1
|
Thompson CM, Chao CK. VGLUT substrates and inhibitors: A computational viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183175. [PMID: 31923412 DOI: 10.1016/j.bbamem.2020.183175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
The vesicular glutamate transporters (VGLUTs) bind and move glutamate (Glu) from the cytosol into the lumen of synaptic vesicles using a H+-electrochemical gradient (ΔpH and Δψ) generated by the vesicular H+-ATPase. VGLUTs show very low Glu binding and to date, no three-dimensional structure has been elucidated. Prior studies have attempted to identify the key residues involved in binding VGLUT substrates and inhibitors using homology models and docking experiments. Recently, the inward and outward oriented crystal structures of d-galactonate transporter (DgoT) emerged as possible structure templates for VGLUT. In this review, a new homology model for VGLUT2 based on DgoT has been developed and used to conduct docking experiments to identify and differentiate residues and binding orientations involved in ligand interactions. This review describes small molecule-ligand interactions including docking using a VGLUT2 homology model derived from DgoT.
Collapse
Affiliation(s)
- Charles M Thompson
- Center for Structural and Functional Neurosciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, United States.
| | - Chih-Kai Chao
- Center for Structural and Functional Neurosciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
2
|
Kehrl J, Althaus JC, Showalter HD, Rudzinski DM, Sutton MA, Ueda T. Vesicular Glutamate Transporter Inhibitors: Structurally Modified Brilliant Yellow Analogs. Neurochem Res 2017; 42:1823-1832. [DOI: 10.1007/s11064-017-2198-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
|
3
|
|
4
|
Hackett JT, Ueda T. Glutamate Release. Neurochem Res 2015; 40:2443-60. [PMID: 26012367 DOI: 10.1007/s11064-015-1622-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Our aim was to review the processes of glutamate release from both biochemical and neurophysiological points of view. A large body of evidence now indicates that glutamate is specifically accumulated into synaptic vesicles, which provides strong support for the concept that glutamate is released from synaptic vesicles and is the major excitatory neurotransmitter. Evidence suggests the notion that synaptic vesicles, in order to sustain the neurotransmitter pool of glutamate, are endowed with an efficient mechanism for vesicular filling of glutamate. Glutamate-loaded vesicles undergo removal of Synapsin I by CaM kinase II-mediated phosphorylation, transforming to the release-ready pool. Vesicle docking to and fusion with the presynaptic plasma membrane are thought to be mediated by the SNARE complex. The Ca(2+)-dependent step in exocytosis is proposed to be mediated by synaptotagmin.
Collapse
Affiliation(s)
- John T Hackett
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908-0736, USA
| | - Tetsufumi Ueda
- Molecular and Behavioral Neuroscience Institute, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Pharmacology, Medical School, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Psychiatry, Medical School, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Vigneault É, Poirel O, Riad M, Prud'homme J, Dumas S, Turecki G, Fasano C, Mechawar N, El Mestikawy S. Distribution of vesicular glutamate transporters in the human brain. Front Neuroanat 2015; 9:23. [PMID: 25798091 PMCID: PMC4350397 DOI: 10.3389/fnana.2015.00023] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.
