1
|
Benchmarking Methods of Protein Structure Alignment. J Mol Evol 2020; 88:575-597. [PMID: 32725409 DOI: 10.1007/s00239-020-09960-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
The function of a protein is primarily determined by its structure and amino acid sequence. Many biological questions of interest rely on being able to accurately determine the group of structures to which domains of a protein belong; this can be done through alignment and comparison of protein structures. Dozens of different methods for Protein Structure Alignment (PSA) have been proposed that use a wide range of techniques. The aim of this study is to determine the ability of PSA methods to identify pairs of protein domains known to share differing levels of structural similarity, and to assess their utility for clustering domains from several different folds into known groups. We present the results of a comprehensive investigation into eighteen PSA methods, to our knowledge the largest piece of independent research on this topic. Overall, SP-AlignNS (non-sequential) was found to be the best method for classification, and among the best performing methods for clustering. Methods (where possible) were split into the algorithm used to find the optimal alignment and the score used to assess similarity. This allowed us to largely separate the algorithm from the score it maximizes and thus, to assess their effectiveness independently of each other. Surprisingly, we found that some hybrids of mismatched scores and algorithms performed better than either of the native methods at classification and, in some cases, clustering as well. It is hoped that this investigation and the accompanying discussion will be useful for researchers selecting or designing methods to align protein structures.
Collapse
|
2
|
Jenni S, Bloyet LM, Diaz-Avalos R, Liang B, Whelan SPJ, Grigorieff N, Harrison SC. Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor. Cell Rep 2020; 30:53-60.e5. [PMID: 31914397 PMCID: PMC7049099 DOI: 10.1016/j.celrep.2019.12.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 11/15/2022] Open
Abstract
The large (L) proteins of non-segmented, negative-strand RNA viruses are multifunctional enzymes that produce capped, methylated, and polyadenylated mRNA and replicate the viral genome. A phosphoprotein (P), required for efficient RNA-dependent RNA polymerization from the viral ribonucleoprotein (RNP) template, regulates the function and conformation of the L protein. We report the structure of vesicular stomatitis virus L in complex with its P cofactor determined by electron cryomicroscopy at 3.0 Å resolution, enabling us to visualize bound segments of P. The contacts of three P segments with multiple L domains show how P induces a closed, compact, initiation-competent conformation. Binding of P to L positions its N-terminal domain adjacent to a putative RNA exit channel for efficient encapsidation of newly synthesized genomes with the nucleoprotein and orients its C-terminal domain to interact with an RNP template. The model shows that a conserved tryptophan in the priming loop can support the initiating 5' nucleotide.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Louis-Marie Bloyet
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ruben Diaz-Avalos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bo Liang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sean P J Whelan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Leinweber M, Fober T, Freisleben B. GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:740-752. [PMID: 27845672 DOI: 10.1109/tcbb.2016.2625793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Collapse
|
4
|
Goedegebuur F, Dankmeyer L, Gualfetti P, Karkehabadi S, Hansson H, Jana S, Huynh V, Kelemen BR, Kruithof P, Larenas EA, Teunissen PJM, Ståhlberg J, Payne CM, Mitchinson C, Sandgren M. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. J Biol Chem 2017; 292:17418-17430. [PMID: 28860192 DOI: 10.1074/jbc.m117.803270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.
Collapse
Affiliation(s)
- Frits Goedegebuur
- From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands,
| | - Lydia Dankmeyer
- From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands
| | | | - Saeid Karkehabadi
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| | - Henrik Hansson
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| | - Suvamay Jana
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Vicky Huynh
- DuPont Industrial Biosciences, Palo Alto, California 94304
| | | | - Paulien Kruithof
- From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands
| | | | | | - Jerry Ståhlberg
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| | - Christina M Payne
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | | | - Mats Sandgren
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| |
Collapse
|
5
|
Lam SD, Das S, Sillitoe I, Orengo C. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallogr D Struct Biol 2017; 73:628-640. [PMID: 28777078 PMCID: PMC5571743 DOI: 10.1107/s2059798317008920] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Computational modelling of proteins has been a major catalyst in structural biology. Bioinformatics groups have exploited the repositories of known structures to predict high-quality structural models with high efficiency at low cost. This article provides an overview of comparative modelling, reviews recent developments and describes resources dedicated to large-scale comparative modelling of genome sequences. The value of subclustering protein domain superfamilies to guide the template-selection process is investigated. Some recent cases in which structural modelling has aided experimental work to determine very large macromolecular complexes are also cited.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
- School of Biosciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Sayoni Das
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| | - Christine Orengo
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| |
Collapse
|
6
|
Zhou N, Wang H, Wang J. EMBuilder: A Template Matching-based Automatic Model-building Program for High-resolution Cryo-Electron Microscopy Maps. Sci Rep 2017; 7:2664. [PMID: 28572576 PMCID: PMC5453991 DOI: 10.1038/s41598-017-02725-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023] Open
Abstract
The resolution of electron-potential maps in single-particle cryo-electron microscopy (cryoEM) is approaching atomic or near- atomic resolution. However, no program currently exists for de novo cryoEM model building at resolutions exceeding beyond 3.5 Å. Here, we present a program, EMBuilder, based on template matching, to generate cryoEM models at high resolution. The program identifies features in both secondary-structure and Cα stages. In the secondary structure stage, helices and strands are identified with pre-computed templates, and the voxel size of the entire map is then refined to account for microscopic magnification errors. The identified secondary structures are then extended from both ends in the Cα stage via a log-likelihood (LLK) target function, and if possible, the side chains are also assigned. This program can build models of large proteins (~1 MDa) in a reasonable amount of time (~1 day) and thus has the potential to greatly decrease the manual workload required for model building of high-resolution cryoEM maps.
Collapse
Affiliation(s)
- Niyun Zhou
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongwei Wang
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A 2016; 113:12997-13002. [PMID: 27799534 DOI: 10.1073/pnas.1601327113] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3C-like protease (3CLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) cleaves 11 sites in the polyproteins, including its own N- and C-terminal autoprocessing sites, by recognizing P4-P1 and P1'. In this study, we determined the crystal structure of 3CLpro with the C-terminal prosequence and the catalytic-site C145A mutation, in which the enzyme binds the C-terminal prosequence of another molecule. Surprisingly, Phe at the P3' position [Phe(P3')] is snugly accommodated in the S3' pocket. Mutations of Phe(P3') impaired the C-terminal autoprocessing, but did not affect N-terminal autoprocessing. This difference was ascribed to the P2 residue, Phe(P2) and Leu(P2), in the C- and N-terminal sites, as follows. The S3' subsite is formed by Phe(P2)-induced conformational changes of 3CLpro and the direct involvement of Phe(P2) itself. In contrast, the N-terminal prosequence with Leu(P2) does not cause such conformational changes for the S3' subsite formation. In fact, the mutation of Phe(P2) to Leu in the C-terminal autoprocessing site abolishes the dependence on Phe(P3'). These mechanisms explain why Phe is required at the P3' position when the P2 position is occupied by Phe rather than Leu, which reveals a type of subsite cooperativity. Moreover, the peptide consisting of P4-P1 with Leu(P2) inhibits protease activity, whereas that with Phe(P2) exhibits a much smaller inhibitory effect, because Phe(P3') is missing. Thus, this subsite cooperativity likely exists to avoid the autoinhibition of the enzyme by its mature C-terminal sequence, and to retain the efficient C-terminal autoprocessing by the use of Phe(P2).
Collapse
|
8
|
Monn JA, Prieto L, Taboada L, Hao J, Reinhard MR, Henry SS, Beadle CD, Walton L, Man T, Rudyk H, Clark B, Tupper D, Baker SR, Lamas C, Montero C, Marcos A, Blanco J, Bures M, Clawson DK, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang X, Carter JH, Getman BG, Catlow JT, Swanson S, Johnson BG, Shaw DB, McKinzie DL. Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist. J Med Chem 2015; 58:7526-48. [PMID: 26313429 DOI: 10.1021/acs.jmedchem.5b01124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo.
