1
|
Mansouri M, Berger P. Strategies for multigene expression in eukaryotic cells. Plasmid 2014; 75:12-7. [PMID: 25034976 DOI: 10.1016/j.plasmid.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Multigene delivery systems for heterologous multiprotein expression in mammalian cells are a key technology in contemporary biological research. Multiprotein expression is essential for a variety of applications, including multiparameter analysis of living cells in vitro, changing the fate of stem cells, or production of multiprotein complexes for structural biology. Depending on the application, these expression systems have to fulfill different requirements. For some applications, homogenous expression in all cells with defined stoichiometry is necessary, whereas other applications need long term expression or require that the proteins are not modified at the N- and C-terminus. Here we summarize available multiprotein expression systems and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen PSI, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
2
|
Parham JH, Kost T, Hutchins JT. Effects of pCIneo and pCEP4 expression vectors on transient and stable protein production in human and simian cell lines. Cytotechnology 2012; 35:181-7. [PMID: 22358857 DOI: 10.1023/a:1013131415382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To support and meet the demand for recombinant proteins early in the drug discovery process, much work has been directed toward improving the methods used for transient gene transfection and expression. A factor which could potentially affect the outcome of experiments is the choice of the expression vector. Conventional vectors such as pCIneo and pcDNA3 have been used frequently. Each of these places the gene of interest under the control of the CMV promoter. An interesting alternative is provided by episomal vectors. For example, the pCEP4 vector contains the gene coding for the Epstein Barr nuclear antigen as well as the EBNA ori P sequence. This combination allows for the episomal replication of the plasmid. In preliminary experiments, we compared transient secreted placental alkaline phosphatase production in 8 cell lines from 3 different species using the pCIneo vs. pCEP4 vectors and found the utility of the pCEP4 vector to be limited to the human 293 EBNA cell line. In this paper, we have compared the two vectors in six cell lines of simian and human origin, measuring the transient production of secreted placental alkaline phosphatase and human hepatocyte growth factor. In general, the pCEP4 vector produced higher amounts of both proteins in transient transfections. Results were particularly pronounced in the HEK 293 and 293 EBNA cell lines. Stable pools of cells (uncloned) expressing human hepatocyte growth factor were isolated using pCIneo and pCEP4 and protein production levels were compared to those seen in transient transfections. Stable expression with pCEP4 was found to produce the highest levels of human hepatocyte growth factor in 3 of 4 cell lines. Finally, electroporation and FuGENE(TM)6(Roche, Indianapolis IN) as transfection methods were compared measuring transient production of secreted placental alkaline phosphatase, human hepatocyte growth factor, and green fluorescent protein. FuGENE produced higher protein concentrations in less time than electroporation for all 3 proteins.
Collapse
Affiliation(s)
- J H Parham
- GlaxoSmithKline Discovery Research, 5 Moore Drive, Research Triangle Park, NC, 27709, USA,
| | | | | |
Collapse
|
3
|
Trowitzsch S, Klumpp M, Thoma R, Carralot JP, Berger I. Light it up: highly efficient multigene delivery in mammalian cells. Bioessays 2011; 33:946-55. [PMID: 22002169 DOI: 10.1002/bies.201100109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multigene delivery and expression systems are emerging as key technologies for many applications in contemporary biology. We have developed new methods for multigene delivery and expression in eukaryotic hosts for a variety of applications, including production of protein complexes for structural biology and drug development, provision of multicomponent protein biologics, and cell-based assays. We implemented tandem recombineering to facilitate rapid generation of multicomponent gene expression constructs for efficient transformation of mammalian cells, resulting in homogenous cell populations. Analysis of multiple parameters in living cells may require co-expression of fluorescently tagged sensors simultaneously in a single cell, at defined and ideally controlled ratios. Our method enables such applications by overcoming currently limiting challenges. Here, we review recent multigene delivery and expression strategies and their exploitation in mammalian cells. We discuss applications in drug discovery assays, interaction studies, and biologics production, which may benefit in the future from our novel approach.
Collapse
|
4
|
Koehn J, Hunt I. High-Throughput Protein Production (HTPP): a review of enabling technologies to expedite protein production. Methods Mol Biol 2009; 498:1-18. [PMID: 18988015 DOI: 10.1007/978-1-59745-196-3_1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recombinant protein production plays a crucial role in the drug discovery process, contributing to several key stages of the pathway. These include exploratory research, target validation, high-throughput screening (HTS), selectivity screens, and structural biology studies. Therefore the quick and rapid production of high-quality recombinant proteins is a critical component of the successful development of therapeutic small molecule inhibitors. This chapter will therefore attempt to provide an overview of some of the current "best-in-class" cloning, expression, and purification strategies currently available that enhance protein production capabilities and enable greater throughput. As such the chapter should also enable a reader with limited understanding of the high-throughput protein production (HTPP) process with the necessary information to set up and equip a laboratory for multiparallel protein production.