Collapse
Affiliation(s)
- Érika Vigneault
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Odile Poirel
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine Paris, France ; Centre National de la Recherche Scientifique UMR 8246, Neuroscience Paris Seine Paris, France ; Sorbonne University, Université Pierre et Marie Curie Paris 06, UM119, Neuroscience Paris Seine Paris, France
| | - Mustapha Riad
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Josée Prud'homme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | | | - Gustavo Turecki
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Caroline Fasano
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine Paris, France ; Centre National de la Recherche Scientifique UMR 8246, Neuroscience Paris Seine Paris, France ; Sorbonne University, Université Pierre et Marie Curie Paris 06, UM119, Neuroscience Paris Seine Paris, France
| |
Collapse
|
6
|
Tamura Y, Ogita K, Ueda T. A new VGLUT-specific potent inhibitor: pharmacophore of Brilliant Yellow. Neurochem Res 2014; 39:117-28. [PMID: 24248859 PMCID: PMC4025951 DOI: 10.1007/s11064-013-1196-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
The increased concentration of glutamate in synaptic vesicles, mediated by the vesicular glutamate transporter (VGLUT), is an initial vital step in glutamate synaptic transmission. Evidence indicates that aberrant overexpression of VGLUT is involved in certain pathophysiologies of the central nervous system. VGLUT is subject to inhibition by various types of agents. The most potent VGLUT-specific inhibitor currently known is Trypan Blue, which is highly charged, hence membrane-impermeable. We have sought a potent, VGLUT-specific agent amenable to easy modification to a membrane-permeable analog. We provide evidence that Brilliant Yellow exhibits potent, VGLUT-specific inhibition, with a Ki value of 12 nM. Based upon structure-activity relationship studies and molecular modeling, we have defined the potent inhibitory pharmacophore of Brilliant Yellow. This study provides new insight into development of a membrane-permeable agent to lead to specific blockade, with high potency, of accumulation of glutamate into synaptic vesicles in neurons.
Collapse
Affiliation(s)
- Yutaka Tamura
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
| | - Kiyokazu Ogita
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
| | - Tetsufumi Ueda
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
- Department of Pharmacology, Medical School, The University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Psychiatry, Medical School, The University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Enhanced glutamate uptake into synaptic vesicles fueled by vesicle-generated ATP from phosphoenolpyruvate and ADP. Proposed role of a novel enzyme. Neurochem Res 2012; 37:2731-7. [PMID: 22915206 DOI: 10.1007/s11064-012-0864-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
Glycolytic ATP synthesis by synaptic vesicles provides an efficient mechanism for fueling vesicular loading of the neurotransmitter glutamate. This is achieved in part by vesicle-bound pyruvate kinase. However, we have found that vesicular glutamate uptake, in the presence of the pyruvate kinase substrates ADP and phosphoenolpyruvate (PEP), substantially exceeds that caused by exogenous ATP. We propose that this much enhanced uptake is in part due to extra ATP produced via a mechanism involving a novel enzyme, PEP-dependent ADP synthase. We discuss implications for this enzyme in energy homeostasis and pathophysiology, as well as in efficient synaptic glutamate transmission.
Collapse
|
8
|
Abstract
Neurotransmission in the nervous system is initiated at presynaptic terminals by fusion of synaptic vesicles with the plasma membrane and subsequent exocytic release of chemical transmitters. Currently, there are multiple methods to detect neurotransmitter release from nerve terminals, each with their own particular advantages and disadvantages. For instance, most commonly employed methods monitor actions of released chemical substances on postsynaptic receptors or artificial substrates such as carbon fibers. These methods are closest to the physiological setting because they have a rapid time resolution and they measure the action of the endogenous neurotransmitters rather than the signals emitted by exogenous probes. However, postsynaptic receptors only indirectly report neurotransmitter release in a form modified by the properties of receptors themselves, which are often nonlinear detectors of released substances. Alternatively, released chemical substances can be detected biochemically, albeit on a time scale slower than electrophysiological methods. In addition, in certain preparations, where presynaptic terminals are accessible to whole cell recording electrodes, fusion of vesicles with the plasma membrane can be monitored using capacitance measurements. In the last decade, in addition to electrophysiological and biochemical methods, several fluorescence imaging modalities have been introduced which report synaptic vesicle fusion, endocytosis, and recycling. These methods either take advantage of styryl dyes that can be loaded into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive GFP variant at regions facing the vesicle lumen. In this chapter, we will provide an overview of these methods with particular emphasis on their relative strengths and weaknesses and discuss the types of information one can obtain from them.