Collapse
Affiliation(s)
- James A Monn
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lourdes Prieto
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lorena Taboada
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Junliang Hao
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Matthew R Reinhard
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven S Henry
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Christopher D Beadle
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lesley Walton
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Teresa Man
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Barry Clark
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David Tupper
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - S Richard Baker
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Lamas
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Montero
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jaime Blanco
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Mark Bures
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David K Clawson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Shane Atwell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Frances Lu
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jing Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Beverly A Heinz
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Xushan Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Joan H Carter
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Brian G Getman
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - John T Catlow
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven Swanson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Bryan G Johnson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David B Shaw
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David L McKinzie
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| |
Collapse
|
9
|
Chen Y, Näsvall J, Wu S, Andersson DI, Selmer M. Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3'')(9) adenyltransferase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2267-77. [PMID: 26527143 PMCID: PMC4631478 DOI: 10.1107/s1399004715016429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Aminoglycoside resistance is commonly conferred by enzymatic modification of drugs by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). Here, the first crystal structure of an ANT(3'')(9) adenyltransferase, AadA from Salmonella enterica, is presented. AadA catalyses the magnesium-dependent transfer of adenosine monophosphate from ATP to the two chemically dissimilar drugs streptomycin and spectinomycin. The structure was solved using selenium SAD phasing and refined to 2.5 Å resolution. AadA consists of a nucleotidyltransferase domain and an α-helical bundle domain. AadA crystallizes as a monomer and is a monomer in solution as confirmed by small-angle X-ray scattering, in contrast to structurally similar homodimeric adenylating enzymes such as kanamycin nucleotidyltransferase. Isothermal titration calorimetry experiments show that ATP binding has to occur before binding of the aminoglycoside substrate, and structure analysis suggests that ATP binding repositions the two domains for aminoglycoside binding in the interdomain cleft. Candidate residues for ligand binding and catalysis were subjected to site-directed mutagenesis. In vivo resistance and in vitro binding assays support the role of Glu87 as the catalytic base in adenylation, while Arg192 and Lys205 are shown to be critical for ATP binding.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
10
|
Arnold LH, Groom HCT, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP, Webb M, Taylor IA, Bishop KN. Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction. PLoS Pathog 2015; 11:e1005194. [PMID: 26431200 PMCID: PMC4592219 DOI: 10.1371/journal.ppat.1005194] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form “long-lived” enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells. SAMHD1 is a restriction factor that blocks infection of certain immune cells by HIV-1. It was discovered to be an enzyme that catalyses the breakdown of dNTPs, suggesting that it inhibits HIV-1 replication by reducing cellular dNTP pools to such low levels that reverse transcriptase cannot function. However, recently, alternative mechanisms have been proposed. SAMHD1 is also regulated by phosphorylation, although the effects of phosphorylation on protein function are unclear. In order to address these issues, we carried out combined structural and virological studies and have demonstrated that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form “long-lived” enzymatically competent tetramers. Disrupting the tetramer in various ways always abolished restriction but had differing effects on enzyme activity in vitro. SAMHD1 phosphorylation also prevented restriction and tetramer formation but without affecting enzyme catalysis under steady-state dNTP conditions. However phosphorylated SAMHD1 was unable to catalyse dNTP turnover at very low nucleotide levels that more accurately represent conditions in the cells in which restriction takes place. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity and substantiate that degradation of dNTPs by SAMHD1 is sufficient to restrict HIV-1.
Collapse
Affiliation(s)
- Laurence H. Arnold
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Harriet C. T. Groom
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Simone Kunzelmann
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - David Schwefel
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Sarah J. Caswell
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Paula Ordonez
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Melanie C. Mann
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Sabrina Rueschenbaum
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - David C. Goldstone
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Simon Pennell
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Steven A. Howell
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Jonathan P. Stoye
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michelle Webb
- Centre for Genomic Medicine, Institute for Human Development, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian A. Taylor
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail: (IAT); (KNB)
| | - Kate N. Bishop
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail: (IAT); (KNB)
| |
Collapse
|
11
|
Söderholm A, Guo X, Newton MS, Evans GB, Näsvall J, Patrick WM, Selmer M. Two-step Ligand Binding in a (βα)8 Barrel Enzyme: SUBSTRATE-BOUND STRUCTURES SHED NEW LIGHT ON THE CATALYTIC CYCLE OF HisA. J Biol Chem 2015; 290:24657-68. [PMID: 26294764 DOI: 10.1074/jbc.m115.678086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 01/18/2023] Open
Abstract
HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N'-((5'-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.
Collapse
Affiliation(s)
- Annika Söderholm
- From the Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden
| | - Xiaohu Guo
- From the Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden
| | - Matilda S Newton
- the Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Gary B Evans
- the Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33346, Petone, Lower Hutt 5046, New Zealand, and
| | - Joakim Näsvall
- the Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
| | - Wayne M Patrick
- the Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand,
| | - Maria Selmer
- From the Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden,
| |
Collapse
|
12
|
Neidel S, Maluquer de Motes C, Mansur DS, Strnadova P, Smith GL, Graham SC. Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family. J Biol Chem 2015; 290:5991-6002. [PMID: 25605733 PMCID: PMC4358236 DOI: 10.1074/jbc.m114.624650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/11/2015] [Indexed: 12/18/2022] Open
Abstract
Vaccinia virus (VACV) encodes several proteins that inhibit activation of the proinflammatory transcription factor nuclear factor κB (NF-κB). VACV protein A49 prevents translocation of NF-κB to the nucleus by sequestering cellular β-TrCP, a protein required for the degradation of the inhibitor of κB. A49 does not share overall sequence similarity with any protein of known structure or function. We solved the crystal structure of A49 from VACV Western Reserve to 1.8 Å resolution and showed, surprisingly, that A49 has the same three-dimensional fold as Bcl-2 family proteins despite lacking identifiable sequence similarity. Whereas Bcl-2 family members characteristically modulate cellular apoptosis, A49 lacks a surface groove suitable for binding BH3 peptides and does not bind proapoptotic Bcl-2 family proteins Bax or Bak. The N-terminal 17 residues of A49 do not adopt a single well ordered conformation, consistent with their proposed role in binding β-TrCP. Whereas pairs of A49 molecules interact symmetrically via a large hydrophobic surface in crystallo, A49 does not dimerize in solution or in cells, and we propose that this hydrophobic interaction surface may mediate binding to a yet undefined cellular partner. A49 represents the eleventh VACV Bcl-2 family protein and, despite these proteins sharing very low sequence identity, structure-based phylogenetic analysis shows that all poxvirus Bcl-2 proteins are structurally more similar to each other than they are to any cellular or herpesvirus Bcl-2 proteins. This is consistent with duplication and diversification of a single BCL2 family gene acquired by an ancestral poxvirus.
