1
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
2
|
Moore J, Luduena R, Tuszynski JA. Editorial: The isotypes of α, β and γ tubulin: From evolutionary origins to roles in metazoan development and ligand binding differences. Front Cell Dev Biol 2023; 11:1176739. [PMID: 37056998 PMCID: PMC10086353 DOI: 10.3389/fcell.2023.1176739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Affiliation(s)
- Jeffrey Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard Luduena
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- DIMEAS, Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
- *Correspondence: Jack A. Tuszynski,
| |
Collapse
|
3
|
Kaiser F, Krautwurst S, Salentin S, Haupt VJ, Leberecht C, Bittrich S, Labudde D, Schroeder M. The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases. Sci Rep 2020; 10:12647. [PMID: 32724042 PMCID: PMC7387524 DOI: 10.1038/s41598-020-69100-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defines the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric effects.
Collapse
Affiliation(s)
- Florian Kaiser
- Biotechnology Center (BIOTEC), TU Dresden, 01307, Dresden, Germany. .,PharmAI GmbH, Tatzberg 47, 01307, Dresden, Germany.
| | - Sarah Krautwurst
- University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | | | - V Joachim Haupt
- Biotechnology Center (BIOTEC), TU Dresden, 01307, Dresden, Germany.,PharmAI GmbH, Tatzberg 47, 01307, Dresden, Germany
| | | | | | - Dirk Labudde
- University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | | |
Collapse
|
4
|
Demongeot J, Seligmann H. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories. Sci Rep 2020; 10:7693. [PMID: 32376895 PMCID: PMC7203183 DOI: 10.1038/s41598-020-64627-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs are complex structures that presumably evolved by tRNA accretions. Statistical properties of tRNA secondary structures correlate with genetic code integration orders of their cognate amino acids. Ribosomal RNA secondary structures resemble those of tRNAs with recent cognates. Hence, rRNAs presumably evolved from ancestral tRNAs. Here, analyses compare secondary structure subcomponents of small ribosomal RNA subunits with secondary structures of theoretical minimal RNA rings, presumed proto-tRNAs. Two independent methods determined different accretion orders of rRNA structural subelements: (a) classical comparative homology and phylogenetic reconstruction, and (b) a structural hypothesis assuming an inverted onion ring growth where the three-dimensional ribosome's core is most ancient and peripheral elements most recent. Comparisons between (a) and (b) accretions orders with RNA ring secondary structure scales show that recent rRNA subelements are: 1. more like RNA rings with recent cognates, indicating ongoing coevolution between tRNA and rRNA secondary structures; 2. less similar to theoretical minimal RNA rings with ancient cognates. Our method fits (a) and (b) in all examined organisms, more with (a) than (b). Results stress the need to integrate independent methods. Theoretical minimal RNA rings are potential evolutionary references for any sequence-based evolutionary analyses, independent of the focal data from that study.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel
| |
Collapse
|
5
|
Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life. BIOLOGY 2020; 9:biology9050088. [PMID: 32344921 PMCID: PMC7285048 DOI: 10.3390/biology9050088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Previous experimental observations and theoretical hypotheses have been providing insight into a hypothetical world where an RNA hairpin or ring may have debuted as the primary informational and functional molecule. We propose a model revisiting the architecture of RNA-peptide interactions at the origin of life through the evolutionary dynamics of RNA populations. (2) Methods: By performing a step-by-step computation of the smallest possible hairpin/ring RNA sequences compatible with building up a variety of peptides of the primitive network, we inferred the sequence of a singular docosameric RNA molecule, we call the ALPHA sequence. Then, we searched for any relics of the peptides made from ALPHA in sequences deposited in the different public databases. (3) Results: Sequence matching between ALPHA and sequences from organisms among the earliest forms of life on Earth were found at high statistical relevance. We hypothesize that the frequency of appearance of relics from ALPHA sequence in present genomes has a functional necessity. (4) Conclusions: Given the fitness of ALPHA as a supportive sequence of the framework of all existing theories, and the evolution of Archaea and giant viruses, it is anticipated that the unique properties of this singular archetypal ALPHA sequence should prove useful as a model matrix for future applications, ranging from synthetic biology to DNA computing.
Collapse
|
6
|
Demongeot J, Seligmann H. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods. Gene 2020; 738:144436. [PMID: 32027954 DOI: 10.1016/j.gene.2020.144436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Accretions of tRNAs presumably formed the large complex ribosomal RNA structures. Similarities of tRNA secondary structures with rRNA secondary structures increase with the integration order of their cognate amino acid in the genetic code, indicating tRNA evolution towards rRNA-like structures. Here analyses rank secondary structure subelements of three large ribosomal RNAs (Prokaryota: Archaea: Thermus thermophilus; Bacteria: Escherichia coli; Eukaryota: Saccharomyces cerevisiae) in relation to their similarities with secondary structures formed by presumed proto-tRNAs, represented by 25 theoretical minimal RNA rings. These ranks are compared to those derived from two independent methods (ranks provide a relative evolutionary age to the rRNA substructure), (a) cladistic phylogenetic analyses and (b) 3D-crystallography where core subelements are presumed ancient and peripheral ones recent. Comparisons of rRNA secondary structure subelements with RNA ring secondary structures show congruence between ranks deduced by this method and both (a) and (b) (more with (a) than (b)), especially for RNA rings with predicted ancient cognate amino acid. Reconstruction of accretion histories of large rRNAs will gain from adequately integrating information from independent methods. Theoretical minimal RNA rings, sequences deterministically designed in silico according to specific coding constraints, might produce adequate scales for prebiotic and early life molecular evolution.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
7
|
|
8
|
Genetic codes optimized as a traveling salesman problem. PLoS One 2019; 14:e0224552. [PMID: 31658301 PMCID: PMC6816573 DOI: 10.1371/journal.pone.0224552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Standard Genetic Code (SGC) is robust to mutational errors such that frequently occurring mutations minimally alter the physio-chemistry of amino acids. The apparent correlation between the evolutionary distances among codons and the physio-chemical distances among their cognate amino acids suggests an early co-diversification between the codons and amino acids. Here we formulated the co-minimization of evolutionary distances between codons and physio-chemical distances between amino acids as a Traveling Salesman Problem (TSP) and solved it with a Hopfield neural network. In this unsupervised learning algorithm, macromolecules (e.g., tRNAs and aminoacyl-tRNA synthetases) associating codons with amino acids were considered biological analogs of Hopfield neurons associating "tour cities" with "tour positions". The Hopfield network efficiently yielded an abundance of genetic codes that were more error-minimizing than SGC and could thus be used to design artificial genetic codes. We further argue that as a self-optimization algorithm, the Hopfield neural network provides a model of origin of SGC and other adaptive molecular systems through evolutionary learning.
