1
|
Buijs RM, Guzmán Ruiz MA, Méndez Hernández R, Rodríguez Cortés B. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci 2019; 218:43-50. [PMID: 30890347 DOI: 10.1016/j.autneu.2019.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nucleus (SCN) is responsible for determining circadian variations in physiological setpoints. The SCN achieves such control through projections to different target structures within and outside the hypothalamus. Thus the SCN prepares the physiology of the body every 24 h via hormones and autonomic nervous system (ANS), to coming changes in behavior. Resulting rhythms in hormones and ANS activity transmit a precise message to selective organs, adapting their sensitivity to coming hormones, metabolites or other essentials. Thus the SCN as autonomous clock gives rhythm to physiological processes. However when the body is challenged by infections, low or high temperature, food shortage or excess: physiological setpoints need to be changed. For example, under fasting conditions, setpoints for body temperature and glucose levels are lowered at the beginning of the sleep (inactive) phase. However, starting the active phase, a normal increase in glucose and temperature levels take place to support activities associated with the acquisition of food. Thus, the SCN adjusts physiological setpoints in agreement with time of the day and according to challenges faced by the body. The SCN is enabled to do this by receiving extensive input from brain areas involved in sensing the condition of the body. Therefore, when the body receives stimuli contradicting normal physiology, such as eating or activity during the inactive period, this information reaches the SCN, adapting its output to correct this disbalance. As consequence frequent violations of the SCN message, such as by shift work or night eating, will result in development of disease.
Collapse
Affiliation(s)
- Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico.
| | - Mara A Guzmán Ruiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Rebeca Méndez Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Betty Rodríguez Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| |
Collapse
|
2
|
Abstract
Presently, about 12% of the population is 65 years or older and by the year 2030 that figure is expected to reach 21%. In order to promote the well-being of the elderly and to reduce the costs associated with health care demands, increased longevity should be accompanied by ageing attenuation. Energy restriction, which limits the amount of energy consumed to 60–70% of the daily intake, and intermittent fasting, which allows the food to be available ad libitum every other day, extend the life span of mammals and prevent or delay the onset of major age-related diseases, such as cancer, diabetes and cataracts. Recently, we have shown that well-being can be achieved by resetting of the circadian clock and induction of robust catabolic circadian rhythms via timed feeding. In addition, the clock mechanism regulates metabolism and major metabolic proteins are key factors in the core clock mechanism. Therefore, it is necessary to increase our understanding of circadian regulation over metabolism and longevity and to design new therapies based on this regulation. This review will explore the present data in the field of circadian rhythms, ageing and metabolism.
Collapse
|
3
|
Al Aïn S, Perry RE, Nuñez B, Kayser K, Hochman C, Brehman E, LaComb M, Wilson DA, Sullivan RM. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering. Soc Neurosci 2017; 12:32-49. [PMID: 26934130 PMCID: PMC5033694 DOI: 10.1080/17470919.2016.1159605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Rosemarie E. Perry
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Neuroscience and Physiology, NYU Sackler Institute, New York University School of Medicine, New York, NY, USA
| | - Bestina Nuñez
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Kassandra Kayser
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Chase Hochman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Elizabeth Brehman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Miranda LaComb
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD. Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 2014; 308:R337-50. [PMID: 25519730 DOI: 10.1152/ajpregu.00322.2014] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock.
Collapse
Affiliation(s)
- Johanneke E Oosterman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Departments of Physiology
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise D Belsham
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; and
| |
Collapse
|
5
|
La Fleur SE, Fliers E, Kalsbeek A. Neuroscience of glucose homeostasis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 126:341-51. [PMID: 25410233 DOI: 10.1016/b978-0-444-53480-4.00026-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.
Collapse
Affiliation(s)
- S E La Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Chamberland JP, Berman RL, Aronis KN, Mantzoros CS. Chemerin is expressed mainly in pancreas and liver, is regulated by energy deprivation, and lacks day/night variation in humans. Eur J Endocrinol 2013; 169:453-62. [PMID: 23904282 PMCID: PMC3798003 DOI: 10.1530/eje-13-0098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Chemerin is an adipocyte-secreted hormone and has recently been associated with obesity and the metabolic syndrome. Although studies in rodents have outlined the aspects of chemerin's function and expression, its physiology and expression patterns are still to be elucidated in humans. METHODS To evaluate for any day/night variation in chemerin secretion, we analyzed hourly serum samples from six females in the fed state. To examine whether energy deprivation affects chemerin levels, and whether this could be mediated through leptin, we analyzed samples from the same subjects in the fasting state while administering either placebo or leptin. To evaluate for any potential dose-effect relationship between leptin and chemerin, we administered increasing metreleptin doses to five females. A tissue array was used to study the expression of chemerin in different human tissues. Ex vivo treatment of human fat explants from three subjects with leptin was carried out to evaluate for any direct effect of leptin on adipocyte chemerin secretion. RESULTS Chemerin does not display a day/night variation, while acute energy deprivation resulted in a significant drop in circulating chemerin levels by ∼42%. The latter was unaltered by metreleptin administration, and leptin administration did not affect the secretion of chemerin by human adipose tissue studied ex vivo. Chemerin was expressed primarily in the pancreas and liver. Chemerin receptor showed increased expression in the lymph nodes and the spleen. CONCLUSIONS We outline for the first time chemerin expression and physiology in humans, which are different from those in mice.