Collapse
Affiliation(s)
- Sarah Neidel
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Carlos Maluquer de Motes
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Daniel S Mansur
- the Department of Microbiology, Immunology, and Parasitology, Universidade Federal de Santa Catarina, Florianopolis, 88040-900 Brazil
| | - Pavla Strnadova
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Geoffrey L Smith
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Stephen C Graham
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| |
Collapse
|
13
|
Monn JA, Prieto L, Taboada L, Pedregal C, Hao J, Reinhard MR, Henry SS, Goldsmith PJ, Beadle CD, Walton L, Man T, Rudyk H, Clark B, Tupper D, Baker SR, Lamas C, Montero C, Marcos A, Blanco J, Bures M, Clawson DK, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang X, Carter JH, Xiang C, Catlow JT, Swanson S, Sanger H, Broad LM, Johnson MP, Knopp KL, Simmons RMA, Johnson BG, Shaw DB, McKinzie DL. Synthesis and Pharmacological Characterization of C4-Disubstituted Analogs of 1S,2S,5R,6S-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: Identification of a Potent, Selective Metabotropic Glutamate Receptor Agonist and Determination of Agonist-Bound Human mGlu2 and mGlu3 Amino Terminal Domain Structures. J Med Chem 2015; 58:1776-94. [DOI: 10.1021/jm501612y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James A. Monn
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lourdes Prieto
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lorena Taboada
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Concepcion Pedregal
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Junliang Hao
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Matt R. Reinhard
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Steven S. Henry
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Paul J. Goldsmith
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Christopher D. Beadle
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lesley Walton
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Teresa Man
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Barry Clark
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David Tupper
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - S. Richard Baker
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Carlos Lamas
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Carlos Montero
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jaime Blanco
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Mark Bures
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David K. Clawson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Shane Atwell
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Frances Lu
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jing Wang
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Marijane Russell
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Beverly A. Heinz
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Xushan Wang
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Joan H. Carter
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Chuanxi Xiang
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - John T. Catlow
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Steven Swanson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Helen Sanger
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lisa M. Broad
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Michael P. Johnson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kelly L. Knopp
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Rosa M. A. Simmons
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Bryan G. Johnson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David B. Shaw
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David L. McKinzie
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
14
|
Crystal structure of the mouse interleukin-3 β-receptor: insights into interleukin-3 binding and receptor activation. Biochem J 2014; 463:393-403. [DOI: 10.1042/bj20140863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structure of the mouse IL-3-specific β-receptor (βIL-3) is presented giving insights into direct IL-3 binding and receptor activation via the IL-3 receptor α (IL-3Rα) ‘SP2’ isoform, which lacks the N-terminal Ig-like domain. It provides an important reference structure for interpreting mutagenesis and receptor activation studies.
Collapse
|
15
|
Nicholls RA, Fischer M, McNicholas S, Murshudov GN. Conformation-independent structural comparison of macromolecules with ProSMART. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2487-99. [PMID: 25195761 PMCID: PMC4157452 DOI: 10.1107/s1399004714016241] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/12/2014] [Indexed: 12/05/2023]
Abstract
The identification and exploration of (dis)similarities between macromolecular structures can help to gain biological insight, for instance when visualizing or quantifying the response of a protein to ligand binding. Obtaining a residue alignment between compared structures is often a prerequisite for such comparative analysis. If the conformational change of the protein is dramatic, conventional alignment methods may struggle to provide an intuitive solution for straightforward analysis. To make such analyses more accessible, the Procrustes Structural Matching Alignment and Restraints Tool (ProSMART) has been developed, which achieves a conformation-independent structural alignment, as well as providing such additional functionalities as the generation of restraints for use in the refinement of macromolecular models. Sensible comparison of protein (or DNA/RNA) structures in the presence of conformational changes is achieved by enforcing neither chain nor domain rigidity. The visualization of results is facilitated by popular molecular-graphics software such as CCP4mg and PyMOL, providing intuitive feedback regarding structural conservation and subtle dissimilarities between close homologues that can otherwise be hard to identify. Automatically generated colour schemes corresponding to various residue-based scores are provided, which allow the assessment of the conservation of backbone and side-chain conformations relative to the local coordinate frame. Structural comparison tools such as ProSMART can help to break the complexity that accompanies the constantly growing pool of structural data into a more readily accessible form, potentially offering biological insight or influencing subsequent experiments.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Marcus Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stuart McNicholas
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Garib N. Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| |
Collapse
|
16
|
Structure of the RecQ C-terminal domain of human Bloom syndrome protein. Sci Rep 2013; 3:3294. [PMID: 24257077 PMCID: PMC6505963 DOI: 10.1038/srep03294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/06/2013] [Indexed: 01/23/2023] Open
Abstract
Bloom syndrome is a rare genetic disorder characterized by genomic instability and cancer predisposition. The disease is caused by mutations of the Bloom syndrome protein (BLM). Here we report the crystal structure of a RecQ C-terminal (RQC) domain from human BLM. The structure reveals three novel features of BLM RQC which distinguish it from the previous structures of the Werner syndrome protein (WRN) and RECQ1. First, BLM RQC lacks an aromatic residue at the tip of the β-wing, a key element of the RecQ-family helicases used for DNA-strand separation. Second, a BLM-specific insertion between the N-terminal helices exhibits a looping-out structure that extends at right angles to the β-wing. Deletion mutagenesis of this insertion interfered with binding to Holliday junction. Third, the C-terminal region of BLM RQC adopts an extended structure running along the domain surface, which may facilitate the spatial positioning of an HRDC domain in the full-length protein.
Collapse
|
17
|
Jacobson F, Karkehabadi S, Hansson H, Goedegebuur F, Wallace L, Mitchinson C, Piens K, Stals I, Sandgren M. The crystal structure of the core domain of a cellulose induced protein (Cip1) from Hypocrea jecorina, at 1.5 Å resolution. PLoS One 2013; 8:e70562. [PMID: 24039705 PMCID: PMC3764139 DOI: 10.1371/journal.pone.0070562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/25/2013] [Indexed: 11/19/2022] Open
Abstract
In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1). This protein consists of a glycoside hydrolase family 1 carbohydrate binding module connected via a linker region to a domain with yet unknown function. After cloning and expression of Cip1 in H. jecorina, the protein was purified and biochemically characterised with the aim of determining a potential enzymatic activity for the novel protein. No hydrolytic activity against any of the tested plant cell wall components was found. The proteolytic core domain of Cip1 was then crystallised, and the three-dimensional structure of this was determined to 1.5 Å resolution utilising sulphur single-wavelength anomalous dispersion phasing (sulphor-SAD). A calcium ion binding site was identified in a sequence conserved region of Cip1 and is also seen in other proteins with the same general fold as Cip1, such as many carbohydrate binding modules. The presence of this ion was found to have a structural role. The Cip1 structure was analysed and a structural homology search was performed to identify structurally related proteins. The two published structures with highest overall structural similarity to Cip1 found were two poly-lyases: CsGL, a glucuronan lyase from H. jecorina and vAL-1, an alginate lyase from the Chlorella virus. This indicates that Cip1 may be a lyase. However, initial trials did not detect significant lyase activity for Cip1. Cip1 is the first structure to be solved of the 23 currently known Cip1 sequential homologs (with a sequence identity cut-off of 25%), including both bacterial and fungal members.
Collapse
Affiliation(s)
- Frida Jacobson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Hansson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Louise Wallace
- DuPont, Industrial Biosciences, Palo Alto, California, United States of America
| | - Colin Mitchinson
- DuPont, Industrial Biosciences, Palo Alto, California, United States of America
| | - Kathleen Piens
- Department of Biochemistry, Physiology and Microbiology, Ghent University, Ghent, Belgium
| | - Ingeborg Stals
- Faculty of Applied Bioscience Engineering, University College Ghent and Ghent University, Ghent, Belgium
| | - Mats Sandgren
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
18
|
Gruene T. mrtailor: a tool for PDB-file preparation for the generation of external restraints. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1861-3. [PMID: 23999309 DOI: 10.1107/s090744491301648x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 06/13/2013] [Indexed: 11/11/2022]
Abstract
Model building starting from, for example, a molecular-replacement solution with low sequence similarity introduces model bias, which can be difficult to detect, especially at low resolution. The program mrtailor removes low-similarity regions from a template PDB file according to sequence similarity between the target sequence and the template sequence and maps the target sequence onto the PDB file. The modified PDB file can be used to generate external restraints for low-resolution refinement with reduced model bias and can be used as a starting point for model building and refinement. The program can call ProSMART [Nicholls et al. (2012), Acta Cryst. D68, 404-417] directly in order to create external restraints suitable for REFMAC5 [Murshudov et al. (2011), Acta Cryst. D67, 355-367]. Both a command-line version and a GUI exist.
