1
|
Zhou J, Yang L, Chen X, Zhou M, Shi W, Deng S, Luo Z. Genome-Wide Identification and Characterization of the NF-YA Gene Family and Its Expression in Response to Different Nitrogen Forms in Populus × canescens. Int J Mol Sci 2022; 23:ijms231911217. [PMID: 36232523 PMCID: PMC9570100 DOI: 10.3390/ijms231911217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The NF-YA gene family is a class of conserved transcription factors that play important roles in plant growth and development and the response to abiotic stress. Poplar is a model organism for studying the rapid growth of woody plants that need to consume many nutrients. However, studies on the response of the NF-YA gene family to nitrogen in woody plants are limited. In this study, we conducted a systematic and comprehensive bioinformatic analysis of the NF-YA gene family based on Populus × canescens genomic data. A total of 13 PcNF-YA genes were identified and mapped to 6 chromosomes. According to the amino acid sequence characteristics and genetic structure of the NF-YA domains, the PcNF-YAs were divided into five clades. Gene duplication analysis revealed five pairs of replicated fragments and one pair of tandem duplicates in 13 PcNF-YA genes. The PcNF-YA gene promoter region is rich in different cis-acting regulatory elements, among which MYB and MYC elements are the most abundant. Among the 13 PcNF-YA genes, 9 contained binding sites for P. × canescens miR169s. In addition, RT-qPCR data from the roots, wood, leaves and bark of P. × canescens showed different spatial expression profiles of PcNF-YA genes. Transcriptome data and RT-qPCR analysis showed that the expression of PcNF-YA genes was altered by treatment with different nitrogen forms. Furthermore, the functions of PcNF-YA genes in transgenic poplar were analyzed, and the potential roles of PcNF-YA genes in the response of poplar roots to different nitrogen forms were revealed, indicating that these genes regulate root growth and development.
Collapse
Affiliation(s)
- Jing Zhou
- Correspondence: ; Tel.: +86-10-62889368
| | | | | | | | | | | | | |
Collapse
|
2
|
Dai JH, Hu AQ, Zhang JS, Liao WH, Ma HY, Wu JZ, Yu Y, Cao SJ. NF-YB-Mediated Active Responses of Plant Growth under Salt and Temperature Stress in Eucalyptus grandis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1107. [PMID: 34072675 PMCID: PMC8227622 DOI: 10.3390/plants10061107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor NF-YB (nuclear factor-YB) family is a subfamily of the nuclear factor Y (NF-Y), which plays an important role in regulating plant growth, development and participates in various stress responses. Although the NF-Y family has been studied in many species, it is still obscure in Eucalyptus grandis. In this study, 23 EgNF-YB genes in eucalyptus were identified and unevenly distributed on 11 chromosomes. Phylogenetic analysis showed the EgNF-YB genes were divided into two clades, LEC-1 type and non-LEC1 type. The evolution of distinct clades was relatively conservative, the gene structures were analogous, and the differences of genetic structures among clades were small. The expression profiles showed that the distinct EgNF-YB genes were highly expressed in diverse tissues, and EgNF-YB4/6/13/19/23 functioned in response to salinity, heat and cold stresses. Our study characterized the phylogenetic relationship, gene structures and expression patterns of EgNF-YB gene family and investigated their potential roles in abiotic stress responses, which provides solid foundations for further functional analysis of NF-YB genes in eucalyptus.
Collapse
Affiliation(s)
- Jia-Hao Dai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - An-Qi Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Jia-Shuo Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Hua-Yan Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Jin-Zhang Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Yuan Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| |
Collapse
|
3
|
Wu E, Vastenhouw NL. From mother to embryo: A molecular perspective on zygotic genome activation. Curr Top Dev Biol 2020; 140:209-254. [PMID: 32591075 DOI: 10.1016/bs.ctdb.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In animals, the early embryo is mostly transcriptionally silent and development is fueled by maternally supplied mRNAs and proteins. These maternal products are important not only for survival, but also to gear up the zygote's genome for activation. Over the last three decades, research with different model organisms and experimental approaches has identified molecular factors and proposed mechanisms for how the embryo transitions from being transcriptionally silent to transcriptionally competent. In this chapter, we discuss the molecular players that shape the molecular landscape of ZGA and provide insights into their mode of action in activating the transcription program in the developing embryo.
Collapse
Affiliation(s)
- Edlyn Wu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
4
|
GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:63-75. [PMID: 29987502 DOI: 10.1007/s11427-018-9307-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 10/28/2022]
Abstract
Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region. A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase (GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35S::GhKLCR1 lines after 300-mmol L-1 mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.