Collapse
Affiliation(s)
- John P. Chamberland
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Reena L. Berman
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Konstantinos N. Aronis
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Department of Medicine, Boston Medical Center, Boston University, Boston, MA 02118
| | - Christos S. Mantzoros
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Department of Medicine, Boston Medical Center, Boston University, Boston, MA 02118
| |
Collapse
|
7
|
Circadian aspects of energy metabolism and aging. Ageing Res Rev 2013; 12:931-40. [PMID: 24075855 DOI: 10.1016/j.arr.2013.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
Abstract
Life span extension has been a goal of research for several decades. Resetting circadian rhythms leads to well being and increased life span, while clock disruption is associated with increased morbidity accelerated aging. Increased longevity and improved health can be achieved by different feeding regimens that reset circadian rhythms and may lead to better synchrony in metabolism and physiology. This review focuses on the circadian aspects of energy metabolism and their relationship with aging in mammals.
Collapse
|
8
|
Diepenbroek C, Serlie MJ, Fliers E, Kalsbeek A, la Fleur SE. Brain areas and pathways in the regulation of glucose metabolism. Biofactors 2013; 39:505-13. [PMID: 23913677 DOI: 10.1002/biof.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 11/11/2022]
Abstract
Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
9
|
Froy O. Circadian rhythms and obesity in mammals. ISRN OBESITY 2012; 2012:437198. [PMID: 24527263 PMCID: PMC3914271 DOI: 10.5402/2012/437198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/11/2012] [Indexed: 02/02/2023]
Abstract
Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel
| |
Collapse
|
10
|
Abstract
Mammals have an endogenous timing system in the suprachiasmatic nuclei (SCN) of the hypothalamic region of the brain. This internal clock system is composed of an intracellular feedback loop that drives the expression of molecular components and their constitutive protein products to oscillate over a period of about 24 h (hence the term 'circadian'). These circadian oscillations bring about rhythmic changes in downstream molecular pathways and physiological processes such as those involved in nutrition and metabolism. It is now emerging that the molecular components of the clock system are also found within the cells of peripheral tissues, including the gastrointestinal tract, liver and pancreas. The present review examines their role in regulating nutritional and metabolic processes. In turn, metabolic status and feeding cycles are able to feed back onto the circadian clock in the SCN and in peripheral tissues. This feedback mechanism maintains the integrity and temporal coordination between various components of the circadian clock system. Thus, alterations in environmental cues could disrupt normal clock function, which may have profound effects on the health and well-being of an individual.
Collapse
|
11
|
Abstract
The development of obesity is the consequence of a multitude of complex interactions between both genetic and environmental factors. It has been suggested that the dramatic increase in the prevalence of obesity over the past 30 years has been the result of environmental changes that have enabled the full realization of genetic susceptibility present in the population. Among the many environmental alterations that have occurred in our recent history is the ever-increasing dyssynchrony between natural cycles of light/dark and altered patterns of sleep/wake and eating behavior associated with our "24-hour" lifestyle. An extensive research literature has established clear links between increased risk for obesity and both sleep deprivation and shift work, and our understanding of the consequences of such dyssynchrony at the molecular level is beginning to emerge. Studies linking alterations in cellular circadian clocks to metabolic dysfunction point to the increasing importance of chronobiology in obesity etiology.
Collapse
Affiliation(s)
- Molly S. Bray
- Departments of Epidemiology and Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Melatonin: both master clock output and internal time-giver in the circadian clocks network. ACTA ACUST UNITED AC 2011; 105:170-82. [PMID: 21914478 DOI: 10.1016/j.jphysparis.2011.07.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.
