1
|
Feng QJ, Kumar AA, Yeong JK, Zaw S, Lee ZD, Kumar K, Kumar DS, Ling JM, Lee L. Outcomes and prognosis of surgically treated thoracic spinal meningiomas: a multicenter cohort study. Neurosurg Focus 2025; 58:E4. [PMID: 40311194 DOI: 10.3171/2025.2.focus24955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE Thoracic spinal meningiomas (TSMs) are common intradural extramedullary tumors and are usually surgically treated. Although surgery generally results in positive outcomes, some patients experience residual or new neurological impairments. The authors conducted a multicenter cohort study to investigate prognostic factors that affect functional recovery following TSM resection. METHODS A multicenter retrospective cohort study from 3 tertiary centers was conducted and included all patients who underwent TSM resection between 2015 and 2023. Patients had a minimum 6-month follow-up with preoperative MRI and clinical evaluation. Functional outcomes were measured using the American Spinal Injury Association (ASIA) motor component score of the ASIA Impairment Scale and modified Japanese Orthopaedic Association thoracic myelopathy (mJOA-TM) score. The secondary outcome was postoperative complications. RESULTS A total of 74 patients were included, with the majority presenting with lower limb radiculopathy and midthoracic tumors. Postoperative outcomes showed improvement in the median ASIA motor and mJOA-TM scores at 6 months. Univariate analysis identified significant predictors of ASIA motor score improvement to include age at diagnosis (p = 0.038), anteroposterior tumor dimension (p = 0.005), transverse dimension (p = 0.007), need for inpatient rehabilitation (p = 0.002), and worsened incontinence (p = 0.003). Significant predictors of mJOA-TM improvement were tumor volume (p < 0.001), craniocaudal dimension (p = 0.040), rehabilitation requirements (p = 0.045), presence of complications (p < 0.001), worsened motor deficits (p < 0.001), sensory deficits (p < 0.001), and incontinence (p < 0.001). Multivariate analysis confirmed that tumor dimensions (anteroposterior, p = 0.043; transverse, p = 0.039) and postoperative incontinence (p < 0.001) were independently associated with recovery in the ASIA motor score at 6 months; and age at diagnosis (p = 0.024), meningioma volume (p = 0.004), and worsened postoperative numbness (p < 0.001) were associated with recovery in the mJOA-TM score. CONCLUSIONS This multicenter study is the largest series of surgically treated TSMs reported to date. Resection of TSMs is associated with significant functional recovery despite the potential for postoperative complications. Tumor dimensions, tumor volume, and worsened postoperative neurological deficits are key determinants of functional recovery in surgically treated TSMs.
Collapse
Affiliation(s)
| | - A Aravin Kumar
- 1Department of Neurosurgery, National Neuroscience Institute
| | - Jun Kai Yeong
- 2Yong Loo Lin School of Medicine, National University of Singapore
| | - Shane Zaw
- 3Department of Neurosurgery, Changi General Hospital
| | - Zhiquan Damian Lee
- 1Department of Neurosurgery, National Neuroscience Institute
- 3Department of Neurosurgery, Changi General Hospital
- 4Department of Neurosurgery, Singapore General Hospital
| | - Krishan Kumar
- 4Department of Neurosurgery, Singapore General Hospital
| | | | - Ji Min Ling
- 1Department of Neurosurgery, National Neuroscience Institute
- 3Department of Neurosurgery, Changi General Hospital
| | - Lester Lee
- 1Department of Neurosurgery, National Neuroscience Institute
- 3Department of Neurosurgery, Changi General Hospital
- 4Department of Neurosurgery, Singapore General Hospital
- 6Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Hajimirzaei P, Tabatabaei FSA, Nasibi-Sis H, Razavian RS, Nasirinezhad F. Schwann cell transplantation for remyelination, regeneration, tissue sparing, and functional recovery in spinal cord injury: A systematic review and meta-analysis of animal studies. Exp Neurol 2025; 384:115062. [PMID: 39579959 DOI: 10.1016/j.expneurol.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a significant global health challenge that results in profound physical and neurological impairments. Despite progress in medical care, the treatment options for SCI are still restricted and often focus on symptom management rather than promoting neural repair and functional recovery. This study focused on clarifying the impact of Schwann cell (SC) transplantation on the molecular, cellular, and functional basis of recovery in animal models of SCI. MATERIAL AND METHODS Relevant studies were identified by conducting searches across multiple databases, which included PubMed, Web of Science, Scopus, and ProQuest. The data were analyzed via comprehensive meta-analysis software. We assessed the risk of bias via the SYRCLE method. RESULTS The analysis included 59 studies, 48 of which provided quantitative data. The results revealed significant improvements in various outcome variables, including protein zero structures (SMD = 1.66, 95 %CI: 0.96-2.36; p < 0.001; I2 = 49.8 %), peripherally myelinated axons (SMD = 1.81, 95 %CI: 0.99-2.63; p < 0.001; I2 = 39.3 %), biotinylated dextran amine-labeled CST only rostral (SMD = 1.31, 95 % CI: 0.50-2.12, p < 0.01, I2 = 49.7 %), fast blue-labeled reticular formation (SMD = 0.96, 95 %CI: 0.43-1.49, p < 0.001, I2 = 0.0 %), 5-hydroxytryptamine caudally (SMD = 0.83, 95 %CI: 0.36-1.29, p < 0.001, I2 = 17.2 %) and epicenter (SMD = 0.85, 95 %CI: 0.17-1.53, p < 0.05, I2 = 62.7 %), tyrosine hydroxylase caudally (SMD = 1.86, 95 %CI: 1.14-2.59, p < 0.001, I2 = 0.0 %) and epicenter (SMD = 1.82, 95 %CI: 1.18-2.47, p < 0.001, I2 = 0.0 %), cavity volume (SMD = -2.07, 95 %CI: -2.90 - -1.24, p < 0.001, I2 = 67.2 %), and Basso, Beattie, and Bresnahan (SMD = 1.26, 95 %CI: 0.93-1.58; p < 0.001; I2 = 79.4 %). CONCLUSIONS This study demonstrates the promising potential of SC transplantation as a therapeutic approach for SCI, clarifying its impact on various biological processes critical for recovery.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Nasibi-Sis
- Department of Medical Library and Information Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical sciences, Tehran, Iran; Center of Experimental and Comparative Study, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
3
|
Effects of mesenchymal stem cell transplantation on spinal cord injury patients. Cell Tissue Res 2022; 389:373-384. [PMID: 35697943 DOI: 10.1007/s00441-022-03648-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
Spinal cord injury (SCI) is a traumatic injury with sensory and motor deficits that more than 1 million patients worldwide suffer from disability due to it. Many pharmacological therapies help reduce SCI-related injury and protect CNS from more damage but no current therapy could improve the axonal repair. In this regard, stem cell therapy is considered a regenerative method for SCI patient treatment. The neurotrophic and immunomodulatory factor secretion, differentiation, neuroprotecting, and remyelinating properties have made mesenchymal stem cells (MSCs) principally useful in this field. There are studies on the role of MSCs in patients suffering from SCI. However, low number of SCI patients and the lack of control groups in these studies, the cell transplantation appropriate methods, including cell source, dose, route of delivery, and transplantation timing, are various in trials. This study reviews the beneficial effects of MSC transplantation in SCI clinical studies with a special focus on the MSC properties and limitations of MSC transplantation.
Collapse
|
4
|
Elyasigorji Z, Mobasheri H, Dini L. Static magnetic field modulates olfactory ensheathing cell's morphology, division, and migration activities, a biophysical approach to regeneration. J Tissue Eng Regen Med 2022; 16:665-679. [PMID: 35470546 DOI: 10.1002/term.3307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The moderate static magnetic fields (SMFs) have been used here as a non-invasive tool to study their manipulative effects on the olfactory ensheathing cells (OECs) activity, growth, morphology, and migration in culture. The OECs are involved in the regeneration of primary olfactory sensory neurons and migration into the central nervous system to repair axons damaged by infection, injury, etc., that play a pivotal role in complementary regenerative medicine. Here, OECs were isolated from the olfactory bulb and cultured to confluence. An in vitro wound healing model was formed and exposed to either parallel (PaSMF) or perpendicular (PeSMF) SMF at intensities of 30, 50, and 70 mT, and cells' morphology, podia formation, proliferation, and migration were studied by time-lapse recording. The SMFs were not cytotoxic at the intensity and exposure time applied here. The exposure of cells to 70 mT PaSMF and PeSMF increased the formation of lamellipodia and filopodia, cell migration speed, and direction of the scratch forefront cells, significantly. Treatment of cells with 70 mT PaSMF and PeSMF increased cell divisions, while 30 mT PaSMF decreased it. SMF effects on OECs division, motility, migratory direction, and velocity indicate its effect on various aspects of cell physiology and signaling at atomic and molecular levels, and have a role in tissue regeneration that involves microtubules and actin filaments formation and rearrangements. Thus, the exposure of OECs with moderate SMF might be considered a promising noninvasive approach to remotely manipulate normal and stem cell activities for therapeutic regenerative purposes in various tissues including the central nervous system.