Collapse
|
5
|
A comparative analysis of the ‘other roles’ of transcriptional factors from pathogenic organisms. Gene X 2016; 586:274-80. [DOI: 10.1016/j.gene.2016.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
|
6
|
Ma X, Zhu X, Li C, Song Y, Zhang W, Xia G, Wang M. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:34-43. [PMID: 25461698 DOI: 10.1016/j.plaphy.2014.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/15/2014] [Indexed: 05/01/2023]
Abstract
The nuclear factor Y (NF-Y) transcription factor is formed by the interaction of three distinct subunits (NF-YA, -YB and -YC). It targets the CCAAT box, a common cis-element in eukaryotic promoters. Here, the bread wheat gene TaNF-YA10-1 has been isolated from the salinity tolerant cultivar SR3. Recombinant TaNF-YA10-1 was heterologously produced in Escherichia coli, and the purified protein successfully bound to the CCAAT motif in vitro. TaNF-YA10-1 was down-regulated by the imposition of salinity and abscisic acid (ABA). The constitutive expression of TaNF-YA10-1 in Arabidopsis thaliana significantly increased the plant's sensitivity to salinity and repressed its sensitivity to ABA as judged from the seed germination, cotyledon greening and the relative root growth. The transcription of stress-related genes AtRAB18, AtRD29B, AtABI5, AtCBF1 and AtCBF3 was downregulated in TaNF-YA10-1 overexpression transgenic plants. The data provide supportive evidence that TaNFYA10-1 is involved in the regulation of growth under salinity stress conditions.
Collapse
Affiliation(s)
- Xiaoyan Ma
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Xinlei Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Chunlong Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Yinling Song
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Mei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
7
|
Laloum T, De Mita S, Gamas P, Baudin M, Niebel A. CCAAT-box binding transcription factors in plants: Y so many? TRENDS IN PLANT SCIENCE 2013; 18:157-66. [PMID: 22939172 DOI: 10.1016/j.tplants.2012.07.004] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/25/2012] [Accepted: 07/28/2012] [Indexed: 05/20/2023]
Abstract
Transcription factors belonging to the CCAAT-box binding factor family (also known as the Nuclear Factor Y) are present in all higher eukaryotes. Studies in plants have revealed that each subunit of this heterotrimeric transcription factor is encoded by a gene belonging to a multigene family allowing a considerable modularity. In this review, we focus on recent findings concerning the expression patterns and potential functions of different members of these NF-Y protein families using a phylogenetic approach. During the course of evolution plant CCAAT-box binding factors seem to have diversified into at least two main groups. The first group has more general expression patterns and/or functions whereas the second group has acquired more specific expression patterns and/or functions and could play key roles in specific pathways.
Collapse
Affiliation(s)
- Tom Laloum
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
8
|
Zhu H, Gao W, Shi YF, Zhang XJ. The CCAAT-binding factor CBF/NF-Y regulates the human acetylcholinesterase promoter activity during calcium ionophore A23187-induced cell apoptosis. Biochim Biophys Acta Gen Subj 2007; 1770:1475-82. [PMID: 17728068 DOI: 10.1016/j.bbagen.2007.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 11/20/2022]
Abstract
We previously reported that the expression of acetylcholinesterase during A23187-induced apoptosis of HeLa cells is regulated by Ca(2+) mobilization through the modulation of mRNA stability and acetylcholinesterase promoter activity. Transactivation of the human acetylcholinesterase promoter by A23187 was partially mediated by the distal CCAAT motif within the -1270 to -1248 fragment of the human acetylcholinesterase promoter, which was bound by the CCAAT binding factor (CBF/NF-Y). In the present study, we investigated the molecular mechanisms by which CBF/NF-Y regulates A23187-induced activation of the human acetylcholinesterase promoter. The results indicate that CBF/NF-Y binding to the distal CCAAT motif suppresses the promoter activity. Electrophoretic mobility shift assays (EMSAs) demonstrated that binding of CBF/NF-Y to the distal CCAAT motif decreased after A23187 treatment. Our results suggest that acetylcholinesterase promoter activation during A23187-induced HeLa cell apoptosis may result partly from the dissociation of CBF/NF-Y from the distal CCAAT motif in the acetylcholinesterase promoter, reversing this suppression.
