1
|
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour-New Insights and Perspectives. Life (Basel) 2024; 14:1425. [PMID: 39598223 PMCID: PMC11595344 DOI: 10.3390/life14111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Extremophiles, throughout evolutionary time, have evolved a plethora of unique strategies to overcome hardships associated with the environments they are found in. Modifying their genome, showing a bias towards certain amino acids, redesigning their proteins, and enhancing their membranes and other organelles with specialised chemical compounds are only some of those strategies. Scientists can utilise such attributes of theirs for a plethora of biotechnological and astrobiological applications. Moreover, the rigorous study of such microorganisms regarding their evolution and ecological niche can offer deep insight into science's most paramount inquiries such as how life originated on Earth and whether we are alone in the universe. The intensification of studies involving extremophiles in the future can prove to be highly beneficial for humanity, even potentially ameliorating modern problems such as those related to climate change while also expanding our knowledge about the complex biochemical reactions that ultimately resulted in life as we know it today.
Collapse
Affiliation(s)
- George N. Angelakis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Chrysianna Psarologaki
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Biology and Psychology, Georg-August University of Göttingen, Wilhelm-Weber-Straße 2, 37073 Göttingen, Germany
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| |
Collapse
|
2
|
Marshall LK, Fahrenbach AC, Thordarson P. RNA-Binding Peptides Inspired by the RNA Recognition Motif. ACS Chem Biol 2024; 19:243-248. [PMID: 38314708 DOI: 10.1021/acschembio.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
β-Hairpin peptides with RNA-binding sequences mimicking the central two β-strands of the RNA recognition motif (RRM) protein domain have been observed to bind in a 2:1 fashion to a series of RNA homooligonucleotides in aqueous solution (PBS buffer, pH 7.40) with binding energies (-27 to -35 kJ mol-1) similar to those of full-size protein RRMs. The peptides display mild selectivities with respect to the binding of the different homooligomers. Binding studies in 500 mM magnesium chloride suggest that the complex formation is not predominantly driven by Coulombic attraction. These peptides represent a starting point for further studies of non-Coulombic binding of RNA by peptides and proteins, which is important in the context of contemporary biology, potential therapeutic applications, and prebiotic peptide-RNA interactions.
Collapse
|
3
|
Mauksch M. Spontaneous emergence of enantioenriched chiral aldol reaction products from Achiral precursors in solution and origin of biological homochirality of sugars: a first-principles study. Phys Chem Chem Phys 2023; 25:1734-1754. [PMID: 36594779 DOI: 10.1039/d2cp04285a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Experimental reports about observation of spontaneous mirror symmetry breaking and chiral amplification in stereoselective Mannich and aldol reactions, run under fully achiral initial conditions, have drawn a lot of attention, fuelled partly by the role these reactions could have played in chemical evolution as a cause for still puzzling observed homochirality of biomolecules, often considered a prerequisite for the origin of life. We have now revisited this still unresolved problem, using DFT computation of all combinatorially possible transition states and numerical solution of complete set of resulting coupled kinetic rate equations to model the aldol reaction rigorously "from the first principles" and without making any a priori assumptions. Spontaneous mirror symmetry breaking in this autocatalytic, reversible, closed and homogenous system is explained by a supercritical pitchfork bifurcation, occurring in concentrations of enantiomers due to time-delayed kinetic instability of racemic composition of reaction mixture, when reactants are initially provided in non-stoichiometric quantities. Same process, taking place under similar conditions in primordial "soup" of chemicals, might conceivably explain origin of biological homochirality of sugar molecules on early earth billions of years ago. Our results suggest that seemingly innocuous chemical reactions could exhibit unexpected and counter-intuitive emergent behaviour, when initial conditions are appropriately chosen. Chiral amplification in self-catalyzed aldol reaction occurs during approach of thermodynamic equilibrium in accord with principle of microscopic reversibility and second law of thermodynamics.