Collapse
|
9
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings recapitulate the order of the genetic code's codon-amino acid assignments. J Theor Biol 2019; 471:108-116. [DOI: 10.1016/j.jtbi.2019.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/19/2018] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
|
10
|
Palacios-Pérez M, Andrade-Díaz F, José MV. A Proposal of the Ur-proteome. ORIGINS LIFE EVOL B 2018; 48:245-258. [PMID: 29127550 DOI: 10.1007/s11084-017-9553-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
Herein we outline a plausible proteome, encoded by assuming a primeval RNY genetic code. We unveil the primeval phenotype by using only the RNA genotype; it means that we recovered the most ancestral proteome, mostly made of the 8 amino acids encoded by RNY triplets. By looking at those fragments, it is noticeable that they are positioned, not at catalytic sites, but in the cofactor binding sites. It implies that the stabilization of a molecule appeared long before its catalytic activity, and therefore the Ur-proteome comprised a set of proteins modules that corresponded to Cofactor Stabilizing Binding Sites (CSBSs), which we call the primitive bindome. With our method, we reconstructed the structures of the "first protein modules" that Sobolevsky and Trifonov (2006) found by using only RMSD. We also examine the probable cofactors that bound to them. We discuss the notion of CSBSs as the first proteins modules in progenotes in the context of several proposals about the primitive forms of life.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Fernando Andrade-Díaz
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico.
| |
Collapse
|
11
|
Seligmann H. Protein Sequences Recapitulate Genetic Code Evolution. Comput Struct Biotechnol J 2018; 16:177-189. [PMID: 30002789 PMCID: PMC6040577 DOI: 10.1016/j.csbj.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Several hypotheses predict ranks of amino acid assignments to genetic code's codons. Analyses here show that average positions of amino acid species in proteins correspond to assignment ranks, in particular as predicted by Juke's neutral mutation hypothesis for codon assignments. In all tested protein groups, including co- and post-translationally folding proteins, 'recent' amino acids are on average closer to gene 5' extremities than 'ancient' ones. Analyses of pairwise residue contact energies matrices suggest that early amino acids stereochemically selected late ones that stablilize residue interactions within protein cores, presumably producing 5'-late-to-3'-early amino acid protein sequence gradients. The gradient might reduce protein misfolding, also after mutations, extending principles of neutral mutations to protein folding. Presumably, in self-perpetuating and self-correcting systems like the genetic code, initial conditions produce similarities between evolution of the process (the genetic code) and 'ontogeny' of resulting structures (here proteins), producing apparent teleonomy between process and product.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
12
|
Ligabue-Braun R, Borguesan B, Verli H, Krause MJ, Dorn M. Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures. J Comput Biol 2017; 25:451-465. [PMID: 29267011 DOI: 10.1089/cmb.2017.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many structural bioinformatics problems, there is a broad range of unanswered questions about protein dynamics and amino acid properties. Proteins are not strictly static objects, but rather populate ensembles of conformations. One way to understand these particularities is to analyze the information available in experimental databases. The Ramachandran plot, despite being more than half a century old, remains an utterly useful tool in the study of protein conformation. Based on its assumptions, we inspected a large data set (11,130 protein structures, amounting to 5,255,768 residues) and discriminated the conformational preferences of each residue type regarding their secondary structure participation. These data were studied for phi [Formula: see text], psi [Formula: see text], and side chain chi [Formula: see text] angles, being presented in non-Ramachandranian plots. In the largest analysis of protein conformation made so far, we propose an original plot to depict conformational preferences in relation to different secondary structure elements. Despite confirming previous observations, our results strongly support a unique character for each residue type, whereas also reinforcing the observation that side chains have a major contribution to secondary structure and, by consequence, on protein conformation. This information can be further used in the development of more robust methods and computational strategies for structural bioinformatics problems.
Collapse
Affiliation(s)
- Rodrigo Ligabue-Braun
- 1 Center for Biotechnology, PPGBCM, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Bruno Borguesan
- 2 Institute of Informatics, PPGC, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Hugo Verli
- 1 Center for Biotechnology, PPGBCM, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Mathias J Krause
- 3 Institute for Mechanical Process Engineering and Mechanics (MVM), Institute for Applied and Numerical Mathematics (IANM), Karlsruhe Institute of Technology (KIT) , Karlsruhe, Germany
| | - Márcio Dorn
- 1 Center for Biotechnology, PPGBCM, Federal University of Rio Grande do Sul , Porto Alegre, Brazil .,2 Institute of Informatics, PPGC, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| |
Collapse
|
13
|
Stutz K, Müller AT, Hiss JA, Schneider P, Blatter M, Pfeiffer B, Posselt G, Kanfer G, Kornmann B, Wrede P, Altmann KH, Wessler S, Schneider G. Peptide-Membrane Interaction between Targeting and Lysis. ACS Chem Biol 2017; 12:2254-2259. [PMID: 28763193 DOI: 10.1021/acschembio.7b00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Certain cationic peptides interact with biological membranes. These often-complex interactions can result in peptide targeting to the membrane, or in membrane permeation, rupture, and cell lysis. We investigated the relationship between the structural features of membrane-active peptides and these effects, to better understand these processes. To this end, we employed a computational method for morphing a membranolytic antimicrobial peptide into a nonmembranolytic mitochondrial targeting peptide by "directed simulated evolution." The results obtained demonstrate that superficially subtle sequence modifications can strongly affect the peptides' membranolytic and membrane-targeting abilities. Spectroscopic and computational analyses suggest that N- and C-terminal structural flexibility plays a crucial role in determining the mode of peptide-membrane interaction.