Collapse
Affiliation(s)
- Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
9
|
Takahashi K, Hayashi N, Kaminogawa S, Ra C. Molecular Mechanisms for Transcriptional Regulation of Human High-Affinity IgE Receptor β-Chain Gene Induced by GM-CSF. THE JOURNAL OF IMMUNOLOGY 2006; 177:4605-11. [PMID: 16982898 DOI: 10.4049/jimmunol.177.7.4605] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The beta-chain of the high-affinity receptor for IgE (FcepsilonRI) plays an important role in regulating activation of FcepsilonRI-expressing cells such as mast cells in allergic reactions. We already reported that the transcription factor myeloid zinc finger (MZF) 1 which formed a high m.w. complex including four and a half LIM-only protein (FHL)3 in the nucleus repressed human beta-chain gene expression through an element in the fourth intron. We also found that GM-CSF induced expression of MZF-1 and nuclear translocation of FHL3. We screened a human cDNA library and identified NFY which was reported to bind histone deacetylases (HDACs) as a constituent of the complex. The C-subunit of NFY was demonstrated to form a ternary complex with MZF-1/FHL3 and interact with a beta-chain gene region including the element in the fourth intron. HDAC1 and HDAC2 were also shown to interact with the fourth intron region of the beta-chain gene. In a human mast cell line HMC-1 cultured with GM-CSF, both beta-chain expression and acetylation of histones interacting with the fourth intron region of the beta-chain gene were decreased. Collectively, these results indicated that HDACs, which were recruited to the beta-chain gene through the element in the fourth intron by MZF-1/FHL3/NFY, repressed beta-chain gene transcription by deacetylation of histones in the presence of GM-CSF. These mechanisms will be involved in not only the cell type-specific repression of beta-chain gene expression in differentiating hemopoietic cells but also the repression of beta-chain gene expression in the peripheral cells under specific circumstances.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | |
Collapse
|
10
|
Vorachek WR, Steppan CM, Lima M, Black H, Bhattacharya R, Wen P, Kajiyama Y, Locker J. Distant enhancers stimulate the albumin promoter through complex proximal binding sites. J Biol Chem 2000; 275:29031-41. [PMID: 10842175 DOI: 10.1074/jbc.m003039200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The albumin-alpha-fetoprotein locus epitomizes the main features of transcriptional regulation of fetal and adult hepatocyte-specific genes: developmentally regulated promoters and strong distant enhancers. Full enhancer activity required only a proximal albumin-promoter region containing the TATA box, hepatic nuclear factor 1 (HNF1), and nuclear factor Y (NF-Y) sites. Deletion of the HNF1 site abrogated enhancer and promoter activity, whereas methylation of the site reduced all activity by about 3-fold. Deletion of the NF-Y site attenuated activity by about half, but much of the activity could be replaced by juxtaposition of an upstream region (designated distal element IV). Gel shift and competition analysis demonstrated that binding of architectural factors overlapped NF-Y binding. Moreover, a mutation that eliminated NF-Y binding but only minimally perturbed the surrounding region did not affect enhancer function. In plasmids with a second promoter, the enhancers simultaneously stimulated both albumin and alpha-fetoprotein promoters with minimal competition, but surprisingly some mutations in the albumin promoter attenuated expression from both promoters, whereas another uncoupled their expression. With single promoters, the function of the proximal promoter region was controlled by three parameters in the following hierarchy: HNF1 binding > local architecture > NF-Y binding, but integrated two-promoter function had a much greater dependence on NF-Y.
Collapse
Affiliation(s)
- W R Vorachek
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hu Q, Maity SN. Stable expression of a dominant negative mutant of CCAAT binding factor/NF-Y in mouse fibroblast cells resulting in retardation of cell growth and inhibition of transcription of various cellular genes. J Biol Chem 2000; 275:4435-44. [PMID: 10660616 DOI: 10.1074/jbc.275.6.4435] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric CCAAT-binding factor CBF specifically interacts with the CCAAT motif present in the proximal promoters of numerous mammalian genes. To understand the in vivo function of CBF, a dominant negative mutant of CBF-B subunit that inhibits DNA binding of wild type CBF was stably expressed in mouse fibroblast cells under control of tetracycline-responsive promoter. Expression of the mutant CBF-B but not the wild-type CBF-B resulted in retardation of fibroblast cell growth. The analysis of cell growth using bromodeoxyuridine labeling showed that expression of the mutant CBF-B decreased the number of cells entering into S phase, and also delayed induction of S phase in the quiescent cells after serum stimulation, thus indicating that the inhibition of CBF binding prolonged the progression of S phase in fibroblasts. These results provide direct evidence for the first time that CBF is an important regulator of fibroblast growth. The inhibition of CBF binding reduced expression of various cellular genes including the alpha2(1) collagen, E2F1, and topoisomerase IIalpha genes which promoters contain the CBF-binding site. This result implied that expression of many other genes which promoters contain CBF-binding site was also decreased by the inhibition of CBF binding, and that the decreased expression of multiple cellular genes possibly caused the retardation of fibroblast cell growth.