Collapse
Affiliation(s)
- Zahra Elyasigorji
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Iranian Biological Resource Center (IBRC), ACECR, Human and Animal Cell Bank, Tehran, Iran
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Institute of Biomaterials of University of Tehran and Tehran University of Medical Science (IBUTUM), Tehran, Iran
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Muthu S, Jeyaraman M, Gulati A, Arora A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy 2021; 23:186-197. [PMID: 33183980 DOI: 10.1016/j.jcyt.2020.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AIMS The authors aim to analyze the evidence in the literature regarding the efficacy and safety of mesenchymal stem cell (MSC) therapy in human subjects with traumatic spinal cord injury (SCI) and identify its potential role in the management of SCI. METHODS The authors conducted independent and duplicate searches of electronic databases, including PubMed, Embase and the Cochrane Library, until May 2020 for studies analyzing the efficacy and safety of stem cell therapy for SCI. American Spine Injury Association (ASIA) impairment scale (AIS) grade improvement, ASIA sensorimotor score, activities of daily living score, residual urine volume, bladder function improvement, somatosensory evoked potential (SSEP) improvement and adverse reactions were the outcomes analyzed. Analysis was performed in R platform using OpenMeta[Analyst] software. RESULTS Nineteen studies involving 670 patients were included for analysis. On analysis, the intervention group showed statistically significant improvement in AIS grade (P < 0.001), ASIA sensory score (P < 0.017), light touch (P < 0.001), pinprick (P = 0.046), bladder function (P = 0.012), residual urine volume (P = 0.023) and SSEP (P = 0.002). However, no significant difference was noted in motor score (P = 0.193) or activities of daily living score (P = 0.161). Although the intervention group had a significant increase in complications (P < 0.001), no serious or permanent adverse events were reported. On subgroup analysis, low concentration of MSCs (<5 × 107 cells) and initial AIS grade A presentation showed significantly better outcomes than their counterparts. CONCLUSIONS The authors' analysis establishes the efficacy and safety of MSC transplantation in terms of improvement in AIS grade, ASIA sensory score, bladder function and electrophysiological parameters like SSEP compared with controls, without major adverse events. However, further research is needed to standardize dose, timing, route and source of MSCs used for transplantation.
Collapse
Affiliation(s)
- Sathish Muthu
- Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Indian Stem Cells Study Group, Lucknow, India.
| | - Madhan Jeyaraman
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Indian Stem Cells Study Group, Lucknow, India; Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, India
| | - Arun Gulati
- Department of Orthopaedics, Kalpana Chawla Government Medical College & Hospital, Karnal, India
| | - Arunabh Arora
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
6
|
Al-Griw MA, Alghazeer RO, Awayn N, Shamlan G, Eskandrani AA, Alnajeebi AM, Babteen NA, Alansari WS. Selective adenosine A 2A receptor inhibitor SCH58261 reduces oligodendrocyte loss upon brain injury in young rats. Saudi J Biol Sci 2021; 28:310-316. [PMID: 33424311 PMCID: PMC7783643 DOI: 10.1016/j.sjbs.2020.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/21/2022] Open
Abstract
Cellular elements of maturing brain are vulnerable to insults, which lead to neurodevelopmental defects. There are no established treatments at present. Here we examined the efficacy of selective adenosine A2A receptor inhibitor SCH58261 to combat brain injury, particularly oligodendrocyte (OL) lineage cells, in young rats. Wistar rats (n = 24, 6.5 days old) were randomly divided into equal groups of four. The sham (SHAM) group received no treatment, the vehicle (VEHICLE) group received 0.1% dimethylsufoxide, the injury (INJ) group was exposed to oxygen-glucose deprivation insult, and the injury+SCH58261 (INJ+SCH58261) group was exposed to the insult and received 1 μM SCH58261. Immunocytochemical experiments revealed that there was a significant reduction in the populations of mature OL (MBP+ OLs) and immature OL precursors (NG2+ OPCs) in the INJ group compared to SHAM group. Furthermore, there was also a significant increase in the percent of apoptotic MBP+ OL and NG2+ OPC populations as evidenced by TUNEL assay. In addition, there was a significant reduction in the proliferation rate among NG2+ OPCs, which was confirmed by BrdU immunostaining. On the other hand, treatment with SCH58261 significantly enhanced survival, evidenced by the reduction in apoptotic indices for both cell types, and it is preserved the NG2+ OPC proliferation. Activation of adenosine A2A receptors may contribute to OL lineage cell loss in association with decreased mitotic behavior of OPCs in neonatal brains upon injury. Future investigations assessing ability of SCH58261 to regenerate myelin will provide insights into its wider clinical relevance.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli 13203, Libya
| | - Rabia O. Alghazeer
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli 50676, Libya
| | - Nuri Awayn
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli 50676, Libya
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Afnan M. Alnajeebi
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Nouf A. Babteen
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
7
|
Milbreta U, Lin J, Pinese C, Ong W, Chin JS, Shirahama H, Mi R, Williams A, Bechler ME, Wang J, Ffrench-Constant C, Hoke A, Chew SY. Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Mol Ther 2019; 27:411-423. [PMID: 30611662 PMCID: PMC6369635 DOI: 10.1016/j.ymthe.2018.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
The loss of oligodendrocytes (OLs) and subsequently myelin sheaths following injuries or pathologies in the CNS leads to debilitating functional deficits. Unfortunately, effective methods of remyelination remain limited. Here, we present a scaffolding system that enables sustained non-viral delivery of microRNAs (miRs) to direct OL differentiation, maturation, and myelination. We show that miR-219/miR-338 promoted primary rat OL differentiation and myelination in vitro. Using spinal cord injury as a proof-of-concept, we further demonstrate that miR-219/miR-338 could also be delivered non-virally in vivo using an aligned fiber-hydrogel scaffold to enhance remyelination after a hemi-incision injury at C5 level of Sprague-Dawley rats. Specifically, miR-219/miR-338 mimics were incorporated as complexes with the carrier, TransIT-TKO (TKO), together with neurotrophin-3 (NT-3) within hybrid scaffolds that comprised poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP)-aligned fibers and collagen hydrogel. After 1, 2, and 4 weeks post-treatment, animals that received NT-3 and miR-219/miR-338 treatment preserved a higher number of Olig2+ oligodendroglial lineage cells as compared with those treated with NT-3 and negative scrambled miRs (Neg miRs; p < 0.001). Additionally, miR-219/miR-338 increased the rate and extent of differentiation of OLs. At the host-implant interface, more compact myelin sheaths were observed when animals received miR-219/miR-338. Similarly within the scaffolds, miR-219/miR-338 samples contained significantly more myelin basic protein (MBP) signals (p < 0.01) and higher myelination index (p < 0.05) than Neg miR samples. These findings highlight the potential of this platform to promote remyelination within the CNS.