Collapse
Affiliation(s)
- Katharina Stutz
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Alex T Müller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jan A Hiss
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Blatter
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Bernhard Pfeiffer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Gernot Posselt
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg , 5020 Salzburg, Austria
| | - Gil Kanfer
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) , Otto-Stern-Weg-3, 8093 Zurich, Switzerland
| | - Benoît Kornmann
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) , Otto-Stern-Weg-3, 8093 Zurich, Switzerland
| | - Paul Wrede
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg , 5020 Salzburg, Austria
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Bohórquez HJ, Suárez CF, Patarroyo ME. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Sci Rep 2017; 7:7717. [PMID: 28798365 PMCID: PMC5552740 DOI: 10.1038/s41598-017-08041-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn ↔ Asp, Phe ↔ Tyr, Lys ↔ Arg, Gln ↔ Glu, Ile ↔ Val, Met → Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{R}$$\end{document}R¯ = 0.85) between thirty amino acid mutability scales and the mutational inertia (IX), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions.
Collapse
Affiliation(s)
- Hugo J Bohórquez
- Bio-mathematics, Fundación Instituto de Inmunología de Colombia, FIDIC, Cra. 50 No. 26-00, Of. 102, Bogotá DC, 111321160, Cundinamarca, Colombia.
| | - Carlos F Suárez
- Bio-mathematics, Fundación Instituto de Inmunología de Colombia, FIDIC, Cra. 50 No. 26-00, Of. 102, Bogotá DC, 111321160, Cundinamarca, Colombia.,Universidad de Ciencias Aplicadas y Ambientales, UDCA, Bogotá DC, Colombia.,Universidad del Rosario, Bogotá DC, Colombia
| | - Manuel E Patarroyo
- Bio-mathematics, Fundación Instituto de Inmunología de Colombia, FIDIC, Cra. 50 No. 26-00, Of. 102, Bogotá DC, 111321160, Cundinamarca, Colombia.,Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
15
|
Wang H, Xie J, Shreeve TG, Ma J, Pallett DW, King LA, Possee RD. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera). PLoS One 2013; 8:e74508. [PMID: 24058580 PMCID: PMC3776811 DOI: 10.1371/journal.pone.0074508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5’-DWV-VDV1-DWV-3’. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.
Collapse
Affiliation(s)
- Hui Wang
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
- * E-mail:
| | - Jiazheng Xie
- Beijing Genome Institute, Yantian District, Shenzhen, China
| | - Tim G. Shreeve
- Department of Biological and Medical Sciences, Oxford Brooks University, Oxford, United Kingdom
| | - Jinmin Ma
- Beijing Genome Institute, Yantian District, Shenzhen, China
| | - Denise W. Pallett
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
| | - Linda A. King
- Department of Biological and Medical Sciences, Oxford Brooks University, Oxford, United Kingdom
| | - Robert D. Possee
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
| |
Collapse
|
16
|
Francis BR. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J Mol Evol 2013; 77:134-58. [PMID: 23743924 DOI: 10.1007/s00239-013-9567-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids-valine, alanine, aspartic acid, and glycine-were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-3944, USA,
| |
Collapse
|
17
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Egel R. Life's Order, Complexity, Organization, and Its Thermodynamic-Holistic Imperatives. Life (Basel) 2012; 2:323-63. [PMID: 25371269 PMCID: PMC4187152 DOI: 10.3390/life2040323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022] Open
Abstract
In memoriam Jeffrey S. Wicken (1942-2002)-the evolutionarily minded biochemist, who in the 1970/80s strived for a synthesis of biological and physical theories to fathom the tentative origins of life. Several integrative concepts are worth remembering from Wicken's legacy. (i) Connecting life's origins and complex organization to a preexisting physical world demands a thermodynamically sound transition. (ii) Energetic 'charging' of the prebiosphere must precede the emergence of biological organization. (iii) Environmental energy gradients are exploited progressively, approaching maximum interactive structure and minimum dissipation. (iv) Dynamic self-assembly of prebiotic organic matter is driven by hydrophobic tension between water and amphiphilic building blocks, such as aggregating peptides from non-polar amino acids and base stacking in nucleic acids. (v) The dynamics of autocatalytic self-organization are facilitated by a multiplicity of weak interactions, such as hydrogen bonding, within and between macromolecular assemblies. (vi) The coevolution of (initially uncoded) proteins and nucleic acids in energy-coupled and metabolically active so-called 'microspheres' is more realistic as a kinetic transition model of primal biogenesis than 'hypercycle replication' theories for nucleic acid replicators on their own. All these considerations blend well with the current understanding that sunlight UV-induced photo-electronic excitation of colloidal metal sulfide particles appears most suitable as a prebiotic driver of organic synthesis reactions, in tight cooperation with organic, phase-separated, catalytic 'microspheres'. On the 'continuist vs. miraculist' schism described by Iris Fry for origins-of-life considerations (Table 1), Wicken was a fervent early protagonist of holistic 'continuist' views and agenda.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
19
|
Egel R. Primal eukaryogenesis: on the communal nature of precellular States, ancestral to modern life. Life (Basel) 2012; 2:170-212. [PMID: 25382122 PMCID: PMC4187143 DOI: 10.3390/life2010170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/29/2011] [Accepted: 01/11/2012] [Indexed: 02/08/2023] Open
Abstract
This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Guimarães RC. Metabolic basis for the self-referential genetic code. ORIGINS LIFE EVOL B 2011; 41:357-71. [PMID: 21057876 DOI: 10.1007/s11084-010-9226-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/08/2010] [Indexed: 11/30/2022]
Abstract
An investigation of the biosynthesis pathways producing glycine and serine was necessary to clarify an apparent inconsistency between the self-referential model (SRM) for the formation of the genetic code and the model of coevolution of encodings and of amino acid biosynthesis routes. According to the SRM proposal, glycine was the first amino acid encoded, followed by serine. The coevolution model does not state precisely which the first encodings were, only presenting a list of about ten early assignments including the derivation of glycine from serine-this being derived from the glycolysis intermediate glycerate, which reverses the order proposed by the self-referential model. Our search identified the glycine-serine pathway of syntheses based on one-carbon sources, involving activities of the glycine decarboxylase complex and its associated serine hydroxymethyltransferase, which is consistent with the order proposed by the self-referential model and supports its rationale for the origin of the genetic code: protein synthesis was developed inside an early metabolic system, serving the function of a sink of amino acids; the first peptides were glycine-rich and fit for the function of building the early ribonucleoproteins; glycine consumption in proteins drove the fixation of the glycine-serine pathway.
