoic acid response element-lacZ reporter transgene to highlight patterning of the brain, and the use of a genetically sensitizing locus, Lis1/Pafah1b1, to predispose animals to neurodevelopmental defects. We recovered and mapped eight monogenic mutations, seven of which affect neurodevelopment. We have evidence for a causal gene in four of the eight mutations. We describe in detail two of these: a mutation in the planar cell polarity gene scribbled homolog (Drosophila) (Scrib) and a mutation in caspase-3 (Casp3). We find that refining ENU mutagenesis in these ways is an efficient experimental approach and that investigation of the developing mammalian nervous system using forward genetic experiments is highly productive.
Collapse
|