Collapse
Affiliation(s)
- Tim Gruene
- Department of Structural Chemistry, Georg-August-University Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
19
|
Baker RW, Jeffrey PD, Hughson FM. Crystal Structures of the Sec1/Munc18 (SM) Protein Vps33, Alone and Bound to the Homotypic Fusion and Vacuolar Protein Sorting (HOPS) Subunit Vps16*. PLoS One 2013; 8:e67409. [PMID: 23840694 PMCID: PMC3693963 DOI: 10.1371/journal.pone.0067409] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/18/2013] [Indexed: 11/29/2022] Open
Abstract
Intracellular membrane fusion requires the regulated assembly of SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor) proteins anchored in the apposed membranes. To exert the force required to drive fusion between lipid bilayers, juxtamembrane SNARE motifs zipper into four-helix bundles. Importantly, SNARE function is regulated by additional factors, none more extensively studied than the SM (Sec1/Munc18-like) proteins. SM proteins interact with both individual SNAREs and SNARE complexes, likely chaperoning SNARE complex formation and protecting assembly intermediates from premature disassembly by NSF. Four families of SM proteins have been identified, and representative members of two of these families (Sec1/Munc18 and Sly1) have been structurally characterized. We report here the 2.6 Å resolution crystal structure of an SM protein from the third family, Vps33. Although Vps33 shares with the first two families the same basic three-domain architecture, domain 1 is displaced by 15 Å, accompanied by a 40° rotation. A unique feature of the Vps33 family of SM proteins is that its members function as stable subunits within a multi-subunit tethering complex called HOPS (homotypic fusion and vacuolar protein sorting). Integration into the HOPS complex depends on the interaction between Vps33 and a second HOPS subunit, Vps16. The crystal structure of Vps33 bound to a C-terminal portion of Vps16, also at 2.6 Å resolution, reveals the structural basis for this interaction. Despite the extensive interface between the two HOPS subunits, the conformation of Vps33 is only subtly affected by binding to Vps16.
Collapse
Affiliation(s)
- Richard W. Baker
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Nilmeier JP, Kirshner DA, Wong SE, Lightstone FC. Rapid catalytic template searching as an enzyme function prediction procedure. PLoS One 2013; 8:e62535. [PMID: 23675414 PMCID: PMC3651201 DOI: 10.1371/journal.pone.0062535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
We present an enzyme protein function identification algorithm, Catalytic Site Identification (CatSId), based on identification of catalytic residues. The method is optimized for highly accurate template identification across a diverse template library and is also very efficient in regards to time and scalability of comparisons. The algorithm matches three-dimensional residue arrangements in a query protein to a library of manually annotated, catalytic residues--The Catalytic Site Atlas (CSA). Two main processes are involved. The first process is a rapid protein-to-template matching algorithm that scales quadratically with target protein size and linearly with template size. The second process incorporates a number of physical descriptors, including binding site predictions, in a logistic scoring procedure to re-score matches found in Process 1. This approach shows very good performance overall, with a Receiver-Operator-Characteristic Area Under Curve (AUC) of 0.971 for the training set evaluated. The procedure is able to process cofactors, ions, nonstandard residues, and point substitutions for residues and ions in a robust and integrated fashion. Sites with only two critical (catalytic) residues are challenging cases, resulting in AUCs of 0.9411 and 0.5413 for the training and test sets, respectively. The remaining sites show excellent performance with AUCs greater than 0.90 for both the training and test data on templates of size greater than two critical (catalytic) residues. The procedure has considerable promise for larger scale searches.
Collapse
Affiliation(s)
- Jerome P. Nilmeier
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Daniel A. Kirshner
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sergio E. Wong
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
21
|
Björkelid C, Bergfors T, Raichurkar AKV, Mukherjee K, Malolanarasimhan K, Bandodkar B, Jones TA. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. J Biol Chem 2013; 288:18260-70. [PMID: 23661699 DOI: 10.1074/jbc.m113.476473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.
Collapse
Affiliation(s)
- Christofer Björkelid
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VGH, Sandgren M. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 2013; 288:12828-39. [PMID: 23525113 PMCID: PMC3642327 DOI: 10.1074/jbc.m113.459396] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/15/2013] [Indexed: 01/11/2023] Open
Abstract
Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.
Collapse
Affiliation(s)
- Miao Wu
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Gregg T. Beckham
- the National Bioenergy Center and
- the Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401
| | - Anna M. Larsson
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Takuya Ishida
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Christina M. Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, and
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Svein J. Horn
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Bjørge Westereng
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Kiyohiko Igarashi
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Samejima
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jerry Ståhlberg
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Vincent G. H. Eijsink
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Mats Sandgren
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
23
|
Meneely KM, Lamb AL. Two structures of a thiazolinyl imine reductase from Yersinia enterocolitica provide insight into catalysis and binding to the nonribosomal peptide synthetase module of HMWP1. Biochemistry 2012; 51:9002-13. [PMID: 23066849 DOI: 10.1021/bi3011016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The thiazolinyl imine reductase from Yersinia enterocolitica (Irp3) catalyzes the NADPH-dependent reduction of a thiazoline ring in an intermediate for the formation of the siderophore yersiniabactin. Two structures of Irp3 were determined in the apo (1.85 Å) and NADP(+)-bound (2.31 Å) forms. Irp3 is structurally homologous to sugar oxidoreductases such as glucose-fructose oxidoreductase and 1,5-anhydro-d-fructose reductase, as well as to biliverdin reductase. A homology model of the thiazolinyl imine reductase from Pseudomonas aeruginosa (PchG) was generated. Extensive loop insertions are observed in the C-terminal domain that are unique to Irp3 and PchG and not found in the structural homologues that recognize small molecular substrates. These loops are hypothesized to be important for binding of the nonribosomal peptide synthetase modules (found in HMWP1 and PchF, respectively) to which the substrate of the reductase is covalently attached. A catalytic mechanism for the donation of a proton from a general acid (either histidine 101 or tyrosine 128) and the donation of a hydride from C4 of nicotinamide of the NADPH cofactor is proposed for reduction of the carbon-nitrogen double bond of the thiazoline.
Collapse
Affiliation(s)
- Kathleen M Meneely
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | | |
Collapse
|
24
|
Knauer SH, Buckel W, Dobbek H. On the ATP-dependent activation of the radical enzyme (R)-2-hydroxyisocaproyl-CoA dehydratase. Biochemistry 2012; 51:6609-22. [PMID: 22827463 DOI: 10.1021/bi300571z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Members of the 2-hydroxyacyl-CoA dehydratase enzyme family catalyze the β,α-dehydration of various CoA-esters in the fermentation of amino acids by clostridia. Abstraction of the nonacidic β-proton of the 2-hydroxyacyl-CoA compounds is achieved by the reductive generation of ketyl radicals on the substrate, which is initiated by the transfer of an electron at low redox potentials. The highly energetic electron needed on the dehydratase is donated by a [4Fe-4S] cluster containing ATPase, termed activator. We investigated the activator of the 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile. The activator is a homodimeric protein structurally related to acetate and sugar kinases, Hsc70 and actin, and has a [4Fe-4S] cluster bound in the dimer interface. The crystal structures of the Mg-ADP, Mg-ADPNP, and nucleotide-free states of the reduced activator have been solved at 1.6-3.0 Å resolution, allowing us to define the position of Mg(2+) and water molecules in the vicinity of the nucleotides and the [4Fe-4S] cluster. The structures reveal redox- and nucleotide dependent changes agreeing with the modulation of the reduction potential of the [4Fe-4S] cluster by conformational changes. We also investigated the propensity of the activator to form a complex with its cognate dehydratase in the presence of Mg-ADP and Mg-ADPNP and together with the structural data present a refined mechanistic scheme for the ATP-dependent electron transfer between activator and dehydratase.