Collapse
Affiliation(s)
- Ulla Milbreta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Coline Pinese
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Artificial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier 34093, France
| | - William Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637533, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637533, Singapore
| | - Hitomi Shirahama
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Williams
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Marie E Bechler
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Jun Wang
- China School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Charles Ffrench-Constant
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
8
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
9
|
Rejc E, Angeli CA, Atkinson D, Harkema SJ. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci Rep 2017; 7:13476. [PMID: 29074997 PMCID: PMC5658385 DOI: 10.1038/s41598-017-14003-w] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
Abstract
The prognosis for recovery of motor function in motor complete spinal cord injured (SCI) individuals is poor. Our research team has demonstrated that lumbosacral spinal cord epidural stimulation (scES) and activity-based training can progressively promote the recovery of volitional leg movements and standing in individuals with chronic clinically complete SCI. However, scES was required to perform these motor tasks. Herein, we show the progressive recovery of voluntary leg movement and standing without scES in an individual with chronic, motor complete SCI throughout 3.7 years of activity-based interventions utilizing scES configurations customized for the different motor tasks that were specifically trained (standing, stepping, volitional leg movement). In particular, this report details the ongoing neural adaptations that allowed a functional progression from no volitional muscle activation to a refined, task-specific activation pattern and movement generation during volitional attempts without scES. Similarly, we observed the re-emergence of muscle activation patterns sufficient for standing with independent knee and hip extension. These findings highlight the recovery potential of the human nervous system after chronic clinically motor complete SCI.
Collapse
Affiliation(s)
- Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Frazier Rehab Institute, Louisville, Kentucky, USA
| | - Darryn Atkinson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA. .,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA. .,Frazier Rehab Institute, Louisville, Kentucky, USA.
| |
Collapse
|
10
|
Wang N, Xiao Z, Zhao Y, Wang B, Li X, Li J, Dai J. Collagen scaffold combined with human umbilical cord‐derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 2017; 12:e1154-e1163. [DOI: 10.1002/term.2450] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Nuo Wang
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| | - Bin Wang
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| | - Xing Li
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| | - Jing Li
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
| |
Collapse
|
11
|
Fan C, Li X, Xiao Z, Zhao Y, Liang H, Wang B, Han S, Li X, Xu B, Wang N, Liu S, Xue W, Dai J. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 2017; 51:304-316. [PMID: 28069497 DOI: 10.1016/j.actbio.2017.01.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 01/31/2023]
Abstract
Due to irreversible neuronal loss and glial scar deposition, spinal cord injury (SCI) ultimately results in permanent neurological dysfunction. Neuronal regeneration of neural stem cells (NSCs) residing in the spinal cord could be an ideal strategy for replenishing the lost neurons and restore function. However, many myelin-associated inhibitors in the SCI microenvironment limit the ability of spinal cord NSCs to regenerate into neurons. Here, a linearly ordered collagen scaffold was used to prevent scar deposition, guide nerve regeneration and carry drugs to neutralize the inhibitory molecules. A collagen-binding EGFR antibody Fab fragment, CBD-Fab, was constructed to neutralize the myelin inhibitory molecules, which was demonstrated to promote neuronal differentiation and neurite outgrowth under myelin in vitro. This fragment could also specifically bind to the collagen and undergo sustained release from collagen scaffold. Then, the scaffolds modified with CBD-Fab were transplanted into an acute rat SCI model. The robust neurogenesis of endogenous injury-activated NSCs was observed, and these NSCs could not only differentiate into neurons but further mature into functional neurons to reconnect the injured gap. The results indicated that the modified collagen scaffold could be an ideal candidate for spinal cord regeneration after acute SCI. STATEMENTS OF SIGNIFICANCE A linearly ordered collagen scaffold was specifically modified with collagen-binding EGFR antibody, allowed for sustained release of this EGFR neutralizing factor, to block the myelin associated inhibitory molecules and guide spinal cord regeneration along its linear fibers. Dorsal root ganglion neurons and neural stem cells induced by CBD-Fab exhibited enhanced neurite outgrowth and neuronal differentiation rate under myelin in vitro. Transplantation of the modified collagen scaffold with moderate EGFR neutralizing proteins showed greatest advantage on endogenous neurogenesis of injury-activated neural stem cells for acute spinal cord injury repair.
Collapse
Affiliation(s)
- Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Liang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bai Xu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Nuo Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sumei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Petersen JA, Spiess M, Curt A, Weidner N, Rupp R, Abel R, Schubert M. Upper Limb Recovery in Spinal Cord Injury: Involvement of Central and Peripheral Motor Pathways. Neurorehabil Neural Repair 2017; 31:432-441. [PMID: 28132610 DOI: 10.1177/1545968316688796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The course of central and peripheral motor recovery after cervical spinal cord injury (SCI) may be investigated by electrophysiological measures. The goal of this study was to compare the 2 over the first year after injury in relation to motor gains. METHODS Compound motor action potentials (CMAPs), motor-evoked potentials (MEPs), and F-waves were recorded from the abductor digiti minimi and CMAP and F-waves from abductor hallucis muscles in 305 patients at about 15 days, 1 month, 3 months, 6 months, and 12 months following an acute traumatic SCI. RESULTS The MEP amplitudes and F-wave persistences were lower with more severe sensorimotor impairment. They steadily increased in most subgroups within 6 months after SCI. The amplitude of the CMAPs was low for the first 3 months in the most severely affected participants. This was also found for CMAPs from tibial nerve originating well below the cervical lesion level. Improvement in neurophysiological parameters correlated with improved upper extremity motor scores. CONCLUSION The results point to a systematic interrelation of corticospinal transmission, spinal motoneuron excitability, and its axon function, respectively. Electrophysiological correlates of neural excitability show distinct spatial and temporal interrelations within central and peripheral motor pathways following acute cervical SCI. A strong secondary deterioration within the peripheral motor system with incomplete or no recovery depends on anatomical distance caudal to lesion and on lesion severity. Electrophysiological assessments may increase the sensitivity of interventional studies in addition to clinical measures.
Collapse
Affiliation(s)
- Jens A Petersen
- 1 University Hospital Zurich, Zurich, Switzerland.,2 University of Zurich, Zurich, Switzerland.,3 University Hospital Balgrist, Zurich, Switzerland
| | | | - Armin Curt
- 3 University Hospital Balgrist, Zurich, Switzerland
| | | | - Rüdiger Rupp
- 4 Heidelberg University Hospital, Heidelberg, Germany
| | - Rainer Abel
- 5 Spinal Cord Injury Center, Bayreuth, Germany
| | -
- 3 University Hospital Balgrist, Zurich, Switzerland
| | | |
Collapse
|
13
|
Morita T, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Nagahama H, Oka S, Oshigiri T, Takebayashi T, Yamashita T, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 2016; 335:221-31. [DOI: 10.1016/j.neuroscience.2016.08.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/11/2022]
|
14
|
Wang B, Yuan J, Chen X, Xu J, Li Y, Dong P. Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF. Sci Rep 2016; 6:32292. [PMID: 27558932 PMCID: PMC4997630 DOI: 10.1038/srep32292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022] Open
Abstract
Recurrent laryngeal nerve (RLN) injury remains a challenge due to the lack of effective treatments. In this study, we established a new drug delivery system consisting of a tube of Heal-All Oral Cavity Repair Membrane loaded with laminin and neurotrophic factors and tested its ability to promote functional recovery following RLN injury. We created recombinant fusion proteins consisting of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) fused to laminin-binding domains (LBDs) in order to prevent neurotrophin diffusion. LBD-BDNF, LBD-GDNF, and laminin were injected into a collagen tube that was fitted to the ends of the transected RLN in rats. Functional recovery was assessed 4, 8, and 12 weeks after injury. Although vocal fold movement was not restored until 12 weeks after injury, animals treated with the collagen tube loaded with laminin, LBD-BDNF and LBD-GDNF showed improved recovery in vocalisation, arytenoid cartilage angles, compound muscle action potentials and regenerated fibre area compared to animals treated by autologous nerve grafting (p < 0.05). These results demonstrate the drug delivery system induced nerve regeneration following RLN transection that was superior to that induced by autologus nerve grafting. It may have potential applications in nerve regeneration of RLN transection injury.