Collapse
|
9
|
Ertunc M, Sara Y, Chung C, Atasoy D, Virmani T, Kavalali ET. Fast synaptic vesicle reuse slows the rate of synaptic depression in the CA1 region of hippocampus. J Neurosci 2007; 27:341-54. [PMID: 17215395 PMCID: PMC6672081 DOI: 10.1523/jneurosci.4051-06.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During short-term synaptic depression, neurotransmission rapidly decreases in response to repetitive action potential firing. Here, by blocking the vacuolar ATPase, alkalinizing the extracellular pH, or exposing hippocampal slices to pH buffers, we impaired neurotransmitter refilling, and electrophysiologically tested the role of vesicle reuse in synaptic depression. Under all conditions, synapses onto hippocampal CA1 pyramidal cells showed faster depression with increasing stimulation frequencies. At 20 Hz, compromising neurotransmitter refilling increased depression within 300 ms reaching completion within 2 s, suggesting a minimal contribution of reserve vesicles to neurotransmission. In contrast, at 1 Hz, depression emerged gradually and became significant within 100 s. Moreover, the depression induced by pH buffers was reversible with a similar frequency dependence, suggesting that the frequency-dependent increase in depression was caused by impairment of rapid synaptic vesicle reuse. These results indicate that synaptic vesicle trafficking impacts the kinetics of short-term synaptic plasticity at an extremely rapid time scale.
Collapse
Affiliation(s)
- Mert Ertunc
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Yildirim Sara
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - ChiHye Chung
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Deniz Atasoy
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Tuhin Virmani
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Ege T. Kavalali
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
10
|
Winter S, Brunk I, Walther DJ, Höltje M, Jiang M, Peter JU, Takamori S, Jahn R, Birnbaumer L, Ahnert-Hilger G. Galphao2 regulates vesicular glutamate transporter activity by changing its chloride dependence. J Neurosci 2006; 25:4672-80. [PMID: 15872115 PMCID: PMC6725018 DOI: 10.1523/jneurosci.0549-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical neurotransmitters, including monoamines, acetylcholine, glutamate, GABA, and glycine, are loaded into synaptic vesicles by means of specific transporters. Vesicular monoamine transporters are under negative regulation by alpha subunits of trimeric G-proteins, including Galpha(o2) and Galpha(q). Furthermore, glutamate uptake, mediated by vesicular glutamate transporters (VGLUTs), is decreased by the nonhydrolysable GTP-analog guanylylimidodiphosphate. Using mutant mice lacking various Galpha subunits, including Galpha(o1), Galpha(o2), Galpha(q), and Galpha11, and a Galpha(o2)-specific monoclonal antibody, we now show that VGLUTs are exclusively regulated by Galpha(o2). G-protein activation does not affect the electrochemical proton gradient serving as driving force for neurotransmitter uptake; rather, Galpha(o2) exerts its action by specifically affecting the chloride dependence of VGLUTs. All VGLUTs show maximal activity at approximately 5 mm chloride. Activated Galpha(o2) shifts this maximum to lower chloride concentrations. In contrast, glutamate uptake by vesicles isolated from Galpha(o2-/-) mice have completely lost chloride activation. Thus, Galpha(o2) acts on a putative regulatory chloride binding domain that appears to modulate transport activity of vesicular glutamate transporters.
Collapse
Affiliation(s)
- Sandra Winter
- AG Funktionelle Zellbiologie, Centrum für Anatomie, Charité Universitätsmedizin Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hallberg OE, Bogen IL, Reistad T, Haug KH, Wright MS, Fonnum F, Walaas SI. Differential development of vesicular glutamate transporters in brain: an in vitro study of cerebellar granule cells. Neurochem Int 2006; 48:579-85. [PMID: 16517018 DOI: 10.1016/j.neuint.2005.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 11/28/2022]
Abstract
The cerebellar granule cells have been extensively used for studies on metabolism, neurotransmission and neurotoxicology, since they can easily be grown in cultures. However, knowledge about the development of different proteins essential for synaptic transmission in these cells is lacking. This study has characterized the developmental profiles of the vesicular glutamate transporters (VGLUTs) and the synaptic vesicle proteins synapsins and synaptophysin in cerebellar granule cells and in co-cultures containing both granule cells and astrocytes. The protein levels of VGLUT2 decreased by approximately 70% from days 2 to 7 in vitro, whereas the levels of VGLUT1 increased by approximately 95%. Protein levels of synapsin I, synapsin IIIa and synaptophysin showed a developmental pattern similar to VGLUT1 while synapsin II and VGLUT3 were absent. The mRNA expressions of VGLUT1 and VGLUT2 were in accordance with the protein levels. The results indicate both that cerebellar granule cells are mature at approximately 7 days in vitro, and that the up-regulation of VGLUT1 and down-regulation of VGLUT2 in cerebellar granule cells are both independent of surrounding astrocytes and neuronal input. The results of this study are discussed in relation to general developmental profiles of VGLUTs in other brain regions.