Collapse
Affiliation(s)
- Jim Koehn
- Protein Structure Unit, Centre for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | |
Collapse
|
5
|
Baldi L, Muller N, Picasso S, Jacquet R, Girard P, Thanh HP, Derow E, Wurm FM. Transient Gene Expression in Suspension HEK-293 Cells: Application to Large-Scale Protein Production. Biotechnol Prog 2008; 21:148-53. [PMID: 15903252 DOI: 10.1021/bp049830x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in genomics, proteomics, and structural biology raised the general need for significant amounts of pure recombinant protein (r-protein). Because of the difficulty in obtaining in some cases proper protein folding in bacteria, several methods have been established to obtain large amounts of r-proteins by transgene expression in mammalian cells. We have developed three nonviral DNA transfer protocols for suspension-adapted HEK-293 and CHO cells: (1) a calcium phosphate based method (Ca-Pi), (2) a calcium-mediated method called Calfection, and (3) a polyethylenimine-based method (PEI). The first two methods have already been scaled up to 14 L and 100 L for HEK-293 cells in bioreactors. The third method, entirely serum-free, has been successfully applied to both suspension-adapted CHO and HEK-293 cells. We describe here the application of this technology to the transient expression in suspension cultivated HEK-293 EBNA cells of some out of more than 20 secreted r-proteins, including antibodies, dimeric proteins, and tagged proteins of various complexity. Most of the proteins were expressed from different plasmid vectors within 5-10 days after the availability of the DNA. Transfections were successfully performed from the small scale (1 mL in 12-well microtiter plates) to the 2 L scale. The results reported made it possible to establish an optimized cell culture and transfection protocol that minimizes batch-to-batch variations in protein expression. The work presented here proves the applicability and robustness of transient transfection technology for the expression of a variety of recombinant proteins.
Collapse
Affiliation(s)
- Lucia Baldi
- Laboratory of Cellular Biotechnology, Institute for Biological Engineering and Biotechhnology, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Pham PL, Kamen A, Durocher Y. Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 2007; 34:225-37. [PMID: 17172668 DOI: 10.1385/mb:34:2:225] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure their functional folding and proper posttranslational modifications. Large-scale transfection of human embryonic kidney 293 or Chinese hamster ovary cells is now an established technology that can be used in the production of hundreds of milligram to gram quantities of a r-protein in less than 1 mo from cloning of its cDNA. This chapter aims to provide an overview of large-scale transfection technology with a particular emphasis on calcium phosphate and polyethylenimine-mediated gene transfer.
Collapse
Affiliation(s)
- Phuong Lan Pham
- Laboratoire de Biotechnologie Vétérinaire et Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, CP5000, Sainte-Hyacinthe (Québec) J2S 7C6, Canada
| | | | | |
Collapse
|
7
|
Cazalla D, Sanford JR, Cáceres JF. A rapid and efficient protocol to purify biologically active recombinant proteins from mammalian cells. Protein Expr Purif 2005; 42:54-8. [PMID: 15878828 DOI: 10.1016/j.pep.2005.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 03/24/2005] [Accepted: 03/30/2005] [Indexed: 11/15/2022]
Abstract
Here, we describe a simple and efficient method for the expression and purification of active recombinant proteins in mammalian cells. This method uses the expression of T7 epitope-tagged proteins in transiently transfected 293T cells grown in monolayer, followed by anti-T7-agarose affinity chromatography. This procedure yields approximately between 75 and 100 microg of biologically active protein/150 cm(2) flask that can be used for biochemical studies. We have tested this protocol for the expression of the prototype SR protein, SF2/ASF, which is a member of the SR protein family with a role in constitutive and alternative splicing. We show that SF2/ASF purified using this protocol is able to complement an S100 HeLa extract, demonstrating that is biologically active. Moreover, expression of a novel SR-related protein that it is required for the second step of pre-mRNA splicing also rendered an active protein. In summary, we present a protocol based on transient transfection of mammalian cells that results in easy purification of significant amounts of biologically active proteins.
Collapse
|
8
|
Bahia D, Cheung R, Buchs M, Geisse S, Hunt I. Optimisation of insect cell growth in deep-well blocks: development of a high-throughput insect cell expression screen. Protein Expr Purif 2005; 39:61-70. [PMID: 15596361 DOI: 10.1016/j.pep.2004.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/18/2004] [Indexed: 11/22/2022]
Abstract
This report describes a method to culture insects cells in 24 deep-well blocks for the routine small-scale optimisation of baculovirus-mediated protein expression experiments. Miniaturisation of this process provides the necessary reduction in terms of resource allocation, reagents, and labour to allow extensive and rapid optimisation of expression conditions, with the concomitant reduction in lead-time before commencement of large-scale bioreactor experiments. This therefore greatly simplifies the optimisation process and allows the use of liquid handling robotics in much of the initial optimisation stages of the process, thereby greatly increasing the throughput of the laboratory. We present several examples of the use of deep-well block expression studies in the optimisation of therapeutically relevant protein targets. We also discuss how the enhanced throughput offered by this approach can be adapted to robotic handling systems and the implications this has on the capacity to conduct multi-parallel protein expression studies.