Collapse
Affiliation(s)
- Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai 201499, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai 200083, P.R. China
| | - Yu Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| |
Collapse
|
15
|
Gómez RM, Ghotme K, Botero L, Bernal JE, Pérez R, Barreto GE, Bustos RH. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats. Neurosci Res 2016; 103:10-7. [DOI: 10.1016/j.neures.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
|
16
|
Plaza N, Simón D, Sierra J, Moreno-Flores MT. Transduction of an immortalized olfactory ensheathing glia cell line with the green fluorescent protein (GFP) gene: Evaluation of its neuroregenerative capacity as a proof of concept. Neurosci Lett 2016; 612:25-31. [PMID: 26655478 DOI: 10.1016/j.neulet.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
Olfactory ensheathing glia (OEG) cells are known to foster axonal regeneration of central nervous system (CNS) neurons. Several lines of reversibly immortalized human OEG (ihOEG) have been previously established that enabled to develop models for their validation in vitro and in vivo. In this work, a constitutively GFP-expressing ihOEG cell line was obtained, and named Ts14-GFP. Ts14-GFP neuroregenerative ability was similar to that found for the parental line Ts14 and it can be assayed using in vivo transplantation experimental paradigms, after spinal cord or optic nerve damage. Additionally, we have engineered a low-regenerative ihOEG line, hTL2, using lentiviral transduction of the large T antigen from SV40 virus, denominated from now on Ts12. Ts12 can be used as a low regeneration control in these experiments.
Collapse
Affiliation(s)
- N Plaza
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - D Simón
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - J Sierra
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - M T Moreno-Flores
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
17
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
18
|
The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2014; 41:89-96. [PMID: 25522968 DOI: 10.1016/j.biomaterials.2014.11.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is still a worldwide clinical challenge for which there is no viable therapeutic method. We focused on developing combinatorial methods targeting the complex pathological process of SCI. In this study, we implanted linear-ordered collagen scaffold (LOCS) fibers with collagen binding brain-derived neurotrophic factor (BDNF) by tagging a collagen-binding domain (CBD) (LOCS + CBD-BDNF) in completely transected canine SCI with multisystem rehabilitation to validate its potential therapeutic effect through a long-term (38 weeks) observation. We found that LOCS + CBD-BDNF implants strikingly promoted locomotion and functional sensory recovery, with some dogs standing unassisted and transiently moving. Further histological analysis showed that administration of LOCS + CBD-BDNF reduced lesion volume, decreased collagen deposits, promoted axon regeneration and improved myelination, leading to functional recovery. Collectively, LOCS + CBD-BDNF showed striking therapeutic effect on completely transected canine SCI model and it is the first time to report such breakthrough in the war with SCI. Undoubtedly, it is a potentially promising therapeutic method for SCI paralysis or other movement disorders caused by neurological diseases in the future.
Collapse
|
19
|
Chen L, Chen D, Xi H, Wang Q, Liu Y, Zhang F, Wang H, Ren Y, Xiao J, Wang Y, Huang H. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant 2012; 21 Suppl 1:S65-77. [PMID: 22507682 DOI: 10.3727/096368912x633789] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our previous series of studies have proven that olfactory ensheathing cell (OEC) transplantation appears to be able to slow the rate of clinical progression after OEC transplantation in the first 4 months and cell intracranial (key points for neural network restoration, KPNNR) and/or intraspinal (impaired segments) implants provide benefit for patients (including both the bulbar onset and limb onset subtypes) with amyotrophic lateral sclerosis (ALS). Here we report the results of cell therapy in patients with ALS on the basis of long-term observation following multiple transplants. From March of 2003 to January of 2010, 507 ALS patients received our cellular treatment. Among them, 42 patients underwent further OEC therapy by the route of KPNNR for two or more times (two times in 35 patients, three times in 5 patients, four times in 1 patient, and five times in 1 patient). The time intervals are 13.1 (6-60) months between the first therapy and the second one, 15.2 (8-24) months between the second therapy and the third one, 16 (6-26) months between the third therapy and the fourth one, and 9 months between the fourth therapy and the fifth time. All of the patients exhibited partial neurological functional recovery after each cell-based administration. Firstly, the scores of the ALS Functional Rating Scale (ALS-FRS) and ALS Norris Scale increased by 2.6 + 2.4 (0-8) and 4.9 + 5.2 (0-20) after the first treatment, 1.1 + 1.3 (0-5) and 2.3 + 2.9 (0-13) after the second treatment, 1.1 + 1.5 (0-4), and 3.4 + 6.9 (0-19) after the third treatment, 0.0 + 0.0 (0-0), and 2.5 + 3.5 (0-5) after the fourth treatment, and 1 point after the fifth cellular therapy, which were evaluated by independent neurologists. Secondly, the majority of patients have achieved improvement in electromyogram (EMG) assessments after the first, second, third, and fourth cell transplantation. After the first treatment, among the 42 patients, 36 (85.7%) patients' EMG test results improved, the remaining 6 (14.3%) patients' EMG results showed no remarkable change. After the second treatment, of the 42 patients, 30 (71.4%) patients' EMG results improved, 11 (26.2%) patients showed no remarkable change, and 1 (2.4%) patient became worse. After the third treatment, out of the 7 patients, 4 (57.1%) patients improved, while the remaining 3 (42.9%) patients showed no change. Thirdly, the patients have partially recovered their breathing ability as demonstrated by pulmonary functional tests. After the first treatment, 20 (47.6%) patients' pulmonary function ameliorated. After the second treatment, 18 (42.9%) patients' pulmonary function improved. After the third treatment, 2 (28.6%) patients recovered some pulmonary function. After the fourth and fifth treatment, patients' pulmonary function did not reveal significant change. The results show that multiple doses of cellular therapy definitely serve as a positive role in the treatment of ALS. This repeated and periodic cell-based therapy is strongly recommended for the patients, for better controlling this progressive deterioration disorder.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Silva DFT, Mesquita-Ferrari RA, Fernandes KPS, Raele MP, Wetter NU, Deana AM. Effective Transmission of Light for Media Culture, Plates and Tubes. Photochem Photobiol 2012; 88:1211-6. [DOI: 10.1111/j.1751-1097.2012.01166.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wu B, Sun L, Li P, Tian M, Luo Y, Ren X. Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury. Injury 2012; 43:794-801. [PMID: 22018607 DOI: 10.1016/j.injury.2011.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 02/02/2023]
Abstract
Loss of oligodendrocytes and demyelination further impair neural function after spinal cord injury (SCI). Replacement of lost oligodendrocytes and improvement of myelination have a therapeutic significance in treatment of SCI. Here, we transplanted oligodendrocyte precursor cells (OPCs) to improve myelination in a rat model of contusive SCI. The labelled OPCs were transplanted to injured cord 7 days after injury. As a result, the implanted cells still survived in vivo 8 weeks after transplantation. They proliferated, integrated and differentiated in the injured cord. In the OPCs-treated rats, enhanced myelination in the lesioned area was observed and substantial improvement of motor function and nerve conduction was also recorded. Thus, this study provides strong evidence to support that transplantation of OPCs could improve myelination of injured cord and enhance functional recovery after contusive SCI.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopedics, 88th Hospital, Tai'an, Shandong, China
| | | | | | | | | | | |
Collapse
|
22
|
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 2012; 114:935-9. [PMID: 22464434 DOI: 10.1016/j.clineuro.2012.02.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/19/2011] [Accepted: 02/06/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND In recent years, some studies were conducted to evaluate the effects of stem cells from different sources on patients with spinal cord injury (SCI). This study was carried out to evaluate the feasibility and therapeutic potential of autologous bone marrow cell (BMC) transplantation in 11 complete spinal cord injured patients at thoracic level. METHODS AND MATERIALS This nonrandomized clinical trial compared the results of autologous BMC transplantation into cerebrospinal fluid (CSF) via lumbar puncture (LP) in 11 patients having complete SCI, with 20 patients as control group who received conventional treatment without BMC transplantation. The patients underwent preoperative and follow-up neurological assessments using the American Spinal Injury Association (ASIA) impairment scale. Then, the participants were followed for 12-33 months. RESULTS Eleven patients with the mean age of 33.2±8.9 years and 20 patients with the mean age of 33.5±7.2 years were enrolled in the study and in the control group, respectively. None of the patients in the study and control group experienced any adverse reaction and complications, neither after routine treatment nor after cell transplantation. Five patients out of 11 (45.5%) in the study group and three patients in the control group (15%) showed marked recovery, but the result was statistically borderline (P=0.095). CONCLUSION We conclude that transplantation of autologous BMC via LP is a feasible and safe technique, but at the moment, no clear answer can be given regarding the clinical potential, despite a potential tendency to treat SCI patients, observed through statistics.