Collapse
Affiliation(s)
- Stefan H Knauer
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | | | | |
Collapse
|
25
|
High resolution crystal structure of the endo-N-Acetyl-β-D-glucosaminidase responsible for the deglycosylation of Hypocrea jecorina cellulases. PLoS One 2012; 7:e40854. [PMID: 22859955 PMCID: PMC3408457 DOI: 10.1371/journal.pone.0040854] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023] Open
Abstract
Endo-N-acetyl-β-D-glucosaminidases (ENGases) hydrolyze the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. The endo-N-acetyl-β-D-glucosaminidases classified into glycoside hydrolase family 18 are small, bacterial proteins with different substrate specificities. Recently two eukaryotic family 18 deglycosylating enzymes have been identified. Here, the expression, purification and the 1.3Å resolution structure of the ENGase (Endo T) from the mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei) are reported. Although the mature protein is C-terminally processed with removal of a 46 amino acid peptide, the protein has a complete (β/α)8 TIM-barrel topology. In the active site, the proton donor (E131) and the residue stabilizing the transition state (D129) in the substrate assisted catalysis mechanism are found in almost identical positions as in the bacterial GH18 ENGases: Endo H, Endo F1, Endo F3, and Endo BT. However, the loops defining the substrate-binding cleft vary greatly from the previously known ENGase structures, and the structures also differ in some of the α-helices forming the barrel. This could reflect the variation in substrate specificity between the five enzymes. This is the first three-dimensional structure of a eukaryotic endo-N-acetyl-β-D-glucosaminidase from glycoside hydrolase family 18. A glycosylation analysis of the cellulases secreted by a Hypocrea jecorina Endo T knock-out strain shows the in vivo function of the protein. A homology search and phylogenetic analysis show that the two known enzymes and their homologues form a large but separate cluster in subgroup B of the fungal chitinases. Therefore the future use of a uniform nomenclature is proposed.
Collapse
|
26
|
Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. Analysis of conformational variation in macromolecular structural models. PLoS One 2012; 7:e39993. [PMID: 22808083 PMCID: PMC3392262 DOI: 10.1371/journal.pone.0039993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.
Collapse
Affiliation(s)
| | - Savitha Gayathri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Babu A. Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI), Grenoble, France
| | - Balasubramanian Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail: (SKS); (BG)
| |
Collapse
|
27
|
Wheatley RW, Zheng RB, Richards MR, Lowary TL, Ng KKS. Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial Arabinogalactan. J Biol Chem 2012; 287:28132-43. [PMID: 22707726 DOI: 10.1074/jbc.m112.347484] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Biosynthesis of the mycobacterial cell wall relies on the activities of many enzymes, including several glycosyltransferases (GTs). The polymerizing galactofuranosyltransferase GlfT2 (Rv3808c) synthesizes the bulk of the galactan portion of the mycolyl-arabinogalactan complex, which is the largest component of the mycobacterial cell wall. We used x-ray crystallography to determine the 2.45-Å resolution crystal structure of GlfT2, revealing an unprecedented multidomain structure in which an N-terminal β-barrel domain and two primarily α-helical C-terminal domains flank a central GT-A domain. The kidney-shaped protomers assemble into a C(4)-symmetric homotetramer with an open central core and a surface containing exposed hydrophobic and positively charged residues likely involved with membrane binding. The structure of a 3.1-Å resolution complex of GlfT2 with UDP reveals a distinctive mode of nucleotide recognition. In addition, models for the binding of UDP-galactofuranose and acceptor substrates in combination with site-directed mutagenesis and kinetic studies suggest a mechanism that explains the unique ability of GlfT2 to generate alternating β-(1→5) and β-(1→6) glycosidic linkages using a single active site. The topology imposed by docking a tetrameric assembly onto a membrane bilayer also provides novel insights into aspects of processivity and chain length regulation in this and possibly other polymerizing GTs.
Collapse
Affiliation(s)
- Robert W Wheatley
- Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
28
|
Liu S, Ammirati MJ, Song X, Knafels JD, Zhang J, Greasley SE, Pfefferkorn JA, Qiu X. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations. J Biol Chem 2012; 287:13598-610. [PMID: 22298776 DOI: 10.1074/jbc.m111.274126] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human glucokinase (GK) is a principal regulating sensor of plasma glucose levels. Mutations that inactivate GK are linked to diabetes, and mutations that activate it are associated with hypoglycemia. Unique kinetic properties equip GK for its regulatory role: although it has weak basal affinity for glucose, positive cooperativity in its binding of glucose causes a rapid increase in catalytic activity when plasma glucose concentrations rise above euglycemic levels. In clinical trials, small molecule GK activators (GKAs) have been efficacious in lowering plasma glucose and enhancing glucose-stimulated insulin secretion, but they carry a risk of overly activating GK and causing hypoglycemia. The theoretical models proposed to date attribute the positive cooperativity of GK to the existence of distinct protein conformations that interconvert slowly and exhibit different affinities for glucose. Here we report the respective crystal structures of the catalytic complex of GK and of a GK-glucose complex in a wide open conformation. To assess conformations of GK in solution, we also carried out small angle x-ray scattering experiments. The results showed that glucose dose-dependently converts GK from an apo conformation to an active open conformation. Compared with wild type GK, activating mutants required notably lower concentrations of glucose to be converted to the active open conformation. GKAs decreased the level of glucose required for GK activation, and different compounds demonstrated distinct activation profiles. These results lead us to propose a modified mnemonic model to explain cooperativity in GK. Our findings may offer new approaches for designing GKAs with reduced hypoglycemic risk.
Collapse
Affiliation(s)
- Shenping Liu
- Structural Biology and Biophysics, Pfizer Groton Laboratories, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Knauer SH, Hartl-Spiegelhauer O, Schwarzinger S, Hänzelmann P, Dobbek H. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. FEBS J 2012; 279:816-31. [PMID: 22221834 DOI: 10.1111/j.1742-4658.2012.08473.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent oxygenases are versatile catalysts associated with a number of different biological functions in which they use the oxidizing power of activated dioxygen to convert a variety of substrates. A mononuclear nonheme iron center is used to couple the decarboxylation of the cosubstrate α-ketoglutarate with a two-electron oxidation of the substrate, which is a hydroxylation in most cases. Although Fe(II)/α-ketoglutarate-dependent oxygenases have diverse amino acid sequences and substrate specifity, it is assumed that they share a common mechanism. One representative of this enzyme family is the Fe(II)/α-ketoglutarate-dependent taurine dioxygenase that catalyzes the hydroxylation of taurine yielding sulfite and aminoacetaldehyde. Its mechanism has been studied in detail becoming a model system for the whole enzyme family. However, its oligomeric state and architecture have been disputed. Here, we report the biochemical and kinetic characterization of the Fe(II)/α-ketoglutarate-dependent taurine dioxygenase from Pseudomonas putida KT2440 (TauD(Pp) ). We also present three crystal structures of the apo form of this enzyme. Comparisons with taurine dioxygenase from Escherichia coli (TauD(Ec) ) demonstrate that both enzymes are quite similar regarding their spectra, structure and kinetics, and only minor differences for the accumulation of intermediates during the reaction have been observed. Structural data and analytical gel filtration, as well as sedimentation velocity analytical ultracentrifugation, show that both TauD(Pp) and TauD(Ec) are tetramers in solution and in the crystals, which is in contrast to the earlier description of taurine dioxygenase from E. coli as a dimer. Database The atomic coordinates and structure factors have been deposited with the Brookhaven Protein Data Bank (entry 3PVJ, 3V15, 3V17) Structured digital abstract • tauDpp and tauDpp bind by molecular sieving (View interaction) • tauDpp and tauDpp bind by x-ray crystallography (View interaction) • tauDEc and tauDEc bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Stefan H Knauer
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Björkelid C, Bergfors T, Unge T, Mowbray SL, Jones TA. Structural studies on Mycobacterium tuberculosis DXR in complex with the antibiotic FR-900098. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:134-43. [PMID: 22281742 DOI: 10.1107/s0907444911052231] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/03/2011] [Indexed: 11/10/2022]
Abstract
A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize the essential isoprenoid precursor isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway that is found in humans. As part of a structure-based drug-discovery program against tuberculosis, DXR, the enzyme that carries out the second step in the MEP pathway, has been investigated. This enzyme is the target for the antibiotic fosmidomycin and its active acetyl derivative FR-900098. The structure of DXR from Mycobacterium tuberculosis in complex with FR-900098, manganese and the NADPH cofactor has been solved and refined. This is a new crystal form that diffracts to a higher resolution than any other DXR complex reported to date. Comparisons with other ternary complexes show that the conformation is that of the enzyme in an active state: the active-site flap is well defined and the cofactor-binding domain has a conformation that brings the NADPH into the active site in a manner suitable for catalysis. The substrate-binding site is highly conserved in a number of pathogens that use this pathway, so any new inhibitor that is designed for the M. tuberculosis enzyme is likely to exhibit broad-spectrum activity.