Collapse
|
13
|
Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci 2010; 1212:114-29. [PMID: 21070249 DOI: 10.1111/j.1749-6632.2010.05800.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the important role for hypothalamic leptin receptors as a striking example. The hypothalamic biological clock uses its projections to the preautonomic hypothalamic neurons to control the daily rhythms in plasma glucose concentration, glucose uptake, and insulin sensitivity. Euglycemic, hyperinsulinemic clamp experiments combined with either sympathetic-, parasympathetic-, or sham-denervations of the autonomic input to the liver have further delineated the hypothalamic pathways that mediate the control of the circadian timing system over glucose metabolism. In addition, these experiments clearly showed both that next to the biological clock peripheral hormones may "use" the preautonomic neurons in the hypothalamus to affect hepatic glucose metabolism, and that similar pathways may be involved in the control of lipid metabolism in liver and white adipose tissue.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Turner PL, Van Someren EJW, Mainster MA. The role of environmental light in sleep and health: Effects of ocular aging and cataract surgery. Sleep Med Rev 2010; 14:269-80. [PMID: 20056462 DOI: 10.1016/j.smrv.2009.11.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Patricia L Turner
- Department of Ophthalmology, University of Kansas School of Medicine, 7400 State Line Road, Prairie Village, KS 66208-3444, USA.
| | | | | |
Collapse
|
15
|
Kalsbeek A, Yi CX, La Fleur SE, Fliers E. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol Metab 2010; 21:402-10. [PMID: 20303779 DOI: 10.1016/j.tem.2010.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/14/2010] [Accepted: 02/17/2010] [Indexed: 11/23/2022]
Abstract
The everyday life of mammals, including humans, exhibits many behavioral, physiological and endocrine oscillations. The major timekeeping mechanism for these rhythms is contained in the central nervous system (CNS). The output of the CNS clock not only controls daily rhythms in sleep/wake (or feeding/fasting) behavior but also exerts a direct control over glucose metabolism. Here, we show how the biological clock plays an important role in determining early morning (fasting) plasma glucose concentrations by affecting hepatic glucose production and glucose uptake, as well as glucose tolerance, by determining feeding-induced insulin responses. Recently, large-scale genetic studies in humans provided the first evidence for the involvement of disrupted (clock gene) rhythms in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Abstract
Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Human homeostatic systems have adapted to daily changes in light and dark in a way that the body anticipates the sleep and activity periods. Mammals have developed an endogenous circadian clock located in the suprachiasmatic nuclei of the anterior hypothalamus that responds to the environmental light-dark cycle. Similar clocks have been found in peripheral tissues, such as the liver, intestine, and adipose tissue, regulating cellular and physiological functions. The circadian clock has been reported to regulate metabolism and energy homeostasis in the liver and other peripheral tissues. This is achieved by mediating the expression and/or activity of certain metabolic enzymes and transport systems. In return, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. In addition, the core clock mechanism has been shown to be linked with lipogenic and adipogenic pathways. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence for the relationship between the circadian clock and metabolic homeostasis. In addition, clinical studies in shift workers and obese patients accentuate the link between the circadian clock and metabolism. This review will focus on the interconnection between the circadian clock and metabolism, with implications for obesity and how the circadian clock is influenced by hormones, nutrients, and timed meals.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
17
|
Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 2008; 3:e3194. [PMID: 18791643 PMCID: PMC2527681 DOI: 10.1371/journal.pone.0003194] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/04/2008] [Indexed: 11/19/2022] Open
Abstract
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.
Collapse
|
18
|
Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 2007; 28:61-71. [PMID: 17451793 DOI: 10.1016/j.yfrne.2007.03.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 03/04/2007] [Accepted: 03/15/2007] [Indexed: 12/21/2022]
Abstract
The master clock located in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus regulates circadian rhythms in mammals. The clock is an intracellular, transcriptional mechanism sharing the same molecular components in SCN neurons and in peripheral cells, such as the liver, intestine, and retina. The circadian clock controls food processing and energy homeostasis by regulating the expression and/or activity of enzymes involved in cholesterol, amino acid, lipid, glycogen, and glucose metabolism. In addition, many hormones involved in metabolism, such as insulin, glucagon, adiponectin, corticosterone, leptin, and ghrelin, exhibit circadian oscillation. Furthermore, disruption of circadian rhythms is involved in the development of cancer, metabolic syndrome, and obesity. Metabolism and food intake also feed back to influence the biological clock. Calorie restriction (CR) entrains the SCN clock, whereas timed meals entrain peripheral oscillators. Furthermore, the cellular redox state, dictated by food metabolism, and several nutrients, such as glucose, ethanol, adenosine, caffeine, thiamine, and retinoic acid, can phase-shift circadian rhythms. In conclusion, there is a large body of evidence that links feeding regimens, food components, and the biological clock.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|