Collapse
Affiliation(s)
- Daljit Bahia
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 2005; 40:1-22. [PMID: 15721767 DOI: 10.1016/j.pep.2004.10.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/07/2004] [Indexed: 10/26/2022]
Abstract
In the post-genomic era, increasingly greater demands and expectations are being placed on protein production laboratories to produce more proteins and in faster timelines. This has been coupled with an exponential increase in the number of requests for the production of proteins which lack structural and functional information. No longer can groups use literature available in the public domain solely to drive their expression strategy, and moreover current expression and concomitant purification strategies clearly do not meet modern-day demands for protein production. This review will therefore attempt to provide a definitive review of current 'best in class' cloning, expression and purification systems, and the adaptations and developments that have been made by laboratories, both academic and industrial, to enhance protein production throughput.
Collapse
Affiliation(s)
- Ian Hunt
- Novartis Horsham Research Centre, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, UK.
| |
Collapse
|
10
|
Furger A, Jungi TW, Salomone JY, Weynants V, Roditi I. Stable expression of biologically active recombinant bovine interleukin-4 in Trypanosoma brucei. FEBS Lett 2001; 508:90-4. [PMID: 11707274 DOI: 10.1016/s0014-5793(01)03031-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have explored the potential of Trypanosoma brucei as a eukaryotic expression system. Procyclic forms, which correspond to an insect-adapted stage, can easily be cultured in vitro. The cells grow to densities approximately 10-fold greater than higher eukaryotic cells and are not infectious for mammals. An expression vector which can stably integrate into the genome was used to express high levels of recombinant bovine interleukin-4 (IL-4). Trypanosome-derived IL-4 is released into the medium and is biologically active. The recombinant protein down-regulates CD14 expression in human macrophages and inhibits NO production by stimulated bovine macrophages.
Collapse
Affiliation(s)
- A Furger
- Institut für Zellbiologie, Universität Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Little M, Kipriyanov SM, Le Gall F, Moldenhauer G. Of mice and men: hybridoma and recombinant antibodies. IMMUNOLOGY TODAY 2000; 21:364-70. [PMID: 10916138 DOI: 10.1016/s0167-5699(00)01668-6] [Citation(s) in RCA: 290] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thousands of mouse monoclonal antibodies have been produced from hybridomas over the past 25 years. The same technique can now be used to clone human antibodies from transgenic mice. Full-length antibodies and recombinant fragments engineered for various diagnostic and therapeutic applications can be obtained in reasonably large amounts after expression in mammalian cells, milk and plants.
Collapse
Affiliation(s)
- M Little
- Affirmed Therapeutics AG, Dr-Albert-Reimann-Strabetae 2, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|
12
|
Small GJ, Hemingway J. Differential glycosylation produces heterogeneity in elevated esterases associated with insecticide resistance in the brown planthopper Nilaparvata lugens Stål. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:443-453. [PMID: 10802235 DOI: 10.1016/s0965-1748(00)00007-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The major insecticide resistance mechanism in the brown planthopper Nilaparvata lugens involves overproduction of esterases. Esterases purified from a resistant strain appeared as a ladder of bands on isoelectric focussing (IEF) gels from pI 4.7 to 5.0. Two-dimensional electrophoresis showed that isozymes ranged in size from 66 to 68 kDa with those of lower pI being apparently smaller. All isozymes detected by two-dimensional electrophoresis were glycosylated. N-glycosidase A reduced the number of isozymes on IEF to two, with increased pI and an increased molecular weight of 69 kDa. No O-linked glycans were detected. Deglycosylation had no effect on esterase activity, hence glycosylation is not involved in active site conformation. As N-glycosidase F completely deglycosylated the esterases, none of the glycans has an alpha1,3-bound core fucose. Reactivity with the lectins GNA, MAA and DSA, combined with differential cleavage of N-linked glycans with endoglycosidases F1 and F2, indicated that terminally linked mannose is present in high mannose and/or hybrid type glycans and that terminally linked sialic acid and galactose-beta(1-4)-N-acetylglucosamine are present in biantennary complexes. Neuraminidase treatment had the same effect on pI of isozymes as complete deglycosylation. Therefore, the majority of the heterogeneity of elevated esterases on IEF is due to differential attachment of sialic acid to glycans of the two proteins.
Collapse
Affiliation(s)
- G J Small
- Cardiff School of Biosciences, University of Wales Cardiff, P.O. Box 915, Cardiff, UK.
| | | |
Collapse
|