Collapse
Affiliation(s)
- Christofer Björkelid
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
31
|
Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:49-90. [PMID: 22297510 DOI: 10.1007/978-1-4614-0980-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The past few decades have seen tremendous advances in single-particle electron -cryo-microscopy (cryo-EM). The field has matured to the point that near-atomic resolution density maps can be generated for icosahedral viruses without the need for crystallization. In parallel, substantial progress has been made in determining the structures of nonicosahedrally arranged proteins in viruses by employing either single-particle cryo-EM or cryo-electron tomography (cryo-ET). Implicit in this course have been the availability of a new generation of electron cryo-microscopes and the development of the computational tools that are essential for generating these maps and models. This methodology has enabled structural biologists to analyze structures in increasing detail for virus particles that are in different morphogenetic states. Furthermore, electron imaging of frozen, hydrated cells, in the process of being infected by viruses, has also opened up a new avenue for studying virus structures "in situ". Here we present the common techniques used to acquire and process cryo-EM and cryo-ET data and discuss their implications for structural virology both now and in the future.
Collapse
|
32
|
Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci U S A 2011; 108:15763-8. [PMID: 21911405 DOI: 10.1073/pnas.1112398108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acyl-homoserine lactone (AHL) quorum sensing controls gene expression in hundreds of Proteobacteria including a number of plant and animal pathogens. Generally, the AHL receptors are members of a family of related transcription factors, and although they have been targets for development of antivirulence therapeutics there is very little structural information about this class of bacterial receptors. We have determined the structure of the transcription factor, QscR, bound to N-3-oxo-dodecanoyl-homoserine lactone from the opportunistic human pathogen Pseudomonas aeruginosa at a resolution of 2.55 Å. The ligand-bound QscR is a dimer with a unique symmetric "cross-subunit" arrangement containing multiple dimerization interfaces involving both domains of each subunit. The QscR dimer appears poised to bind DNA. Predictions about signal binding and dimerization contacts were supported by studies of mutant QscR proteins in vivo. The acyl chain of the AHL is in close proximity to the dimerization interfaces. Our data are consistent with an allosteric mechanism of signal transmission in the regulation of DNA binding and thus virulence gene expression.
Collapse
|
33
|
Olucha J, Meneely KM, Chilton AS, Lamb AL. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa. J Biol Chem 2011; 286:31789-98. [PMID: 21757711 PMCID: PMC3173084 DOI: 10.1074/jbc.m111.265876] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/02/2011] [Indexed: 11/06/2022] Open
Abstract
The ornithine hydroxylase from Pseudomonas aeruginosa (PvdA) catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine, which is subsequently formylated to generate the iron-chelating hydroxamates of the siderophore pyoverdin. PvdA belongs to the class B flavoprotein monooxygenases, which catalyze the oxidation of substrates using NADPH as the electron donor and molecular oxygen. Class B enzymes include the well studied flavin-containing monooxygenases and Baeyer-Villiger monooxygenases. The first two structures of a class B N-hydroxylating monooxygenase were determined with FAD in oxidized (1.9 Å resolution) and reduced (3.03 Å resolution) states. PvdA has the two expected Rossmann-like dinucleotide-binding domains for FAD and NADPH and also a substrate-binding domain, with the active site at the interface between the three domains. The structures have NADP(H) and (hydroxy)ornithine bound in a solvent-exposed active site, providing structural evidence for substrate and co-substrate specificity and the inability of PvdA to bind FAD tightly. Structural and biochemical evidence indicates that NADP(+) remains bound throughout the oxidative half-reaction, which is proposed to shelter the flavin intermediates from solvent and thereby prevent uncoupling of NADPH oxidation from hydroxylated product formation.
Collapse
Affiliation(s)
- Jose Olucha
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Kathleen M. Meneely
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Annemarie S. Chilton
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Audrey L. Lamb
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
34
|
Olucha J, Ouellette AN, Luo Q, Lamb AL. pH Dependence of catalysis by Pseudomonas aeruginosa isochorismate-pyruvate lyase: implications for transition state stabilization and the role of lysine 42. Biochemistry 2011; 50:7198-207. [PMID: 21751784 PMCID: PMC3156872 DOI: 10.1021/bi200599j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ∼100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains.
Collapse
Affiliation(s)
- Jose Olucha
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Andrew N. Ouellette
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Qianyi Luo
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Audrey L. Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
35
|
Warner LR, Varga K, Lange OF, Baker SL, Baker D, Sousa MC, Pardi A. Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set. J Mol Biol 2011; 411:83-95. [PMID: 21624375 PMCID: PMC3182476 DOI: 10.1016/j.jmb.2011.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The CS-RDC-NOE Rosetta program was used to generate the solution structure of a 27-kDa fragment of the Escherichia coli BamC protein from a limited set of NMR data. The BamC protein is a component of the essential five-protein β-barrel assembly machine in E. coli. The first 100 residues in BamC were disordered in solution. The Rosetta calculations showed that BamC₁₀₁₋₃₄₄ forms two well-defined domains connected by an ~18-residue linker, where the relative orientation of the domains was not defined. Both domains adopt a helix-grip fold previously observed in the Bet v 1 superfamily. ¹⁵N relaxation data indicated a high degree of conformational flexibility for the linker connecting the N-terminal domain and the C-terminal domain in BamC. The results here show that CS-RDC-NOE Rosetta is robust and has a high tolerance for misassigned nuclear Overhauser effect restraints, greatly simplifying NMR structure determinations.
Collapse
Affiliation(s)
- Lisa R. Warner
- Department of Chemistry and Biochemistry University of Colorado, Boulder Boulder, CO 80309, USA
| | - Krisztina Varga
- Department of Chemistry and Biochemistry University of Colorado, Boulder Boulder, CO 80309, USA
| | - Oliver F. Lange
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Susan L. Baker
- Department of Chemistry and Biochemistry University of Colorado, Boulder Boulder, CO 80309, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Marcelo C. Sousa
- Department of Chemistry and Biochemistry University of Colorado, Boulder Boulder, CO 80309, USA
| | - Arthur Pardi
- Department of Chemistry and Biochemistry University of Colorado, Boulder Boulder, CO 80309, USA
| |
Collapse
|
36
|
Bahar M, Graham S, Stuart D, Grimes J. Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 2011; 19:1011-20. [PMID: 21742267 PMCID: PMC3136756 DOI: 10.1016/j.str.2011.03.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/27/2022]
Abstract
The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 reveals that this major scaffolding protein comprises a double β barrel "jelly-roll" subunit arranged as pseudo-hexagonal trimers. These structural features are characteristic of the major capsid proteins of a lineage of large icosahedral double-stranded DNA viruses including human adenovirus and the bacteriophages PRD1 and PM2. Structure-based phylogenetic analysis confirms that VACV belongs to this lineage, suggesting that (analogously to higher organism embryogenesis) early poxvirus morphogenesis reflects their evolution from a lineage of viruses sharing a common icosahedral ancestor.