Collapse
Affiliation(s)
- Saeid Karamouzian
- Neuroscience Research Center, Kerman University of Medical Sciences, Department of Neurosurgery, Bahonar Hospital, Kerman, Iran
| | | | | | | |
Collapse
|
23
|
Abstract
Background. The description of the natural course of recovery from a spinal cord injury (SCI) with spontaneous improvement of neurological, neurophysiological, and functional measures is an important prerequisite in appraising effects of upcoming interventional therapies. Objective. To describe the spontaneous evolution of motor-evoked potentials of the anterior tibial muscle (TA-MEP) and their relation to outcomes of lower extremity motor scores (LEMS) and walking function in patients recovering from an acute SCI. Methods. TA-MEPs were assessed in 255 SCI subjects within 5 time intervals throughout the first year after SCI with combined neurological and functional measures. Tibial nerve conduction studies were performed to screen for peripheral nerve damage. Results. TA-MEP allowed stratification of SCI according to lesion severity and outcome. As MEP amplitudes increased over 12 months after SCI, this was paralleled by a significant improvement of LEMS and walking function. TA-MEP latencies remained usually stable. Conclusion. Clinical outcome and walking function after SCI can be predicted independent of clinical measures by assessment of TA-MEP reflecting corticospinal tract integrity.
Collapse
Affiliation(s)
- Jens A. Petersen
- University Hospital Zurich, Zurich, Switzerland
- University Hospital Balgrist, Zurich, Switzerland
| | | | - Armin Curt
- University Hospital Balgrist, Zurich, Switzerland
| | - Volker Dietz
- University Hospital Balgrist, Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Central to the obstacles to be overcome in moving promising cell-based therapies from the laboratory to the clinic is that of determining which of the many cell types being examined are optimal for repairing particular lesions. RECENT FINDINGS Our studies on astrocyte replacement therapies demonstrate clearly that some cells are far better than others at promoting recovery in spinal cord injury and that, at least in some cases, transplanting undifferentiated precursor cells is far less useful than transplanting specific astrocytes derived from those precursor cells. But further comparison between different approaches is hindered by the difficulties in replicating results between laboratories, even for well defined pharmacological agents and bioactive proteins. These difficulties in replication appear most likely to be due to unrecognized nuances in lesion characteristics and in the details of delivery of therapies. SUMMARY We propose that the challenge of reproducibility provides a critical opportunity for refining cell-based therapies. If the utility of a particular approach is so restricted that even small changes in lesions or treatment protocols eliminate benefit, then the variability inherent in clinical injuries will frustrate translation. In contrast, rising to this challenge may enable discovery of refinements needed to confer the robustness needed for successful clinical trials.
Collapse
|
25
|
Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, Hosseini K, Razavi HE, Yekaninejad MS. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15:515-525. [PMID: 21800956 DOI: 10.3171/2011.6.spine10917] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Many experimental studies on spinal cord injuries (SCIs) support behavioral improvement after Schwann cell treatment. This study was conducted to evaluate safety issues 2 years after intramedullary Schwann cell transplantation in 33 consecutively selected patients with SCI. METHODS Of 356 patients with SCIs who had completed at least 6 months of a conventional rehabilitation program and who were screened for the study criteria, 33 were enrolled. After giving their informed consent, they volunteered for participation. They underwent sural nerve harvesting and intramedullary injection of a processed Schwann cell solution. Outcome assessments included a general health questionnaire, neurological examination, and functional recordings in terms of American Spinal Injury Association (ASIA) and Functional Independence Measure scoring, which were documented by independent observers. There were 24 patients with thoracic and 9 with cervical injuries. Sixteen patients were categorized in ASIA Grade A, and the 17 remaining participants had ASIA Grade B. RESULTS There were no cases of deep infection, and the follow-up MR imaging studies obtained at 2 years did not reveal any deformity related to the procedure. There was no case of permanent neurological worsening or any infectious or viral complications. No new increment in syrinx size or abnormal tissue and/or tumor formation were observed on contrast-enhanced MR imaging studies performed 2 years after the treatment. CONCLUSIONS Preliminary results, especially in terms of safety, seem to be promising, paving the way for future cell therapy trials.
Collapse
Affiliation(s)
- Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials 2011; 32:7454-68. [DOI: 10.1016/j.biomaterials.2011.06.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 01/20/2023]
|
27
|
Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C. Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α. J Neurotrauma 2011; 28:1089-100. [PMID: 21309692 DOI: 10.1089/neu.2010.1597] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Axonal demyelination is a consistent pathological characteristic of spinal cord injury (SCI). Although an increased number of oligodendrocyte progenitor cells (OPCs) is observed in the injured spinal cord, they fail to convert into mature oligodendrocytes. However, little is known about the underlying mechanism. In our study, we identified a link between inhibition of OPC survival and differentiation and reactive astrocytes in glial scar that was mediated by tumor necrosis factor-α (TNF-α). Initially, both glial scar tissue and reactive astrocyte-conditioned medium were shown to inhibit OPC differentiation. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunochemistry revealed that OPCs expressed type 1 TNF-α receptor (TNF-R1). When TNF-α or TNF-R1 was neutralized with antibody, the effect of reactive astrocyte-conditioned medium or recombinant TNF-α protein on OPC differentiation was markedly attenuated. In addition, reactive astrocyte-conditioned medium was also shown to induce OPC apoptosis. All these findings provide the first evidence that reactive astrocytes release TNF-α to inhibit OPC survival and prevent them from differentiating into mature oligodendrocytes, suggesting a mechanism for the failure of remyelination after SCI.
Collapse
Affiliation(s)
- Zhida Su
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol 2011; 229:88-98. [DOI: 10.1016/j.expneurol.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/10/2011] [Accepted: 01/16/2011] [Indexed: 01/07/2023]
|
29
|
Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 2011; 31:4675-86. [PMID: 21430166 PMCID: PMC3148661 DOI: 10.1523/jneurosci.4130-10.2011] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/04/2011] [Accepted: 02/02/2011] [Indexed: 01/12/2023] Open
Abstract
Transplantation of neural progenitor cells (NPC) is a promising therapeutic strategy for replacing neurons lost after spinal cord injury, but significant challenges remain regarding neuronal integration and functional connectivity. Here we tested the ability of graft-derived neurons to reestablish connectivity by forming neuronal relays between injured dorsal column (DC) sensory axons and the denervated dorsal column nuclei (DCN). A mixed population of neuronal and glial restricted precursors (NRP/GRP) derived from the embryonic spinal cord of alkaline phosphatase (AP) transgenic rats were grafted acutely into a DC lesion at C1. One week later, BDNF-expressing lentivirus was injected into the DCN to guide graft axons to the intended target. Six weeks later, we observed anterogradely traced sensory axons regenerating into the graft and robust growth of graft-derived AP-positive axons along the neurotrophin gradient into the DCN. Immunoelectron microscopy revealed excitatory synaptic connections between regenerating host axons and graft-derived neurons at C1 as well as between graft axons and DCN neurons in the brainstem. Functional analysis by stimulus-evoked c-Fos expression and electrophysiological recording showed that host axons formed active synapses with graft neurons at the injury site with the signal propagating by graft axons to the DCN. We observed reproducible electrophysiological activity at the DCN with a temporal delay predicted by our relay model. These findings provide the first evidence for the ability of NPC to form a neuronal relay by extending active axons across the injured spinal cord to the intended target establishing a critical step for neural repair with stem cells.