Collapse
Affiliation(s)
- Michael Mauksch
- Department of Chemistry and Pharmacy, Institute of Theoretical Chemistry, Computer Chemistry Center, Nägelsbachstrasse 25a, 91052 Erlangen, Germany.
| |
Collapse
|
4
|
Altair T, Borges LGF, Galante D, Varela H. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents. Life (Basel) 2021; 11:777. [PMID: 34440521 PMCID: PMC8401828 DOI: 10.3390/life11080777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the pioneering experimental work performed by Urey and Miller around 70 years ago, several experimental works have been developed for approaching the question of the origin of life based on very few well-constructed hypotheses. In recent years, attention has been drawn to the so-called alkaline hydrothermal vents model (AHV model) for the emergence of life. Since the first works, perspectives from complexity sciences, bioenergetics and thermodynamics have been incorporated into the model. Consequently, a high number of experimental works from the model using several tools have been developed. In this review, we present the key concepts that provide a background for the AHV model and then analyze the experimental approaches that were motivated by it. Experimental tools based on hydrothermal reactors, microfluidics and chemical gardens were used for simulating the environments of early AHVs on the Hadean Earth (~4.0 Ga). In addition, it is noteworthy that several works used techniques from electrochemistry to investigate phenomena in the vent-ocean interface for early AHVs. Their results provided important parameters and details that are used for the evaluation of the plausibility of the AHV model, and for the enhancement of it.
Collapse
Affiliation(s)
- Thiago Altair
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Luiz G. F. Borges
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Hamilton Varela
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
5
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
6
|
Altstein AD. The progene hypothesis: the nucleoprotein world and how life began. Biol Direct 2015; 10:67. [PMID: 26612610 PMCID: PMC4662029 DOI: 10.1186/s13062-015-0096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
In this article, I review the results of studies on the origin of life distinct from the popular RNA world hypothesis. The alternate scenario postulates the origin of the first bimolecular genetic system (a polynucleotide gene and a polypeptide processive polymerase) with simultaneous replication and translation and includes the following key features: 1. The bimolecular genetic system emerges not from mononucleotides and monoamino acids, but from progenes, namely, trinucleotides aminoacylated on 3'-end by a non-random amino acid (NpNpNp ~ pX ~ Aa, where N--deoxyribo- or ribonucleoside, p--phosphate, X--a bifunctional agent, for example ribose, Aa--amino acid, ~ macroerge bond). Progenes are used as substrates for simultaneous synthesis of a polynucleotide and a polypeptide. Growth of the system is controlled by the growing polypeptide, and the bimolecular genetic system emerges as an extremely rare event. The first living being (virus-like organism protoviroid, Protoviroidum primum) arises and reproduces in prebiotic liposome-like structures using progenes. A population of protoviroids possessing the genetic system evolves in accordance with the Darwinian principle. Early evolution from protoviroid world to protocell world is shortly described. 2. The progene forming mechanism (NpNp + Np ~ pX ~ Aa) makes it possible to explain the emergence of the prebiotic physicochemical group genetic code, as well as the selection of organic compounds for the future genetic system from the racemic environment. 3. The protoviroid is reproduced on a progene basis via replicative transcription-translation (RTT, the first molecular genetic process) that is similar to its modern counterparts. Nothing is required for the emergence and reproduction of the protoviroid except for progenes and conditions for their formation. 4. The general scheme of early evolution is as follows: prebiotic world → protoviroid (nucleoprotein) world → protocell (DNA-RNA-protein) world → LUCA (Last Universal Common Ancestor) → modern cell world. This scheme exclude the existence of an independent RNA world as predecessor of the cellular world.
Collapse
Affiliation(s)
- Anatoly D Altstein
- Institute of Gene Biology RAS, NF Gamaleya Federal Center of Epidemiology and Microbiology, IM Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
7
|
Marakushev SA, Belonogova OV. The divergence and natural selection of autocatalytic primordial metabolic systems. ORIGINS LIFE EVOL B 2013; 43:263-81. [PMID: 23860777 DOI: 10.1007/s11084-013-9340-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/28/2013] [Indexed: 11/24/2022]
Abstract
The diversity of the central metabolism of modern organisms is caused by the existence of a few metabolic modules, combination of which produces multiple metabolic pathways. This paper analyzes biomimetically reconstructed coupled autocatalytic cycles as the basis of ancestral metabolic systems. The mechanism for natural selection and evolution in autocatalytic chemical systems may be affected by natural homeostatic parameters such as ambient chemical potentials, temperature, and pressure. Competition between separate parts of an autocatalytic network with positive-plus-negative feedback resulted in the formation of primordial autotrophic, mixotrophic, and heterotrophic metabolic systems. This work examined the last common ancestor of a set of coupled metabolic cycles in a population of protocells. Physical-chemical properties of these cycles determined the main principles of natural selection for the ancestral Bacteria and Archaea taxa.