Collapse
Affiliation(s)
- Romeu Cardoso Guimarães
- Departamento Biologia Geral, Universidad Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Tlusty T. A colorful origin for the genetic code: Information theory, statistical mechanics and the emergence of molecular codes. Phys Life Rev 2010; 7:362-76. [DOI: 10.1016/j.plrev.2010.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/25/2010] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
|
22
|
José MV, Morgado ER, Govezensky T. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models. Bull Math Biol 2010; 73:1443-76. [PMID: 20725796 DOI: 10.1007/s11538-010-9571-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 07/02/2010] [Indexed: 11/30/2022]
Abstract
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Collapse
Affiliation(s)
- Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| | | | | |
Collapse
|
23
|
McGuinness ET. Some Molecular Moments of the Hadean and Archaean Aeons: A Retrospective Overview from the Interfacing Years of the Second to Third Millennia. Chem Rev 2010; 110:5191-215. [DOI: 10.1021/cr050061l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene T. McGuinness
- Department of Chemistry & Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2690
| |
Collapse
|
24
|
On mapping the genetic code. J Theor Biol 2009; 259:860-2. [DOI: 10.1016/j.jtbi.2009.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/27/2009] [Accepted: 05/05/2009] [Indexed: 01/04/2023]
|
25
|
|
26
|
Guimarães RC, Moreira CHC, de Farias ST. A self-referential model for the formation of the genetic code. Theory Biosci 2008; 127:249-70. [PMID: 18493811 DOI: 10.1007/s12064-008-0043-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
A model for the formation of the genetic code is presented where protein synthesis is directed initially by tRNA dimers. Proteins that are resistant to degradation and efficient RNA-binders protect the RNAs. Replication becomes elongational producing poly-tRNAs from which the mRNAs and ribosomes are derived. Attributions are successively fixed to tRNAs paired through the perfect palindromic anticodons, with the same bases at the extremities (5'ANA: UNU 3'; GNG: CNC; principal dinucleotides, pDiN). The 5' degeneracy is then developed. The first pairs to be encoded correspond to the hydropathy correlation outliers (Gly-CC: Pro-GG and Ser-GA: Ser-CU) and to the sector of homogeneous pDiN, composed by two pyrimidines or two purines. These amino acids are preferred in the N-ends of proteins, stabilizers of proteins against catabolism and strong RNA-binders. The next pairs complete the sector of homogeneous pDiN (Asp, Glu-UC: Leu-AG and Asn, Lys-UU: Phe-AA). This set of nine amino acids forms the protein cores with the predominant aperiodic conformation. Next enter the pairs with mixed pDiN (one purine and one pyrimidine), the RY attributions composing the protein N-ends and the YR attributions the C-ends. The last pair contains the main punctuation signs (Ile, Met, iMet-AU: Tyr, Stop-UA). The model indicates that genetic information emerged during the process of formation of the coding/decoding system and that genes were defined by the proteins. Stable proteins constructed the nucleoprotein system by binding to the RNAs that produced them. In this circular rationale, genes are memories in a metabolic system for production of proteins that stabilize it. The simplicity and the highly deterministic character of the process suggest that the Last Universal Common Ancestor populations could be composed, in early stages, of lineages bearing similar genetic codes.
Collapse
Affiliation(s)
- Romeu Cardoso Guimarães
- Dept. Biologia Geral, Inst. Ciências Biológicas, Univ. Federal de Minas Gerais, Belo Horizonte, MG , 31270.901, Brazil.
| | | | | |
Collapse
|
27
|
Jones TE, Brown CL, Geslain R, Alexander RW, Ribas de Pouplana L. An operational RNA code for faithful assignment of AUG triplets to methionine. Mol Cell 2008; 29:401-7. [PMID: 18280245 DOI: 10.1016/j.molcel.2007.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/26/2007] [Accepted: 12/03/2007] [Indexed: 12/01/2022]
Abstract
The assignment of AUG codons to methionine remains a central question of the evolution of the genetic code. We have unveiled a strategy for the discrimination among tRNAs containing CAU (AUG-decoding) anticodons. Mycoplasma penetrans methionyl-tRNA synthetase can directly differentiate between tRNA(Ile)(CAU) and tRNA(Met)(CAU) transcripts (a recognition normally achieved through the modification of anticodon bases). This discrimination mechanism is based only on interactions with the acceptor stems of tRNA(Ile)(CAU) and tRNA(Met)(CAU). Thus, in certain species, the fidelity of translation of methionine codons requires a discrimination mechanism that is independent of the information contained in the anticodon.
Collapse
Affiliation(s)
- Thomas E Jones
- Barcelona Institute for Research in Biomedicine, Barcelona Science Park, C/Samitier 1-5, Barcelona 08015, Catalonia, Spain
| | | | | | | | | |
Collapse
|
28
|
Abstract
Cells somehow evolved from primordial chemistry and their emergence depended on the co-evolution of the cytoplasm, a genetic system and the cell membrane. It is widely believed that the cytoplasm evolved inside a primordial lipid vesicle, but here I argue that the earliest cytoplasm could have co-evolved to high complexity outside a vesicle on the membrane surface. An invagination of the membrane, aided by an early cytoskeletal system, may have formed the first cells--initially within primordial vesicles.