Collapse
Affiliation(s)
- Q Hu
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
12
|
Kusnetsov V, Landsberger M, Meurer J, Oelmüller R. The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem 1999; 274:36009-14. [PMID: 10585491 DOI: 10.1074/jbc.274.50.36009] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A functionally important region in the promoter of the spinach photosynthesis gene AtpC, which encodes the subunit gamma of the chloroplast ATP synthase, is located immediately upstream of the CAAT-box. A single nucleotide exchange in this region (AAAATTCAAT --> AAGATCAAT) uncouples the expression of an AtpC promoter::uidA gene fusion from the regulation by light, cytokinin, and functional plastids and results in a high constitutive expression of the reporter gene. By screening an Arabidopsis thaliana expression library with a double-stranded wild-type oligonucleotide from this promoter region, we have isolated cDNAs from Arabidopsis libraries that code for plant homologs of the CAAT-box binding factor (CBF)-C. Binding occurs only in the presence of nuclear extracts, consistent with reports from metazoa CBFs that the subunits A and B in addition to C are required for the formation of the CBF-DNA complex. At least eight genes with homologies to CBF-C are present in the Arabidopsis genome; one of them exhibits striking similarities to the gene for the human global transcriptional repressor Drap1. In gel mobility shift assays, low binding activity of CBF to the wild-type AtpC promoter sequence was observed with nuclear extracts from tissue with low AtpC expression levels, i.e. extracts from etiolated and photobleached seedlings, whereas high binding activity was detectable with extracts from tissues with high AtpC expression levels, i.e. extracts from light-grown seedlings and etiolated seedlings treated with cytokinin. Binding to the mutant sequence, which directs constitutive high level uidA expression in vivo, is significantly stronger than to the wild-type sequence. The data are consistent with the idea that the assembly of CBF at the AtpC promoter is regulated in response to light and cytokinin and that the low level of expression in etiolated and photobleached material is caused by an inhibitory effect. The structure/function relationships of the Arabidopsis CBFs are discussed in relation to their regulatory function in AtpC gene expression.
Collapse
Affiliation(s)
- V Kusnetsov
- Timiriazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia
| | | | | | | |
Collapse
|
13
|
Liang SG, Maity SN. Pathway of complex formation between DNA and three subunits of CBF/NF-Y. Photocross-linking analysis of DNA-protein interaction and characterization of equilibrium steps of subunit interaction and dna binding. J Biol Chem 1998; 273:31590-8. [PMID: 9813075 DOI: 10.1074/jbc.273.47.31590] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we used a photocross-linking method to identify specific contact of CCAAT-binding factor (CBF) subunits in a CBF-DNA complex. The analysis showed that all three subunits in the CBF-DNA complex were cross-linked to DNA and that CBF-B and CBF-C were cross-linked more strongly than CBF-A. None of the CBF-A and CBF-C subunits, which together formed a CBF-A/CBF-C heterodimer, were cross-linked without CBF-B; in contrast, CBF-B was cross-linked in the absence of CBF-A/CBF-C. No subunit of heterotrimeric CBF containing DNA-binding domain mutant of either CBF-B or CBF-C was cross-linked to DNA, and interestingly, cross-linking of CBF-B that occurred without CBF-A/CBF-C was inhibited in presence of mutant CBF-C/CBF-A heterodimer. Altogether, these results indicated that the specific DNA contact surface of each CBF subunit is generated as a result of interaction between CBF-B and CBF-A/CBF-C heterodimer and that the three CBF subunits interact interdependently with DNA to form a CBF-DNA complex. Equilibrium interactions among the three CBF subunits and between CBF subunits and DNA were studied by electrophoretic mobility shift assay. This showed that at equilibrium DNA-binding conditions, the CBF-A/CBF-C heterodimer is very stable, but association between CBF-B and CBF-A/CBF-C is very weak. The nature of the association of CBF-B with CBF-A/CBF-C was also revealed by studying the inhibition of CBF-DNA complex formation by the mutant CBF-B. This study indicated that the association between CBF-B and CBF-A/CBF-C is stabilized upon interaction with DNA, a process likely to favor formation of a high-affinity CBF-DNA complex.
Collapse
Affiliation(s)
- S G Liang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
14
|
Abstract
The CCAAT motif is one of the common promoter elements present in the proximal promoter of numerous mammalian genes transcribed by RNA polymerase II. CBF (also called NF-Y and CP1) consists of three different subunits and interacts specifically with the CCAAT motif. In each CBF subunit, the segment needed for formation of the CBF-DNA complex is conserved from yeast to human and, interestingly, the conserved segment of two CBF subunits, CBF-A and CBF-C, are homologous to the histone-fold motif of eukaryotic histones and archaebacterial histone-like protein HMf-2. The histone fold motifs of CBF-A and CBF-C interact with each other to form a heterodimer that associates with CBF-B to form a heterotrimeric CBF molecule, which then binds to DNA.
Collapse
Affiliation(s)
- S N Maity
- Dept of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|