Collapse
Affiliation(s)
- Sergey A Marakushev
- Institute of Problem of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia.
| | | |
Collapse
|
8
|
Trevors J, Pollack G. Origin of microbial life hypothesis: A gel cytoplasm lacking a bilayer membrane, with infrared radiation producing exclusion zone (EZ) water, hydrogen as an energy source and thermosynthesis for bioenergetics. Biochimie 2012; 94:258-62. [DOI: 10.1016/j.biochi.2011.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
|
9
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Triadic conceptual structure of the maximum entropy approach to evolution. Biosystems 2011; 103:315-30. [DOI: 10.1016/j.biosystems.2010.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/19/2010] [Accepted: 10/24/2010] [Indexed: 11/23/2022]
|
11
|
Tsokolov S. A theory of circular organization and negative feedback: defining life in a cybernetic context. ASTROBIOLOGY 2010; 10:1031-1042. [PMID: 21162683 DOI: 10.1089/ast.2010.0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
Collapse
|
12
|
McGuinness ET. Some Molecular Moments of the Hadean and Archaean Aeons: A Retrospective Overview from the Interfacing Years of the Second to Third Millennia. Chem Rev 2010; 110:5191-215. [DOI: 10.1021/cr050061l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene T. McGuinness
- Department of Chemistry & Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2690
| |
Collapse
|
13
|
|
14
|
|
15
|
Abstract
The study of the human skin evolution, allows a new vision to ancient questions such as the significance of human skin color variation, the correlations between bipedality and loss of body hair, and the correlations among epidermal appendages and structures of the skin with the changes on environment and evolution of humans. Paleodermatology would be an appropriated term to designate the study of the human skin evolution. The etymology of this word comes from a Greek root (paleo = ancient). It is a multidisciplinary subject for researchers such as dermatologists, anthropologists, physiologists, and orthopedics. It should include the evaluations regarding physiology, thermoregulation, and the evolution of the human skin structures.
Collapse
Affiliation(s)
- Omar Lupi
- Curso de Pós-Graduação em Dermatologia Universidade Federal do Rio de Janeiro (UFRJ) and Instituto de Dermatologia Prof. Rubem Azulay, Santa Casa RJ, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Lupi O, Dadalti P, Cruz E, Goodheart C. Did the first virus self-assemble from self-replicating prion proteins and RNA? Med Hypotheses 2007; 69:724-30. [PMID: 17512677 DOI: 10.1016/j.mehy.2007.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
DNA is the molecule responsible for storing and processing genetic information today. In Earth's primeval environmental conditions, RNA was probably more suited for this function, due to its capability to act also as a catalytic enzyme. Some proteins are stable and reliable molecules even in extreme conditions, and under certain circumstances, proteins may play a role in transmitting certain phenotypes that are inherited in a non-Mendelian manner. When the dominant native state of a prion protein is replaced by a misfolded one, the resultant infective protein is associated with several neurological diseases in mammals. The misfolded proteins are remarkably resistant to even the most extreme environments. Prions are also associated with the transmission of certain fungal traits epigenetically, supporting the hypothesis that prions are a possible relic of an early stage of peptide evolution. The primitive world probably contained both self-replicating RNA molecules and prions, and prions attach easily to nucleic acids, and also fold and cause other proteins to fold in the same way. Consequently, a capsid could form from prion protein, enclosing the RNA, and perhaps creating the first RNA virus. A capsid originating from prion proteins would be a versatile and effective protection to RNA and could also explain some characteristics of virus self-assembly that are not well understood.
Collapse
|
17
|
Abstract
The First Cell arose in the previously pre-biotic world with the coming together of several entities that gave a single vesicle the unique chance to carry out three essential and quite different life processes. These were: (a) to copy informational macromolecules, (b) to carry out specific catalytic functions, and (c) to couple energy from the environment into usable chemical forms. These would foster subsequent cellular evolution and metabolism. Each of these three essential processes probably originated and was lost many times prior to The First Cell, but only when these three occurred together was life jump-started and Darwinian evolution of organisms began. The replication of informational molecules that made only occasional mistakes allowed evolution to form all the basic components of cellular life. Ribozymes, the first informational molecules, were also catalytic. Energy coupling required the formation of a closed lipid surface to generate and maintain an ion-motive gradient. The closed vesicle partitioned components and avoided dilution within the primordial sea. Closed membranes were essential for the first self-reproducing cell to arise and for its descendants to disperse. Subsequent cellular development after the origin of The First Cell led to the beginnings of intermediary metabolism and membrane transport processes. This long process, subject to strong evolutionary selection, developed the cellular biology that is now shared by all extant organisms.