Collapse
|
29
|
Fournier GP, Gogarten JP. Signature of a primitive genetic code in ancient protein lineages. J Mol Evol 2007; 65:425-36. [PMID: 17922074 DOI: 10.1007/s00239-007-9024-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/21/2007] [Accepted: 07/05/2007] [Indexed: 10/22/2022]
Abstract
The genetic code is the syntactic foundation underlying the structure and function of every protein in the history of the biological world. Its highly ordered degenerate complexity suggests an incremental evolution, the result of a combination of selective, mechanistic, and random processes. These evolutionary processes are still poorly understood and remain an open question in the study of early life on Earth. We perform a compositional analysis of ribosomal proteins and ATPase subunits in bacterial and archaeal lineages, using conserved positions that came and remained under purifying selection before and up to the most recent common ancestor. An observable shift in amino acid usage at these conserved positions likely provides an untapped window into the history of protein sequence space, allowing events of genetic code expansion to be identified. We identify Cys, Glu, Phe, Ile, Lys, Val, Trp, and Tyr as recent additions to the genetic code, with Asn, Gln, Gly, and Leu among the more ancient. Our observations are consistent with a scenario in which genetic code expansion primarily favored amino acids that promoted an increase in polypeptide size and functionality. We propose that this expansion would have been critical in the takeover of many RNA-mediated processes, as well as the addition of novel biological functions inaccessible to an RNA-based physiology, such as crossing lipid membranes. Thus, expansion of the genetic code likely set the stage for the transition from RNA-based to protein-based life.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
30
|
Stoltzfus A, Yampolsky LY. Amino acid exchangeability and the adaptive code hypothesis. J Mol Evol 2007; 65:456-62. [PMID: 17896070 DOI: 10.1007/s00239-007-9026-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/18/2007] [Accepted: 08/23/2007] [Indexed: 11/26/2022]
Abstract
Since the genetic code first was determined, many have claimed that it is organized adaptively, so as to assign similar codons to similar amino acids. This claim has proved difficult to establish due to the absence of relevant comparative data on alternative primordial codes and of objective measures of amino acid exchangeability. Here we use a recently developed measure of exchangeability to evaluate a null hypothesis and two alternative hypotheses about the adaptiveness of the genetic code. The null hypothesis that there is no tendency for exchangeable amino acids to be assigned to similar codons can be excluded here as expected from earlier work. The first alternative hypothesis is that any such correlation between codon distance and amino acid distance is due to incremental mechanisms of code evolution, and not to adaptation to reduce deleterious effects of future mutations. More specifically, new codon assignments that occur by ambiguity reduction or by codon capture will tend to give rise to correlations, whether due to the condition of amino acid ambiguity, or to the condition of similarity between a new tRNA synthetase (or tRNA) and its parent. The second alternative hypothesis, the adaptive hypothesis, then may be defined as an excess relative to what may be expected given the incremental nature of evolution, reflecting true adaptation for robustness rather than an incidental effect. The results reported here indicate that most of the nonrandomness in the amino acids to codon assignments can be explained by incremental code evolution, with a small residue of orderliness that may reflect code adaptation.
Collapse
Affiliation(s)
- Arlin Stoltzfus
- Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
31
|
Farias STD, Moreira CHC, Guimarães RC. Structure of the genetic code suggested by the hydropathy correlation between anticodons and amino acid residues. ORIGINS LIFE EVOL B 2007; 37:83-103. [PMID: 16955335 DOI: 10.1007/s11084-006-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 11/08/2005] [Indexed: 10/24/2022]
Abstract
The correlation between hydropathies of anticodons and amino acids, detected by other authors utilizing scales of amino acid molecules in solution, was improved with the utilization of scales of amino acid residues in proteins. Three partitions were discerned in the correlation plot with the principal dinucleotides of anticodons (pDiN, excluding the wobble position). (a) The set of outliers of the correlation: Gly-CC, Pro-GG, Ser-GA and Ser-CU. The amino acids are consistently small, hydro-apathetic, stabilizers of protein N-ends, preferred in aperiodic protein conformations and belong to synthetases class II. The pDiN sequences are representative of the homogeneous sector (triplets NRR and NYY), distinguished from the mixed sector (triplets NRY and NYR), that depict a 70% correspondence to the synthetases class II and I, respectively. The triplet pairs proposed to be responsible for the coherence in the set of outliers are of the palindromic kind, where the lateral bases are the same, CCC: GGG and AGA: UCU. This suggests that UCU previously belonged to Ser, adding to other indications that the attribution of Arg to YCU was due to an expansion of the Arg-tRNA synthetase specificity. The other attributions produced two correlation sets. (b) One corresponds to the remaining pDiN of the homogeneous sector, containing both synthetase classes; its regression line overlapped the one formed by the remaining attributions to class II. (c) The other contains the pDiN of the mixed sector and produced steeper slopes, especially with the class I attributions. It is suggested that the correlation was established when the amino acid composition of the protein synthetases became progressively enriched and that the set of outliers were the earliest to have been fixed.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Department Biologia Geral, Institute Ciências Biológicas, University Federal de Minas Gerais, 31270.901 Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
32
|
Davis BK. Coevolution theory of the genetic code: is the precursor-product hypothesis invalid? Bioessays 2006; 27:1308; author reply 1309; discussion 1310. [PMID: 16299768 DOI: 10.1002/bies.20332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Sobolevsky Y, Trifonov EN. Conserved Sequences of Prokaryotic Proteomes and Their Compositional Age. J Mol Evol 2005; 61:591-6. [PMID: 16205982 DOI: 10.1007/s00239-004-0256-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 05/26/2005] [Indexed: 11/24/2022]
Abstract
A full repertoire of octapeptides which are present in at least 30 bacterial proteomes of total 131 currently available is computationally derived and filtered. An original search technique is used that, in terms of computational time and memory, is similar to the Suffix tree method. The presence of a given sequence in a large number of proteomes qualifies it as a conserved sequence. The larger the number of proteomes where it is found, the higher is the conservation. The concept of compositional age of the amino acid sequences ("compositional clock") is introduced for the first time. The compositional age is calculated on the basis of the consensus temporal order of appearance of amino acids in early evolution. The correlation between the compositional age and the sequence conservation is established.
Collapse
Affiliation(s)
- Yehoshua Sobolevsky
- Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
34
|
Copley SD, Smith E, Morowitz HJ. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci U S A 2005; 102:4442-7. [PMID: 15764708 PMCID: PMC555468 DOI: 10.1073/pnas.0501049102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 11/18/2022] Open
Abstract
The genetic code has certain regularities that have resisted mechanistic interpretation. These include strong correlations between the first base of codons and the precursor from which the encoded amino acid is synthesized and between the second base of codons and the hydrophobicity of the encoded amino acid. These regularities are even more striking in a projection of the modern code onto a simpler code consisting of doublet codons encoding a set of simple amino acids. These regularities can be explained if, before the emergence of macromolecules, simple amino acids were synthesized in covalent complexes of dinucleotides with alpha-keto acids originating from the reductive tricarboxylic acid cycle or reductive acetate pathway. The bases and phosphates of the dinucleotide are proposed to have enhanced the rates of synthetic reactions leading to amino acids in a small-molecule reaction network that preceded the RNA translation apparatus but created an association between amino acids and the first two bases of their codons that was retained when translation emerged later in evolution.