Collapse
Affiliation(s)
- Joseph F. Bonner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Theresa M. Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - William F. Silverman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
- Department of Morphology, Zlotowski Center for Neuroscience, Ben-Gurion University, Beer Sheva 84105, and Israel
| | - David P. Kowalski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Michel A. Lemay
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
30
|
Masgutova GA, Savchenko EA, Viktorov IV, Masgutov RF, Chelyshev YA. Reaction of oligoglia to spinal cord injury in rats and transplantation of human olfactory ensheathing cells. Bull Exp Biol Med 2011; 149:135-9. [PMID: 21113476 DOI: 10.1007/s10517-010-0892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In experiments on rats with lateral TVIII hemisection of the spinal cord and transplantation of ensheating olfactory cells, we studied structural changes at the lesion site and adjacent rostral and dorsal regions of the spinal cord. The state of oligodendrocytes and myelin fibers and motor function in experimental animal were analyzed. Open field testing (BBB test) showed that motor functions steadily increased (by 13% on average) within the interval from day 21 to day 53 after transplantation. Histological examination showed that groups of transplanted cells carrying human nuclear marker (HNu(+)cells) were still present at the lesion site 30 days after surgery. Some of these cells migrated in the rostral and caudal directions from the injection site to a distance up to 6 mm. At the initial period after hemisection, the number of oligodendrocytes (O4(+)-cells) in the immediate vicinity to the lesion site decreased 2-fold, but no significant changes in the number of neurons were found in the rostral and dorsal fragments of the spinal cord compared to the corresponding parameter in controls. Sixty days after transplantation, the cross-section area in the rostral part of the spinal cord at a distance of 3 mm from damage site increased by 15.3% compared to the control. The number of O4(+)-cells at the lesion site and in adjacent rostral and caudal parts of the spinal cord by 22.8% surpassed that in the control group. The number of remyelinated axons also increased. These findings suggest that the absence of pronounced structural changes in the rostral and caudal parts of the spinal cord compared to lesion site at early stages after damage and cell transplantation. At the same time, pronounced activation of oligodendrocytes in this region suggests their involvement together with Schwann cells into remyelination of regenerating axons, which can serve as a factor of partial restoration of motor functions after spinal cord injury.
Collapse
Affiliation(s)
- G A Masgutova
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, Russia
| | | | | | | | | |
Collapse
|
31
|
Gueye Y, Ferhat L, Sbai O, Bianco J, Ould-Yahoui A, Bernard A, Charrat E, Chauvin JP, Risso JJ, Féron F, Rivera S, Khrestchatisky M. Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: A role in cell migration? Glia 2011; 59:750-70. [DOI: 10.1002/glia.21146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
|
32
|
Abstract
Study Design Prospective cohort study Objective This study was designed to neurophysiologically characterize motor control recovery after spinal cord injury (SCI). Setting University of Louisville, Louisville, Kentucky, USA. Material Eleven acute SCI admissions and five non-injured subjects were recruited for this study. Methods The American Spinal Injury Association Impairment Scale (AIS) was used to categorize injury level and severity at onset. Multi-muscle surface EMG (sEMG) recording protocol of reflex and volitional motor tasks was initially performed between the day of injury and 11 days post onset (6.4 ± 3.6, mean ± SD days). Follow-up recordings were performed for up to 17 months after injury. Initial AIS distribution was: 4 AIS-A; 2 AIS-C; 5 AIS-D. Multi-muscle activation patterns were quantified from the sEMG amplitudes of selected muscles using a vector-based calculation that produces values for Magnitude and Similarity of SCI test-subject patterns to those produced by non-injured subjects. Results In SCI subjects, overall sEMG amplitudes were lower after SCI. Prime mover muscle voluntary recruitment was slower and multi-muscle patterns were disrupted by SCI. Recovery occurred in 9 of the 11 showing an increase in sEMG amplitudes, more rapid prime mover muscle recruitment rates and the progressive normalization of the multi-muscle activation patterns. The rate of increase was highly individualized, differing over time by limb and proximal or distal joint within each subject and across the SCI group. Conclusions Recovery of voluntary motor function can be quantitatively tracked using neurophysiological methods in the domains of time and multi-muscle motor unit activation. Sponsorship NIH NINDS funded project #NS049954-01
Collapse
|
33
|
Lutz J, Linn J, Mehrkens JH, Thon N, Stahl R, Seelos K, Brückmann H, Holtmannspötter M. Trigeminal neuralgia due to neurovascular compression: high-spatial-resolution diffusion-tensor imaging reveals microstructural neural changes. Radiology 2010; 258:524-30. [PMID: 21062923 DOI: 10.1148/radiol.10100477] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To preoperatively detect, by using diffusion-tensor imaging coregistered with anatomic magnetic resonance (MR) imaging, suspected microstructural tissue changes of the trigeminal nerves in patients with trigeminal neuralgia (TN) resulting from neurovascular compression. MATERIALS AND METHODS The study was approved by the institutional review board, and written informed consent was obtained from all patients. Twenty patients (mean age, 51.3 years) with TN and evidence of neurovascular contact were examined with use of a 3.0-T MR unit combined with an eight-channel head coil before undergoing surgical decompression. A single-shot diffusion-tensor echo-planar sequence was used along 15 different diffusion directions, with a b value of 1000 sec/mm(2) and a section thickness of 2 mm. For anatomic correlation, 0.6-mm isotropic three-dimensional fast imaging employing steady-state images were acquired for coregistration with the functional diffusion-tensor maps. After region of interest placement, mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated for each nerve by using the paired-sample two-tailed t test (with P < .005 indicating significance) and compared with surgical findings. RESULTS FA was significantly lower (P = .004) on the trigeminal neuralgia-affected side (mean FA, 0.203) than on the contralateral side (mean FA, 0.239). ADCs were nearly identical between the normal and TN-affected nerve tissues. CONCLUSION These findings suggest that diffusion-tensor imaging enables the identification and quantification of anisotropic changes between normal nerve tissue and TN-affected trigeminal nerves. Coregistration of anatomic three-dimensional fast imaging employing steady-state imaging and diffusion-tensor imaging facilitates excellent delineation of the cisternal segments of the trigeminal nerves.
Collapse
Affiliation(s)
- Juergen Lutz
- Departments of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistrasse 5, 81377 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
White TE, Lane MA, Sandhu MS, O'Steen BE, Fuller DD, Reier PJ. Neuronal progenitor transplantation and respiratory outcomes following upper cervical spinal cord injury in adult rats. Exp Neurol 2010; 225:231-6. [PMID: 20599981 PMCID: PMC2922494 DOI: 10.1016/j.expneurol.2010.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 11/30/2022]
Abstract
Despite extensive gray matter loss following spinal cord injury (SCI), little attention has been given to neuronal replacement strategies and their effects on specific functional circuits in the injured spinal cord. In the present study, we assessed breathing behavior and phrenic nerve electrophysiological activity following transplantation of microdissected dorsal or ventral pieces of rat fetal spinal cord tissue (FSC(D) or FSC(V), respectively) into acute, cervical (C2) spinal hemisections. Transneuronal tracing demonstrated connectivity between donor neurons from both sources and the host phrenic circuitry. Phrenic nerve recordings revealed differential effects of dorsally vs. ventrally derived neural progenitors on ipsilateral phrenic nerve recovery and activity. These initial results suggest that local gray matter repair can influence motoneuron function in targeted circuits following spinal cord injury and that outcomes will be dependent on the properties and phenotypic fates of the donor cells employed.