Collapse
Affiliation(s)
- Arthur L Koch
- Biology Department, Indiana University, Bloomington, IN 47405-6801, USA
| | | |
Collapse
|
18
|
Lupi O, Dadalti P, Cruz E, Sanberg PR. Are prions related to the emergence of early life? Med Hypotheses 2006; 67:1027-33. [PMID: 16814482 DOI: 10.1016/j.mehy.2006.04.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/17/2022]
Abstract
DNA and RNA are the modern cellular molecules related to the storage and processing of the genetic information. However, in the Earth primeval environment conditions, these two molecules are far from being the best option for this function due to their great complexity and sensibility to heat. Experiments have been showing that proteins are very stable and reliable molecules even in very extreme conditions and, under certain circumstances, could be related to the transmission of certain phenotypes that are inherited in a non-Mendelian manner. Prions, infective proteins that are associated to several neurological diseases among mammals by replacing their dominant native state of prion protein by a misfolded one, are remarkably resistant to even the most extreme environments. Furthermore, prions are also associated to the transmission of certain fungal traits in an epigenetical model. These two characteristics support the hypothesis that prions are a possible relic of early stage peptide evolution and may represent the reminiscence of a very ancient analogical code of biological transmission of information rather than the digital one represented by modern nucleic acids.
Collapse
Affiliation(s)
- Omar Lupi
- Post-Graduation Course of Dermatology (UFRJ, UNI-RIO and Instituto de Dermatologia Prof. Rubem Azulay/Santa Casa do Rio de Janeiro), Rua Frei Leandro, 16/501, 22.470-210 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
19
|
|
20
|
Pross A. On the emergence of biological complexity: life as a kinetic state of matter. ORIGINS LIFE EVOL B 2005; 35:151-66. [PMID: 16010995 DOI: 10.1007/s11084-005-5272-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 12/08/2003] [Indexed: 10/25/2022]
Abstract
A kinetic model that attempts to further clarify the nature of biological complexification is presented. Its essence: reactions of replicating systems and those of regular chemical systems follow different selection rules leading to different patterns of chemical behavior. For regular chemical systems selection is fundamentally thermodynamic, whereas for replicating chemical systems selection is effectively kinetic. Building on an extension of the kinetic stability, concept it is shown that complex replicators tend to be kinetically more stable than simple ones, leading to an on-going process of kinetically-directed complexification. The high kinetic stability of simple replicating assemblies such as phages, compared to the low kinetic stability of the assembly components, illustrates the complexification principle. The analysis suggests that living systems constitute a kinetic state of matter, as opposed to the traditional thermodynamic states that dominate the inanimate world, and reaffirms our view that life is a particular manifestation of replicative chemistry.
Collapse
Affiliation(s)
- Addy Pross
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
21
|
Abstract
The nanometer scale is a special place where all sciences meet and develop a particularly strong interdisciplinarity. While biology is a source of inspiration for nanoscientists, chemistry has a central role in turning inspirations and methods from biological systems to nanotechnological use. DNA is the biological molecule by which nanoscience and nanotechnology is mostly fascinated. Nature uses DNA not only as a repository of the genetic information, but also as a controller of the expression of the genes it contains. Thus, there are codes embedded in the DNA sequence that serve to control recognition processes on the atomic scale, such as the base pairing, and others that control processes taking place on the nanoscale. From the chemical point of view, DNA is the supramolecular building block with the highest informational content. Nanoscience has therefore the opportunity of using DNA molecules to increase the level of complexity and efficiency in self-assembling and self-directing processes.
Collapse
Affiliation(s)
- Bruno Samorì
- Department of Biochemistry G. Moruzzi, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | |
Collapse
|
22
|
|
23
|
Abstract
DNA and RNA are nucleic acids that cells and viruses use to produce copies of themselves. However, there is an immense paucity of knowledge on how these nucleic acids originated and changed as early bacteria became capable of growth and cell division. One possibility is that parallel evolution of the genetic code and protein synthesis was required for assembly of the first cells capable of growth and division. It is also possible that DNA-RNA duplices were intermediate genetic material in the early assembly of the first cells. These ideas will be discussed as well as other aspects of the assembly of the first cells on the Earth.