Collapse
Affiliation(s)
- Shelley D Copley
- Cooperative Institute for Research in Environmental Sciences, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
35
|
Abstract
The coevolution theory of the genetic code, which postulates that prebiotic synthesis was an inadequate source of all twenty protein amino acids, and therefore some of them had to be derived from the coevolving pathways of amino acid biosynthesis, has been assessed in the light of the discoveries of the past three decades. Its four fundamental tenets regarding the essentiality of amino acid biosynthesis, role of pretran synthesis, biosynthetic imprint on codon allocations and mutability of the encoded amino acids are proven by the new knowledge. Of the factors that guided the evolutionary selection of the universal code, the relative contributions of Amino Acid Biosynthesis: Error Minimization: Stereochemical Interaction are estimated to first approximation as 40,000,000:400:1, which suggests that amino acid biosynthesis represents the dominant factor shaping the code. The utility of the coevolution theory is demonstrated by its opening up experimental expansions of the code and providing a basis for locating the root of life.
Collapse
Affiliation(s)
- J Tze-Fei Wong
- Applied Genomics Laboratory and Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong, China.
| |
Collapse
|
36
|
Abstract
Temporal order ("chronology") of appearance of amino acids and their respective codons on evolutionary scene is reconstructed. A consensus chronology of amino acids is built on the basis of 60 different criteria each offering certain temporal order. After several steps of filtering the chronology vectors are averaged resulting in the consensus order: G, A, D, V, P, S, E, (L, T), R, (I, Q, N), H, K, C, F, Y, M, W. It reveals two important features: the amino acids synthesized in imitation experiments of S. Miller appeared first, while the amino acids associated with codon capture events came last. The reconstruction of codon chronology is based on the above consensus temporal order of amino acids, supplemented by the stability and complementarity rules first suggested by M. Eigen and P. Schuster, and on the earlier established processivity rule. At no point in the reconstruction the consensus amino-acid chronology was in conflict with these three rules. The derived genealogy of all 64 codons suggested several important predictions that are confirmed. The reconstruction of the origin and evolutionary history of the triplet code becomes, thus, a powerful research tool for molecular evolution studies, especially in its early stages.
Collapse
Affiliation(s)
- E N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Haifa 31905, Israel.
| |
Collapse
|
37
|
Abstract
Steps by which a nonliving chemical system could have transformed into a living system are described and discussed, assuming general features of Wächtershäuser's chemo-autotrophic surface theory of the origin of life. Environmental species such as CO2 and H2S are proposed to have reacted to form a quasi-steady state metal-bound intermediate (CH3-M) that slowly decayed into waste (CH4). Unpredictable dispersive reactions expanded the system to include surface-bound forms of the citric acid cycle intermediates (oxaloacetate-->citrate). Further reaction yielded an autocatalytic system in which raw materials are converted into the system at exponential rates. Combinatorial dispersive reactions that improved the performance of this system were automatically selected and incorporated into it. Systems evolved critical features of living systems (proteins, membranes, proteins, nucleic acids, etc.) using two related mechanisms called grafting and waste-conversion. Such living systems were transformed from less recognizable types (characterized by autocatalytic spreading, decentralization, poorly defined boundaries, etc.) into more recognizable ones (encapsulated by membranes, controlled by single-molecule genomes, etc.) that self-replicated by a cell division cycle and could evolve by the standard gene-based Darwinian mechanism. The resulting systems are viewed as having an autocatalytic network composed of three linked autocatalytic subreactions.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
38
|
Klipcan L, Safro M. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J Theor Biol 2004; 228:389-96. [PMID: 15135037 DOI: 10.1016/j.jtbi.2004.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 01/19/2004] [Accepted: 01/27/2004] [Indexed: 12/01/2022]
Abstract
The aminoacyl-tRNA synthetases (aaRSs) ensure the fidelity of the translation of the genetic code, covalently attaching appropriate amino acids to the corresponding nucleic acid adaptor molecules-tRNA. The fundamental role of aminoacylation reaction catalysed by aaRSs implies that representatives of the family are thought to be among the earliest proteins to appear. Based on sequence analysis and catalytic domain structure, aaRSs have been partitioned into two classes of 10 enzymes each. However, based on the structural and sequence data only, it will not be easily understood that the present partitioning is not governed by chance. Our findings suggest that organization of amino acid biosynthetic pathways and clustering of aaRSs into different classes are intimately related to one another. A plausible explanation for such a relationship is dictated by early link between aaRSs and amino acids biosynthetic proteins. The aaRSs catalytic cores are highly relevant to the ancient metabolic reactions, namely, amino acids and cofactors biosynthesis. In particular we show that class II aaRSs mostly associated with the primordial amino acids, while class I aaRSs are usually related to amino acids evolved lately. Reasoning from this we propose a possible chronology of genetic code evolution.
Collapse
Affiliation(s)
- Liron Klipcan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
39
|
Davis BK. Expansion of the genetic code in yeast: making life more complex. Bioessays 2004; 26:111-5. [PMID: 14745828 DOI: 10.1002/bies.10415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteins account for the catalytic and structural versatility displayed by all cells, yet they are assembled from a set of only 20 common amino acids. With few exceptions, only 61 nucleotide triplets also direct incorporation of these amino acids. Endeavors to expand the genetic code recently progressed to nucleus-containing cells, after Chin et al.1 transferred Escherichia coli genes for a mutant tyrosine-adaptor molecule and its synthetase into Saccharomyces cerevisiae. Transformed yeast cells were produced that exhibit efficient site-specific incorporation of non-biotic amino acids into proteins. This makes it likely that code complexity can be elevated experimentally in mammals.
Collapse
Affiliation(s)
- Brian K Davis
- Research Foundation of Southern California Inc., 5580 La Jolla Boulevard, #60, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Abstract
Since discovering the pattern by which amino acids are assigned to codons within the standard genetic code, investigators have explored the idea that natural selection placed biochemically similar amino acids near to one another in coding space so as to minimize the impact of mutations and/or mistranslations. The analytical evidence to support this theory has grown in sophistication and strength over the years, and counterclaims questioning its plausibility and quantitative support have yet to transcend some significant weaknesses in their approach. These weaknesses are illustrated here by means of a simple simulation model for adaptive genetic code evolution. There remain ill explored facets of the 'error minimizing' code hypothesis, however, including the mechanism and pathway by which an adaptive pattern of codon assignments emerged, the extent to which natural selection created synonym redundancy, its role in shaping the amino acid and nucleotide languages, and even the correct interpretation of the adaptive codon assignment pattern: these represent fertile areas for future research.