Collapse
Affiliation(s)
- Todd E. White
- University of Florida College of Medicine and McKnight Brain Institute, Department of Neuroscience, P.O. Box 100244, 100 S. Newell Dr., Gainesville, FL. 32610, U.S.A
| | - Michael A. Lane
- University of Florida College of Medicine and McKnight Brain Institute, Department of Neuroscience, P.O. Box 100244, 100 S. Newell Dr., Gainesville, FL. 32610, U.S.A
| | - Milapjit S. Sandhu
- University of Florida College of College of Health and Health Professions, Department of Physical Therapy, P.O. Box 100154,100 S. Newell Dr., Gainesville, Florida 32610, U.S.A
| | - Barbara E. O'Steen
- University of Florida College of Medicine and McKnight Brain Institute, Department of Neuroscience, P.O. Box 100244, 100 S. Newell Dr., Gainesville, FL. 32610, U.S.A
| | - David D. Fuller
- University of Florida College of College of Health and Health Professions, Department of Physical Therapy, P.O. Box 100154,100 S. Newell Dr., Gainesville, Florida 32610, U.S.A
| | - Paul J. Reier
- University of Florida College of Medicine and McKnight Brain Institute, Department of Neuroscience, P.O. Box 100244, 100 S. Newell Dr., Gainesville, FL. 32610, U.S.A
| |
Collapse
|
35
|
Peplow PV, Chung TY, Baxter GD. Laser Photobiomodulation of Proliferation of Cells in Culture: A Review of Human and Animal Studies. Photomed Laser Surg 2010; 28 Suppl 1:S3-40. [DOI: 10.1089/pho.2010.2771] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy & Structural Biology, University of Otago, New Zealand
| | - Tzu-Yun Chung
- Department of Anatomy & Structural Biology, University of Otago, New Zealand
| | - G. David Baxter
- Centre for Physiotherapy Research, School of Physiotherapy, University of Otago, New Zealand
| |
Collapse
|
36
|
Gorrie CA, Hayward I, Cameron N, Kailainathan G, Nandapalan N, Sutharsan R, Wang J, Mackay-Sim A, Waite PME. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res 2010; 1337:8-20. [PMID: 20399758 DOI: 10.1016/j.brainres.2010.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/16/2023]
Abstract
Numerous reports indicate that rodent olfactory ensheathing cells (OECs) assist in spinal cord repair and clinical trials have been undertaken using autologous transplantation of human olfactory ensheathing cells (hOECs) as a treatment for spinal cord injury. However, there are few studies investigating the efficacy of hOECs in animal models of spinal cord injury. In this study hOECs were derived from biopsies of human olfactory mucosa, purified by culture in a serum-free medium containing neurotrophin-3, genetically labelled with EGFP, and stored frozen. These hOEC-derived cells were thawed and transplanted into the spinal cord injury site 7 days after a moderate contusion injury of the spinal cord at thoracic level T10 in the athymic rat. Six weeks later the animals receiving the hOEC-derived transplants had greater functional improvement in their hindlimbs than controls, assessed using open field (BBB scale) and horizontal rung walking tests. Histological analysis demonstrated beneficial effects of hOEC-derived cell transplantation: reductions in the volume of the lesion and the cavities within the lesion. The transplanted cells were located at the periphery of the lesion where they integrated with GFAP-positive astrocytes resulting in a significant reduction of GFAP staining intensity adjacent to the lesion. Although their mechanism of action is unclear we conclude that hOEC-derived cell transplants improved functional recovery after transplantation into the contused spinal cord, probably by modulating inflammatory responses and reducing secondary damage to the cord.
Collapse
Affiliation(s)
- Catherine Anne Gorrie
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen L, Huang H, Xi H, Xie Z, Liu R, Jiang Z, Zhang F, Liu Y, Chen D, Wang Q, Wang H, Ren Y, Zhou C. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant 2010; 19:185-91. [PMID: 20350360 DOI: 10.3727/096368910x492652] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Successful repair of damage in cerebral palsy (CP) needs effective clinical interventions other than simply symptomatic treatments. To elucidate the feasibility of using olfactory ensheathing cells (OECs) to treat CP in children and adolescents, we conducted a randomized controlled clinical trial (RCT) on 33 patients. The patients were randomly assigned into two groups (treatment group, n = 18; control group, n = 15), and OECs derived from aborted fetal tissue were injected into the bilateral corona radiata in the frontal lobes (a key point for neural network restoration, KPNNR). The Gross Motor Function Measure (GMFM-66) and the Caregiver Questionnaire Scale were used to evaluate the patients' neurological function and overall health status. Among the 14 patients who completed the 6-month study, six received the cell transplantation and the other eight served as controls. In OEC treatment group, GMFM-66 scores were 26.67 +/- 25.33 compared with 19.00 +/- 20.00 for the control group. Concurrently, the Caregiver Questionnaire Scale score decreased to 77.83 +/- 15.99 in the treatment group in comparison to 138.66 +/- 64.06 of the control group. This trial, albeit small in sample size, indicates OEC KPNNR transplantation is effective for functional improvement in children and adolescents with CP, yet without obvious side effects. This small-scale study suggests that the procedure may be a plausible alternative method to treat this not yet curable disorder, and we urge further evaluation with a large-scale RCT.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Steencken AC, Siebert JR, Stelzner DJ. Lack of axonal sprouting of spared propriospinal fibers caudal to spinal contusion injury is attributed to chronic axonopathy. J Neurotrauma 2010; 26:2279-97. [PMID: 19645528 DOI: 10.1089/neu.2009.0934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have previously shown that a small percentage of long descending propriospinal tract (LDPT) axons are spared, whereas few short thoracic propriospinal (TPS) fibers survive 2 weeks following severe (50 mm weight drop) low thoracic spinal cord contusion injury (SCI). Here, we extended those findings to a moderate (25 mm weight drop) T9 SCI and assessed the effects of this lesion severity on propriospinal tract fibers at different time periods after injury. We anterogradely labeled fibers with fluororuby (FR) or WGA-HRP to determine their location and number 2, 4, 6, and 16 weeks post-SCI. Findings were compared with non-injured controls. At chronic time points, surviving FR-labeled LDPT fibers rostral to the injury remained as reactive endings or as putative regenerative sprouts. Caudal to the injury, spared LDPT fibers ran along a rim of lateral and ventral white matter, and ended as small abnormal-appearing putative terminal boutons or reactive endings within the intermediate gray matter of lumbosacral cord, with little axonal arborization and no evidence of injury-induced sprouting. One striking difference in the WGA-HRP experimental operates was the increased density of labeling of spared axons within the white matter caudal to the injury compared to controls. This labeling pattern was reminiscent of the labeling found after axotomy in studies by others, and raises a question as to contusion injury-induced impaired axonal transport. We hypothesize that axonal sprouting of axons after partial spinal cord injury seen in previous investigations was not found in the present investigation because of the additional pathological effects of contusion injury, similar to what is observed after traumatic brain injury.
Collapse
|
39
|
Yu H, Ye J, Li H, Zhang J, Jiang H, Dai C. Conditioned medium from neonatal rat olfactory ensheathing cells promotes the survival and proliferation of spiral ganglion cells. Acta Otolaryngol 2010. [DOI: 10.3109/00016480903154256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Gait analysis of spinal cord injured rats after delivery of chondroitinase ABC and adult olfactory mucosa progenitor cell transplantation. Neurosci Lett 2010; 472:79-84. [PMID: 20079803 DOI: 10.1016/j.neulet.2010.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 11/21/2022]
Abstract
Chondroitin sulfate proteoglycan (CSPG) is a major component of glial scar to restrict axonal regeneration in the lesion site after spinal cord injury (SCI). Chondroitinase ABC (ChABC), a bacteria enzyme, which has been demonstrated to digest the glycosaminoglycan (GAG) side chain of CSPG to promote axonal re-growth across the injured site. Our previous study suggested that long-term delivery of ChABC (1U/ml, injection volume 0.6 microl for one animal) via intrathecal catheter could decrease the inhibitory effect of limiting axonal re-growth after SCI. The functional behavior has been shown to improve following ChABC treatment. Little axons re-grow across the lesion site of the spinal cord but not enough to support axon innervations to targets. In this article, we show that ChABC administration combining olfactory mucosa progenitor cell (OMPC) transplantation can promote axonal re-growth across the lesion site and enhance the consistency of stepping in spinally transected rats. These OMPCs generated NG2(+) cell lineages after transplanting into the spinal cord parenchyma, and OMPCs were found to spread and migrate toward the lesion region of spinal cord. Moreover, the spatial and temporal characteristics of the step cycle in rats that receive a complete spinal cord transaction following continuous ChABC supply and OMPC transplantation. The gait characteristics of treated rats on a treadmill were consistent and approached that of intact rats. In future, the mechanism of restoring the injured spinal cord will be further investigated.
Collapse
|
41
|
Huang H, Chen L, Sanberg P. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era. CELL MEDICINE 2010; 1:15-46. [PMID: 21359168 PMCID: PMC3043378 DOI: 10.3727/215517910x516673] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology.