Collapse
Affiliation(s)
- Jack Thomas Trevors
- Laboratory of Microbial Technology, Department of Environmental Biology University of Guelph, Guelph, Ontario, Canada, NIG 2Wl.
| |
Collapse
|
24
|
Abstract
Popular hypotheses that attempt to explain the origin of prebiotic molecules and cellular life capable of growth and division are not always agreed upon. In this manuscript, information on early bacterial life on Earth is examined using information from several disciplines. For example, knowledge can be integrated from physics, thermodynamics, planetary sciences, geology, biogeochemistry, lipid chemistry, primordial cell structures, cell and molecular biology, microbiology, metabolism and genetics. The origin of life also required a combination of elements, compounds and environmental physical-chemical conditions that allowed cells to assemble in less than a billion years. This may have been widespread in the subsurface of the early Earth located at microscopic physical domains.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbial Technology, Department of Environmental Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1.
| |
Collapse
|
25
|
Davis BK. Molecular evolution before the origin of species. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:77-133. [PMID: 12225777 DOI: 10.1016/s0079-6107(02)00012-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids at conserved sites in the residue sequence of 10 ancient proteins, from 844 phylogenetically diverse sources, were used to specify their time of origin in the interval before species divergence from the last common ancestor (LCA). The order of amino acid addition to the genetic code, based on biosynthesis path length and other molecular evidence, provided a reference for evaluating the 'code age' of each residue profile examined. Significantly earlier estimates were obtained for conserved amino acid residues in these proteins than non-conserved residues. Evidence from the primary structure of 'fossil' proteins thus corroborated the biosynthetic order of amino acid addition to the code.Low potential ferredoxin (Fdxn) had the earliest residue profile among the proteins in this study. A phylogenetic tree for 82 prokaryote Fdxn sequences was rooted midway between bacteria and archaea branches. LCA Fdxn had a 23-residue antecedent whose residue profile matched mid-expansion phase codon assignments and included an amide residue. It contained a highly acidic N-terminal region and a non-charged C-terminal region, with all four cysteine residues. This small protein apparently anchored a [4Fe-4S] cluster, ligated by C-terminal cysteines, to a positively charged mineral surface, consistent with mediating e(-) transfer in a primordial surface system before cells appeared. Its negatively charged N-terminal 'attachment site' was highly mutable during evolution of ancestral Fdxn for Bacteria and Archaea, consistent with a loss of function after cell formation. An initial glutamate to lysine substitution may link 'attachment site' removal to early post-expansion phase entry of basic amino acids to the code. As proteins evidently anchored non-charged amide residues initially, surface attachment of cofactors and other functional groups emerges as a general function of pre-cell proteins.A phylogenetic tree of 107 proteolipid (PL) helix-1 sequences from H(+)-ATPase of bacteria, archaea and eukaryotes had its root between prokaryote branches. LCA PL h1 residue profile optimally fit a late expansion phase codon array. Sequence repeats in transmembrane PL helices h1 and h2 indicated formation of the archetypal PL hairpin structure involved successive tandem duplications, initiated within the gene for an 11-residue (or 4-residue) hydrophobic peptide. Ancestral PL h1 lacked acidic residues, in a fundamental departure from the prototype pre-cell protein. By this stage, proteins with a hydrophobic domain had evolved. Its non-polar, late expansion phase residue profile point to ancestral PL being a component of an early permeable cell membrane. Other indicators of cell formation about this stage of code evolution include phospholipid biosynthesis path length, FtsZ residue profile, and late entry of basic amino acids into the genetic code. Estimates based on conserved residues in prokaryote cell septation protein, FtsZ, and proteins involved with synthesis, transcription and replication of DNA revealed FtsZ, ribonucleotide reductase, RNA polymerase core subunits and 5'-->3' flap exonuclease, FEN-1, originated soon after cells putatively evolved. While reverse transcriptase and topoisomerase I, Topo I, appeared late in the pre-divergence era, when the genetic code was essentially complete. The transition from RNA genes to a DNA genome seemingly proceeded via formation of a DNA-RNA heteroduplex. These results suggest formation of DNA awaited evolution of a catalyst with a hydrophobic domain, capable of sequestering radical bearing intermediates in its synthesis from ribonucleotide precursors. Late formation of topology altering protein, Topo I, further suggests consolidation of genes into chromosomes followed synthesis of comparatively thermostable DNA strands.
Collapse
Affiliation(s)
- Brian K Davis
- Research Foundation of Southern California, Inc., La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Self-Organization of Template-Replicating Polymers and the Spontaneous Rise of Genetic Information. ENTROPY 2001. [DOI: 10.3390/e3040273] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|