Collapse
Affiliation(s)
- Mohammad W. Bahar
- The Division of Structural Biology and the Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Stephen C. Graham
- The Division of Structural Biology and the Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - David I. Stuart
- The Division of Structural Biology and the Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Jonathan M. Grimes
- The Division of Structural Biology and the Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
37
|
Sathiyamoorthy K, Mills E, Franzmann TM, Rosenshine I, Saper MA. The crystal structure of Escherichia coli group 4 capsule protein GfcC reveals a domain organization resembling that of Wza. Biochemistry 2011; 50:5465-76. [PMID: 21449614 DOI: 10.1021/bi101869h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the 1.9 Å resolution crystal structure of enteropathogenic Escherichia coli GfcC, a periplasmic protein encoded by the gfc operon, which is essential for assembly of group 4 polysaccharide capsule (O-antigen capsule). Presumed gene orthologs of gfcC are present in capsule-encoding regions of at least 29 genera of Gram-negative bacteria. GfcC, a member of the DUF1017 family, is comprised of tandem β-grasp (ubiquitin-like) domains (D2 and D3) and a carboxyl-terminal amphipathic helix, a domain arrangement reminiscent of that of Wza that forms an exit pore for group 1 capsule export. Unlike the membrane-spanning C-terminal helix from Wza, the GfcC C-terminal helix packs against D3. Previously unobserved in a β-grasp domain structure is a 48-residue helical hairpin insert in D2 that binds to D3, constraining its position and sequestering the carboxyl-terminal amphipathic helix. A centrally located and invariant Arg115 not only is essential for proper localization but also forms one of two mostly conserved pockets. Finally, we draw analogies between a GfcC protein fused to an outer membrane β-barrel pore in some species and fusion proteins necessary for secreting biofilm-forming exopolysaccharides.
Collapse
|
38
|
Joseph AP, Srinivasan N, de Brevern AG. Improvement of protein structure comparison using a structural alphabet. Biochimie 2011; 93:1434-45. [PMID: 21569819 DOI: 10.1016/j.biochi.2011.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/12/2011] [Indexed: 12/29/2022]
Abstract
The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBs) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- INSERM UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques, 6, rue Alexandre Cabanel, 75739 Paris Cedex 15, France.
| | | | | |
Collapse
|
39
|
Baker ML, Abeysinghe SS, Schuh S, Coleman RA, Abrams A, Marsh MP, Hryc CF, Ruths T, Chiu W, Ju T. Modeling protein structure at near atomic resolutions with Gorgon. J Struct Biol 2011; 174:360-73. [PMID: 21296162 PMCID: PMC3078171 DOI: 10.1016/j.jsb.2011.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 11/29/2022]
Abstract
Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure.
Collapse
Affiliation(s)
- Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Björkelid C, Bergfors T, Henriksson LM, Stern AL, Unge T, Mowbray SL, Jones TA. Structural and functional studies of mycobacterial IspD enzymes. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:403-14. [PMID: 21543842 DOI: 10.1107/s0907444911006160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/18/2011] [Indexed: 11/10/2022]
Abstract
A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway found in humans. As part of a structure-based drug-discovery program against tuberculosis, IspD, the enzyme that carries out the third step in the MEP pathway, was targeted. Constructs of both the Mycobacterium smegmatis and the Mycobacterium tuberculosis enzymes that were suitable for structural and inhibitor-screening studies were engineered. Two crystal structures of the M. smegmatis enzyme were produced, one in complex with CTP and the other in complex with CMP. In addition, the M. tuberculosis enzyme was crystallized in complex with CTP. Here, the structure determination and crystallographic refinement of these crystal forms and the enzymatic characterization of the M. tuberculosis enzyme construct are reported. A comparison with known IspD structures allowed the definition of the structurally conserved core of the enzyme. It indicates potential flexibility in the enzyme and in particular in areas close to the active site. These well behaved constructs provide tools for future target-based screening of potential inhibitors. The conserved nature of the extended active site suggests that any new inhibitor will potentially exhibit broad-spectrum activity.
Collapse
Affiliation(s)
- Christofer Björkelid
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-75124 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Knauer SH, Buckel W, Dobbek H. Structural basis for reductive radical formation and electron recycling in (R)-2-hydroxyisocaproyl-CoA dehydratase. J Am Chem Soc 2011; 133:4342-7. [PMID: 21366233 DOI: 10.1021/ja1076537] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The radical enzyme (R)-2-hydroxyisocaproyl-CoA dehydratase catalyzes the dehydration of (R)-2-hydroxyisocaproyl-CoA in the fermentation of l-leucine by the human pathogenic bacterium Clostridium difficile. In contrast to other radical enzymes, such as bacterial class II ribonucleotide reductase or biotin synthase, the Fe/S cluster containing (R)-2-hydroxyisocaproyl-CoA dehydratase requires no special cofactors such as coenzyme B(12) or S-adenosylmethionine for radical generation. Instead it uses a single high-energy electron that is recycled after each turnover. The catalyzed reaction, an atypical α/β-dehydration, depends on the reductive formation of ketyl radicals on the substrate generated by injection of a single electron from the ATP-dependent activator protein. So far, it is unknown how the active electron is recycled and how unwanted side reactions are prevented, allowing for up to 10,000 turnovers. The crystal structure reveals that the heterodimeric protein contains two [4Fe-4S] clusters at a distance of 12 Å, each coordinated by three cysteines and one terminal ligand. The cluster in the α-subunit is part of the active site. In the absence of substrate, a water/hydroxide ion acts as the fourth ligand. The substrate replaces this ligand and coordinates the cluster via the carbonyl-oxygen of the thioester group. The cluster in the β-subunit has a terminal sulfhydryl/sulfido ligand and can act as a reservoir to protect the electron from unwanted side reactions via a recycling mechanism. The crystal structure of (R)-2-hydroxyisocaproyl-CoA dehydratase serves as a model for the reductively radical-generating metalloenzymes of the (R)-2-hydroxyacyl-CoA dehydratase and benzoyl-CoA reductase families.
Collapse
Affiliation(s)
- Stefan H Knauer
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | | | | |
Collapse
|
42
|
Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 2010; 107:20057-62. [PMID: 21030679 DOI: 10.1073/pnas.1010246107] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of HIV integrase (IN) strand transfer inhibitors (INSTIs) and our understanding of viral resistance to these molecules have been hampered by a paucity of available structural data. We recently reported cocrystal structures of the prototype foamy virus (PFV) intasome with raltegravir and elvitegravir, establishing the general INSTI binding mode. We now present an expanded set of cocrystal structures containing PFV intasomes complexed with first- and second-generation INSTIs at resolutions of up to 2.5 Å. Importantly, the improved resolution allowed us to refine the complete coordination spheres of the catalytic metal cations within the INSTI-bound intasome active site. We show that like the Q148H/G140S and N155H HIV-1 IN variants, the analogous S217H and N224H PFV INs display reduced sensitivity to raltegravir in vitro. Crystal structures of the mutant PFV intasomes in INSTI-free and -bound forms revealed that the amino acid substitutions necessitate considerable conformational rearrangements within the IN active site to accommodate an INSTI, thus explaining their adverse effects on raltegravir antiviral activity. Furthermore, our structures predict physical proximity and an interaction between HIV-1 IN mutant residues His148 and Ser/Ala140, rationalizing the coevolution of Q148H and G140S/A mutations in drug-resistant viral strains.
Collapse
|
43
|
Structure–function relationships of the α/β-hydrolase fold domain of neuroligin: A comparison with acetylcholinesterase. Chem Biol Interact 2010; 187:49-55. [DOI: 10.1016/j.cbi.2010.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 11/18/2022]
|
44
|
Sato A, Mishima M, Nagai A, Kim SY, Ito Y, Hakoshima T, Jee JG, Kitano K. Solution structure of the HRDC domain of human Bloom syndrome protein BLM. ACTA ACUST UNITED AC 2010; 148:517-25. [DOI: 10.1093/jb/mvq097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Churchill MEA, Klass J, Zoetewey DL. Structural analysis of HMGD-DNA complexes reveals influence of intercalation on sequence selectivity and DNA bending. J Mol Biol 2010; 403:88-102. [PMID: 20800069 DOI: 10.1016/j.jmb.2010.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.