Collapse
Affiliation(s)
- Hongyun Huang
- *Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | - Lin Chen
- *Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | - Paul Sanberg
- †Department of Neurosurgery, University of South Florida, Tampa, FL, USA
| |
Collapse
|
42
|
Liu K, Li Y, Wang H, Jiang X, Zhao Y, Sun D, Chen L, Young W, Huang H, Zhou C. The Immunohistochemical Characterization of Human Fetal Olfactory Bulb and Olfactory Ensheathing Cells in Culture as a Source for Clinical CNS Restoration. Anat Rec (Hoboken) 2009; 293:359-69. [DOI: 10.1002/ar.21030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Mellough CB, Steel DHW, Lako M. Genetic basis of inherited macular dystrophies and implications for stem cell therapy. Stem Cells 2009; 27:2833-45. [PMID: 19551904 PMCID: PMC2962903 DOI: 10.1002/stem.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 06/11/2009] [Indexed: 12/25/2022]
Abstract
Untreatable hereditary macular dystrophy (HMD) presents a major burden to society in terms of the resulting patient disability and the cost to the healthcare provision system. HMD results in central vision loss in humans sufficiently severe for blind registration, and key issues in the development of therapeutic strategies to target these conditions are greater understanding of the causes of photoreceptor loss and the development of restorative procedures. More effective and precise analytical techniques coupled to the development of transgenic models of disease have led to a prolific growth in the identification and our understanding of the genetic mutations that underly HMD. Recent successes in driving differentiation of pluripotent cells towards specific somatic lineages have led to the development of more efficient protocols that can yield enriched populations of a desired phenotype. Retinal pigmented epithelial cells and photoreceptors derived from these are some of the most promising cells that may soon be used in the treatment of specific HMD, especially since rapid developments in the field of induced pluripotency have now set the stage for the production of patient-derived stem cells that overcome the ethical and methodological issues surrounding the use of embryonic derivatives. In this review we highlight a selection of HMD which appear suitable candidates for combinatorial restorative therapy, focusing specifically on where those photoreceptor loss occurs. This technology, along with increased genetic screening, opens up an entirely new pathway to restore vision in patients affected by HMD.
Collapse
Affiliation(s)
- Carla B Mellough
- Institute of Human Genetics andInternational Centre for LifeNewcastle Upon Tyne, United Kingdom
| | - David HW Steel
- Sunderland Eye InfirmaryQueen Alexandra Road, Sunderland, Tyne and Wear, United Kingdom
| | - Majlinda Lako
- North East Stem Cell Institute, Newcastle University, International Centre for LifeNewcastle Upon Tyne, United Kingdom
| |
Collapse
|
44
|
Markakis EA, Sasaki M, Lankford KL, Kocsis JD. Convergence of cells from the progenitor fraction of adult olfactory bulb tissue to remyelinating glia in demyelinating spinal cord lesions. PLoS One 2009; 4:e7260. [PMID: 19787061 PMCID: PMC2747269 DOI: 10.1371/journal.pone.0007260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/30/2009] [Indexed: 01/18/2023] Open
Abstract
Background Progenitor cells isolated from adult brain tissue are important tools for experimental studies of remyelination. Cells harvested from neurogenic regions in the adult brain such as the subependymal zone have demonstrated remyelination potential. Multipotent cells from the progenitor fraction have been isolated from the adult olfactory bulb (OB) but their potential to remyelinate has not been studied. Methodology/Principal Findings We used the buoyant density gradient centrifugation method to isolate the progenitor fraction and harvest self-renewing multipotent neural cells grown in monolayers from the adult green-fluorescent protein (GFP) transgenic rat OB. OB tissue was mechanically and chemically dissociated and the resultant cell suspension fractionated on a Percoll gradient. The progenitor fraction was isolated and these cells were plated in growth media with serum for 24 hrs. Cells were then propagated in N2 supplemented serum-free media containing b-FGF. Cells at passage 4 (P4) were introduced into a demyelinated spinal cord lesion. The GFP+ cells survived and integrated into the lesion, and extensive remyelination was observed in plastic sections. Immunohistochemistry revealed GFP+ cells in the spinal cord to be glial fibrillary acidic protein (GFAP), neuronal nuclei (NeuN), and neurofilament negative. The GFP+ cells were found among primarily P0+ myelin profiles, although some myelin basic protein (MBP) profiles were present. Immuno-electron microscopy for GFP revealed GFP+ cell bodies adjacent to and surrounding peripheral-type myelin rings. Conclusions/Significance We report that neural cells from the progenitor fraction of the adult rat OB grown in monolayers can be expanded for several passages in culture and that upon transplantation into a demyelinated spinal cord lesion provide extensive remyelination without ectopic neuronal differentiation.
Collapse
Affiliation(s)
- Eleni A Markakis
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | |
Collapse
|
45
|
Buchet D, Baron-Van Evercooren A. In search of human oligodendroglia for myelin repair. Neurosci Lett 2009; 456:112-9. [DOI: 10.1016/j.neulet.2008.09.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/15/2008] [Accepted: 09/04/2008] [Indexed: 11/15/2022]
|
46
|
|
47
|
Melani A, Cipriani S, Vannucchi MG, Nosi D, Donati C, Bruni P, Giovannini MG, Pedata F. Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain 2009; 132:1480-95. [PMID: 19359287 DOI: 10.1093/brain/awp076] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine is a potent biological mediator, the concentration of which increases dramatically following brain ischaemia. During ischaemia, adenosine is in a concentration range (muM) that stimulates all four adenosine receptor subtypes (A(1), A(2A), A(2B) and A(3)). In recent years, evidence has indicated that the A(2A) receptor subtype is of critical importance in stroke. We have previously shown that 24 h after medial cerebral artery occlusion (MCAo), A(2A) receptors up-regulate on neurons and microglia of ischaemic striatum and cortex and that subchronically administered adenosine A(2A) receptor antagonists protect against brain damage and neurological deficit and reduce activation of p38 mitogen-activated protein kinase (MAPK) in microglial cells. The mechanisms by which A(2A) receptors are noxious during ischaemia still remain elusive. The objective of the present study was to investigate whether the adenosine A(2A) antagonist SCH58261 affects JNK and MEK1/ERK MAPK activation. A further aim was to investigate cell types expressing activated JNK and MEK1/ERK MAPK after ischaemia. We hereby report that the selective adenosine A(2A) receptor antagonist, SCH58261, administered subchronically (0.01 mg/kg i.p) 5 min, 6 and 20 h after MCAo in male Wistar rats, reduced JNK MAPK activation (immunoblot analysis: phospho-JNK54 isoform by 81% and phospho-JNK46 isoform by 60%) in the ischaemic striatum. Twenty-four hours after MCAo, the Olig2 transcription factor of oligodendroglial progenitor cells and mature oligodendrocytes was highly expressed in cell bodies in the ischaemic striatum. Immunofluorescence staining showed that JNK MAPK is maximally expressed in Olig2-stained oligodendrocytes and in a few NeuN stained neurons. Striatal cell fractioning into nuclear and extra-nuclear fractions demonstrated the presence of Olig2 transcription factor and JNK MAPK in both fractions. The A(2A) antagonist reduced striatal Olig 2 transcription factor (immunoblot analysis: by 55%) and prevented myelin disorganization, assessed by myelin-associated glycoprotein staining. Twenty-four hours after MCAo, ERK1/2 MAPK was highly activated in the ischaemic striatum, mostly in microglia, while it was reduced in the ischaemic cortex. The A(2A) antagonist did not affect activation of the ERK1/2 pathway. The efficacy of A(2A) receptor antagonism in reducing activation of JNK MAPK in oligodendrocytes suggests a mechanism of protection consisting of scarring oligodendrocyte inhibitory molecules that can hinder myelin reconstitution and neuron functionality.
Collapse
Affiliation(s)
- Alessia Melani
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini, 6, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Since loss of oligodendrocytes and consequent demyelination of spared axons severely impair the functional recovery of injured spinal cord, it is reasonably expected that the reduction of oligodendroglial death and enhanced remyelination of demyelinated axons will have a therapeutic potential to treat spinal cord injury. Amelioration of axonal myelination in the injured spinal cord is valuable for recovery of the neural function of incompletely injured patients. Here, this article presents an overview about the pathophysiology and mechanism of axonal demyelination in spinal cord injury and discusses its therapeutic significance in the treatment of spinal cord injury. Moreover, it further introduces the recent strategies to improve the axonal myeliantion to facilitate functional recovery of spinal cord injury.
Collapse
|
49
|
Srivastava N, Seth K, Khanna V, Ansari R, Agrawal A. Long‐term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction: co‐transplantation with olfactory ensheathing cells for neurotrophic factor support. Int J Dev Neurosci 2008; 27:103-10. [DOI: 10.1016/j.ijdevneu.2008.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022] Open
Affiliation(s)
- N. Srivastava
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - K. Seth
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - V.K. Khanna
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - R.W. Ansari
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - A.K. Agrawal
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| |
Collapse
|
50
|
Catania A. Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci 2008; 31:353-60. [DOI: 10.1016/j.tins.2008.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 01/27/2023]
|