Collapse
Affiliation(s)
- Stephen J Freeland
- Department of Biology, University of Maryland, Baltimore County, Catonsville, MD, USA.
| | | | | |
Collapse
|
41
|
Biro JC, Benyó B, Sansom C, Szlávecz A, Fördös G, Micsik T, Benyó Z. A common periodic table of codons and amino acids. Biochem Biophys Res Commun 2003; 306:408-415. [PMID: 12804578 DOI: 10.1016/s0006-291x(03)00974-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.
Collapse
Affiliation(s)
- J C Biro
- Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
A model using suitable mathematical operators in the crystal basis model of the genetic code is presented. This model retains a requirement for stability of the genetic code against misreading or translation errors. The main features (including number of encoded amino-acids, nucleotide content, and synonymous codons multiplet dimension) are described for mitochondrial and eukaryotic genetic codes.
Collapse
Affiliation(s)
- A Sciarrino
- Dipartimento di Scienze Fisiche, Università di Napoli "Federico II" and I N FN, Sezione di Napoli, Complesso di Monte S Angelo, Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
43
|
Abstract
Popular hypotheses that attempt to explain the origin of prebiotic molecules and cellular life capable of growth and division are not always agreed upon. In this manuscript, information on early bacterial life on Earth is examined using information from several disciplines. For example, knowledge can be integrated from physics, thermodynamics, planetary sciences, geology, biogeochemistry, lipid chemistry, primordial cell structures, cell and molecular biology, microbiology, metabolism and genetics. The origin of life also required a combination of elements, compounds and environmental physical-chemical conditions that allowed cells to assemble in less than a billion years. This may have been widespread in the subsurface of the early Earth located at microscopic physical domains.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbial Technology, Department of Environmental Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1.
| |
Collapse
|
44
|
Davis BK. Molecular evolution before the origin of species. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:77-133. [PMID: 12225777 DOI: 10.1016/s0079-6107(02)00012-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids at conserved sites in the residue sequence of 10 ancient proteins, from 844 phylogenetically diverse sources, were used to specify their time of origin in the interval before species divergence from the last common ancestor (LCA). The order of amino acid addition to the genetic code, based on biosynthesis path length and other molecular evidence, provided a reference for evaluating the 'code age' of each residue profile examined. Significantly earlier estimates were obtained for conserved amino acid residues in these proteins than non-conserved residues. Evidence from the primary structure of 'fossil' proteins thus corroborated the biosynthetic order of amino acid addition to the code.Low potential ferredoxin (Fdxn) had the earliest residue profile among the proteins in this study. A phylogenetic tree for 82 prokaryote Fdxn sequences was rooted midway between bacteria and archaea branches. LCA Fdxn had a 23-residue antecedent whose residue profile matched mid-expansion phase codon assignments and included an amide residue. It contained a highly acidic N-terminal region and a non-charged C-terminal region, with all four cysteine residues. This small protein apparently anchored a [4Fe-4S] cluster, ligated by C-terminal cysteines, to a positively charged mineral surface, consistent with mediating e(-) transfer in a primordial surface system before cells appeared. Its negatively charged N-terminal 'attachment site' was highly mutable during evolution of ancestral Fdxn for Bacteria and Archaea, consistent with a loss of function after cell formation. An initial glutamate to lysine substitution may link 'attachment site' removal to early post-expansion phase entry of basic amino acids to the code. As proteins evidently anchored non-charged amide residues initially, surface attachment of cofactors and other functional groups emerges as a general function of pre-cell proteins.A phylogenetic tree of 107 proteolipid (PL) helix-1 sequences from H(+)-ATPase of bacteria, archaea and eukaryotes had its root between prokaryote branches. LCA PL h1 residue profile optimally fit a late expansion phase codon array. Sequence repeats in transmembrane PL helices h1 and h2 indicated formation of the archetypal PL hairpin structure involved successive tandem duplications, initiated within the gene for an 11-residue (or 4-residue) hydrophobic peptide. Ancestral PL h1 lacked acidic residues, in a fundamental departure from the prototype pre-cell protein. By this stage, proteins with a hydrophobic domain had evolved. Its non-polar, late expansion phase residue profile point to ancestral PL being a component of an early permeable cell membrane. Other indicators of cell formation about this stage of code evolution include phospholipid biosynthesis path length, FtsZ residue profile, and late entry of basic amino acids into the genetic code. Estimates based on conserved residues in prokaryote cell septation protein, FtsZ, and proteins involved with synthesis, transcription and replication of DNA revealed FtsZ, ribonucleotide reductase, RNA polymerase core subunits and 5'-->3' flap exonuclease, FEN-1, originated soon after cells putatively evolved. While reverse transcriptase and topoisomerase I, Topo I, appeared late in the pre-divergence era, when the genetic code was essentially complete. The transition from RNA genes to a DNA genome seemingly proceeded via formation of a DNA-RNA heteroduplex. These results suggest formation of DNA awaited evolution of a catalyst with a hydrophobic domain, capable of sequestering radical bearing intermediates in its synthesis from ribonucleotide precursors. Late formation of topology altering protein, Topo I, further suggests consolidation of genes into chromosomes followed synthesis of comparatively thermostable DNA strands.