Collapse
Affiliation(s)
- Mair E A Churchill
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Molecular Biology Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | - Janet Klass
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - David L Zoetewey
- Molecular Biology Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
46
|
Gorbalenya AE, Lieutaud P, Harris MR, Coutard B, Canard B, Kleywegt GJ, Kravchenko AA, Samborskiy DV, Sidorov IA, Leontovich AM, Jones TA. Practical application of bioinformatics by the multidisciplinary VIZIER consortium. Antiviral Res 2010; 87:95-110. [PMID: 20153379 PMCID: PMC7172516 DOI: 10.1016/j.antiviral.2010.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/03/2023]
Abstract
This review focuses on bioinformatics technologies employed by the EU-sponsored multidisciplinary VIZIER consortium (Comparative Structural Genomics of Viral Enzymes Involved in Replication, FP6 PROJECT: 2004-511960, active from 1 November 2004 to 30 April 2009), to achieve its goals. From the management of the information flow of the project, to bioinformatics-mediated selection of RNA viruses and prediction of protein targets, to the analysis of 3D protein structures and antiviral compounds, these technologies provided a communication framework and integrated solutions for steady and timely advancement of the project. RNA viruses form a large class of major pathogens that affect humans and domestic animals. Such RNA viruses as HIV, Influenza virus and Hepatitis C virus are of prime medical concern today, but the identities of viruses that will threaten human population tomorrow are far from certain. To contain outbreaks of common or newly emerging infections, prototype drugs against viruses representing the Virus Universe must be developed. This concept was championed by the VIZIER project which brought together experts in diverse fields to produce a concerted and sustained effort for identifying and validating targets for antivirus therapy in dozens of RNA virus lineages.
Collapse
Affiliation(s)
- Alexander E. Gorbalenya
- Molecular Virology Laboratory, Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, E4-P, 2300 RC Leiden, The Netherlands
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Philippe Lieutaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille, France
| | - Mark R. Harris
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Bruno Coutard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille, France
| | - Gerard J. Kleywegt
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Alexander A. Kravchenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Dmitry V. Samborskiy
- Molecular Virology Laboratory, Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, E4-P, 2300 RC Leiden, The Netherlands
| | - Igor A. Sidorov
- Molecular Virology Laboratory, Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, E4-P, 2300 RC Leiden, The Netherlands
| | - Andrey M. Leontovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - T. Alwyn Jones
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
47
|
Yakubovskaya E, Mejia E, Byrnes J, Hambardjieva E, Garcia-Diaz M. Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 2010; 141:982-93. [PMID: 20550934 PMCID: PMC2887341 DOI: 10.1016/j.cell.2010.05.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/30/2010] [Accepted: 05/07/2010] [Indexed: 12/28/2022]
Abstract
Defects in mitochondrial gene expression are associated with aging and disease. Mterf proteins have been implicated in modulating transcription, replication and protein synthesis. We have solved the structure of a member of this family, the human mitochondrial transcriptional terminator MTERF1, bound to dsDNA containing the termination sequence. The structure indicates that upon sequence recognition MTERF1 unwinds the DNA molecule, promoting eversion of three nucleotides. Base flipping is critical for stable binding and transcriptional termination. Additional structural and biochemical results provide insight into the DNA binding mechanism and explain how MTERF1 recognizes its target sequence. Finally, we have demonstrated that the mitochondrial pathogenic G3249A and G3244A mutations interfere with key interactions for sequence recognition, eliminating termination. Our results provide insight into the role of mterf proteins and suggest a link between mitochondrial disease and the regulation of mitochondrial transcription.
Collapse
Affiliation(s)
| | | | - James Byrnes
- Department of Pharmacological Sciences. Stony Brook University. BST 7-169. Stony Brook, New York, 11794-8651
| | - Elena Hambardjieva
- Department of Pharmacological Sciences. Stony Brook University. BST 7-169. Stony Brook, New York, 11794-8651
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences. Stony Brook University. BST 7-169. Stony Brook, New York, 11794-8651
| |
Collapse
|
48
|
Deng X, Lee J, Michael AJ, Tomchick DR, Goldsmith EJ, Phillips MA. Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. J Biol Chem 2010; 285:25708-19. [PMID: 20534592 DOI: 10.1074/jbc.m110.121137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent basic amino acid decarboxylases from the beta/alpha-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-A resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the beta/alpha-barrel domain of one subunit and the beta-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the beta-barrel domain we refer to as the "specificity helix." Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu(314), which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5'-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
49
|
Mourão A, Varrot A, Mackereth CD, Cusack S, Sattler M. Structure and RNA recognition by the snRNA and snoRNA transport factor PHAX. RNA (NEW YORK, N.Y.) 2010; 16:1205-16. [PMID: 20430857 PMCID: PMC2874172 DOI: 10.1261/rna.2009910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/02/2010] [Indexed: 05/29/2023]
Abstract
Small nuclear and small nucleolar RNAs (snRNAs and snoRNAs) are critical components of snRNPs and snoRNPs and play an essential role in the maturation of, respectively, mRNAs and rRNAs within the nucleus of eukaryotic cells. Complex and specific pathways exist for the assembly of snRNPs and snoRNPs, involving, for instance, nucleocytoplasmic transport of snRNAs and intranuclear transport between compartments of snoRNAs. The phosphorylated adaptor for nuclear export (PHAX) is required for nuclear export of snRNAs in metazoans and also involved in the intranuclear transport of snoRNAs to Cajal bodies. PHAX contains a conserved single-stranded nucleic acid binding domain (RNA_GG_bind domain) with no sequence homology with any other known RNA-binding module. Here, we report NMR and X-ray crystallography studies that elucidate the structural basis for RNA recognition by the PHAX RNA-binding domain (PHAX-RBD). The crystal structure of the RNA_GG_bind domain from the parasite Cryptosporidium parvum (Cp RBD) forms well-folded dimers in solution in the absence of any ligand. The human PHAX-RBD is monomeric and only adopts a tertiary fold upon RNA binding. The PHAX-RBD represents a novel helical fold and binds single-stranded RNA with micromolar affinity without sequence specificity. RNA recognition by human PHAX-RBD is consistent with mutational analysis that affects RNA binding and PHAX-mediated nuclear export. Our data suggest that the PHAX-RBD mediates auxiliary RNA contacts with the snRNA and snoRNA substrates that are required for transport and/or substrate release.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Circular Dichroism
- Cryptosporidium parvum/genetics
- Humans
- Models, Molecular
- Nucleic Acid Conformation
- Nucleocytoplasmic Transport Proteins/metabolism
- Phosphoproteins/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Kitano K, Kim SY, Hakoshima T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 2010; 18:177-87. [PMID: 20159463 DOI: 10.1016/j.str.2009.12.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 11/25/2022]
Abstract
The RecQ family of DNA helicases including WRN (Werner syndrome protein) and BLM (Bloom syndrome protein) protects the genome against deleterious changes. Here we report the cocrystal structure of the RecQ C-terminal (RQC) domain of human WRN bound to a DNA duplex. In the complex, the RQC domain specifically interacted with a blunt end of the duplex and, surprisingly, unpaired a Watson-Crick base pair in the absence of an ATPase domain. The beta wing, an extended hairpin motif that is characteristic of winged-helix motifs, was used as a "separating knife" to wedge between the first and second base pairs, whereas the recognition helix, a principal component of helix-turn-helix motifs that are usually embedded within DNA grooves, was unprecedentedly excluded from the interaction. Our results demonstrate a function of the winged-helix motif central to the helicase reaction, establishing the first structural paradigm concerning the DNA structure-specific activities of the RecQ helicases.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|