Collapse
Affiliation(s)
- Brian K Davis
- Research Foundation of Southern California, Inc., La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Abstract
Acetyl-coenzyme A synthases (ACS) are Ni-Fe-S containing enzymes found in archaea and bacteria. They are divisible into 4 classes. Class I ACS's catalyze the synthesis of acetyl-CoA from CO2 + 2e-, CoA, and a methyl group, and contain 5 types of subunits (alpha, beta, gamma, delta, and epsilon). Class II enzymes catalyze essentially the reverse reaction and have similar subunit composition. Class III ACS's catalyze the same reaction as Class I enzymes, but use pyruvate as a source of CO2 and 2e-, and are composed of 2 autonomous proteins, an alpha 2 beta 2 tetramer and a gamma delta heterodimer. Class IV enzymes catabolize CO to CO2 and are alpha-subunit monomers. Phylogenetic analyses were performed on all five subunits. ACS alpha sequences divided into 2 major groups, including Class I/II sequences and Class III/IV-like sequences. Conserved residues that may function as ligands to the B- and C-clusters were identified. Other residues exclusively conserved in Class I/II sequences may be ligands to additional metal centers in Class I and II enzymes. ACS beta sequences also separated into two groups, but they were less divergent than the alpha's, and the separation was not as distinct. Class III-like beta sequences contained approximately 300 residues at their N-termini absent in Class I/II sequences. Conserved residues identified in beta sequences may function as ligands to active site residues used for acetyl-CoA synthesis. ACS gamma-sequences separated into 3 groups (Classes I, II, and III), while delta-sequences separated into 2 groups (Class I/II and III). These groups are less divergent than those of alpha sequences. ACS epsilon-sequence topology showed greater divergence and less consistency vis-à-vis the other subunits, possibly reflecting reduced evolutionary constraints due to the absence of metal centers. The alpha subunit phylogeny may best reflect the functional diversity of ACS enzymes. Scenarios of how ACS and ACS-containing organisms may have evolved are discussed.
Collapse
Affiliation(s)
- P A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| | | |
Collapse
|
46
|
Lahav N, Nir S, Elitzur AC. The emergence of life on Earth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:75-120. [PMID: 11311715 DOI: 10.1016/s0079-6107(01)00003-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Combined top-down and bottom-up research strategies and the principle of biological continuity were employed in an attempt to reconstruct a comprehensive origin of life theory, which is an extension of the coevolution theory (Lahav and Nir, Origins of Life Evol. Biosphere (1997) 27, 377-395). The resulting theory of emergence of templated-information and functionality (ETIF) addresses the emergence of living entities from inanimate matter, and that of the central mechanisms of their further evolution. It proposes the emergence of short organic catalysts (peptides and proto-ribozymes) and feedback-loop systems, plus their template-and-sequence-directed (TSD) reactions, encompassing catalyzed replication and translation of populations of molecules organized as chemical-informational feedback loop entities, in a fluctuating (wetting-drying) environment, functioning as simplified extant molecular-biological systems. The feedback loops with their TSD systems are chemically and functionally continuous with extant living organisms and their emergence in an inanimate environment may be defined as the beginning of life. The ETIF theory considers the emergence of bio-homochirality, a primordial genetic code, information and the incorporation of primordial metabolic cycles and compartmentation into the emerging living entities. This theory helps to establish a novel measure of biological information, which focuses on its physical effects rather than on the structure of the message, and makes it possible to estimate the time needed for the transition from the inanimate state to the closure of the first feedback-loop systems. Moreover, it forms the basis for novel laboratory experiments and computer modeling, encompassing catalytic activity of short peptides and proto-RNAs and the emergence of bio-homochirality and feedback-loop systems.
Collapse
Affiliation(s)
- N Lahav
- Department of Soil and Water Sciences, The Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | |
Collapse
|
47
|
Abstract
Forty different single-factor criteria and multi-factor hypotheses about chronological order of appearance of amino acids in the early evolution are summarized in consensus ranking. All available knowledge and thoughts about origin and evolution of the genetic code are thus combined in a single list where the amino acids are ranked chronologically. Due to consensus nature of the chronology it has several important properties not visible in individual rankings by any of the initial criteria. Nine amino acids of the Miller's imitation of primordial environment are all ranked as topmost (G, A, V, D, E, P, S, L, T). This result does not change even after several criteria related to Miller's data are excluded from calculations. The consensus order of appearance of the 20 amino acids on the evolutionary scene also reveals a unique and strikingly simple chronological organization of 64 codons, that could not be figured out from individual criteria: New codons appear in descending order of their thermostability, as complementary pairs, with the complements recruited sequentially from the codon repertoires of the earlier or simultaneously appearing amino acids. These three rules (Thermostability, Complementarity and Processivity) hold strictly as well as leading position of the earliest amino acids according to Miller. The consensus chronology of amino acids, G/A, V/D, P, S, E/L, T, R, N, K, Q, I, C, H, F, M, Y, W, and the derived temporal order for codons may serve, thus, as a justified working model of choice for further studies on the origin and evolution of the genetic code.
Collapse
Affiliation(s)
- E N Trifonov
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
48
|
Ronneberg TA, Landweber LF, Freeland SJ. Testing a biosynthetic theory of the genetic code: fact or artifact? Proc Natl Acad Sci U S A 2000; 97:13690-5. [PMID: 11087835 PMCID: PMC17637 DOI: 10.1073/pnas.250403097] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Indexed: 11/18/2022] Open
Abstract
It has long been conjectured that the canonical genetic code evolved from a simpler primordial form that encoded fewer amino acids [e.g., Crick, F. H. C. (1968) J. Mol. Biol. 38, 367-379]. The most influential form of this idea, "code coevolution" [Wong, J. T.-F. (1975) Proc. Natl. Acad. Sci. USA 72, 1909-1912], proposes that the genetic code coevolved with the invention of biosynthetic pathways for new amino acids. It further proposes that a comparison of modern codon assignments with the conserved metabolic pathways of amino acid biosynthesis can inform us about this history of code expansion. Here we re-examine the biochemical basis of this theory to test the validity of its statistical support. We show that the theory's definition of "precursor-product" amino acid pairs is unjustified biochemically because it requires the energetically unfavorable reversal of steps in extant metabolic pathways to achieve desired relationships. In addition, the theory neglects important biochemical constraints when calculating the probability that chance could assign precursor-product amino acids to contiguous codons. A conservative correction for these errors reveals a surprisingly high 23% probability that apparent patterns within the code are caused purely by chance. Finally, even this figure rests on post hoc assumptions about primordial codon assignments, without which the probability rises to 62% that chance alone could explain the precursor-product pairings found within the code. Thus we conclude that coevolution theory cannot adequately explain the structure of the genetic code.
Collapse
Affiliation(s)
- T A Ronneberg
- Departments of Ecology and Evolutionary Biology, and Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- M Di Giulio
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 10, Naples, Napoli, 80125, Italy.
| |
Collapse
|