Collapse
Affiliation(s)
- Olof Ehlers Hallberg
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112, Blindern, N-0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
12
|
Wassmer T, Froissard M, Plattner H, Kissmehl R, Cohen J. The vacuolar proton-ATPase plays a major role in several membrane-bounded organelles inParamecium. J Cell Sci 2005; 118:2813-25. [PMID: 15976442 DOI: 10.1242/jcs.02405] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar proton-ATPase (V-ATPase) is a multisubunit enzyme complex that is able to transfer protons over membranes against an electrochemical potential under ATP hydrolysis. The enzyme consists of two subcomplexes: V0, which is membrane embedded; and V1, which is cytosolic. V0 was also reported to be involved in fusion of vacuoles in yeast. We identified six genes encoding c-subunits (proteolipids) of V0 and two genes encoding F-subunits of V1 and studied the role of the V-ATPase in trafficking in Paramecium. Green fluorescent protein (GFP) fusion proteins allowed a clear subcellular localization of c- and F-subunits in the contractile vacuole complex of the osmoregulatory system and in food vacuoles. Several other organelles were also detected, in particular dense core secretory granules (trichocysts). The functional significance of the V-ATPase in Paramecium was investigated by RNA interference (RNAi), using a recently developed feeding method. A novel strategy was used to block the expression of all six c- or both F-subunits simultaneously. The V-ATPase was found to be crucial for osmoregulation, the phagocytotic pathway and the biogenesis of dense core secretory granules. No evidence was found supporting participation of V0 in membrane fusion.
Collapse
Affiliation(s)
- Thomas Wassmer
- Centre National de la Recherche Scientifique, Centre de Génétique Moleculaire, Avenue de la Terasse, Bâtiment 26, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | |
Collapse
|
13
|
Axmacher N, Stemmler M, Engel D, Draguhn A, Ritz R. Transmitter Metabolism as a Mechanism of Synaptic Plasticity: A Modeling Study. J Neurophysiol 2004; 91:25-39. [PMID: 13679396 DOI: 10.1152/jn.00797.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system adapts to experience by changes in synaptic strength. The mechanisms of synaptic plasticity include changes in the probability of transmitter release and in postsynaptic responsiveness. Experimental and neuropharmacological evidence points toward a third variable in synaptic efficacy: changes in presynaptic transmitter concentration. Several groups, including our own, have reported changes in the amplitude and frequency of postsynaptic (miniature) events indicating that alterations in transmitter content cause alterations in vesicular transmitter content and vesicle dynamics. It is, however, not a priori clear how transmitter metabolism will affect vesicular transmitter content and how this in turn will affect pre- and postsynaptic functions. We therefore have constructed a model of the presynaptic terminal incorporating vesicular transmitter loading and the presynaptic vesicle cycle. We hypothesize that the experimentally observed synaptic plasticity after changes in transmitter metabolism puts predictable restrictions on vesicle loading, cytoplasmic–vesicular transmitter concentration gradient, and on vesicular cycling or release. The results of our model depend on the specific mechanism linking presynaptic transmitter concentration to vesicular dynamics, that is, alteration of vesicle maturation or alteration of release. It also makes a difference whether differentially filled vesicles are detected and differentially processed within the terminal or whether vesicle filling acts back onto the terminal by presynaptic autoreceptors. Therefore, the model allows one to decide, at a given synapse, how transmitter metabolism is linked to presynaptic function and efficacy.
Collapse
Affiliation(s)
- Nikolai Axmacher
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E. Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol 2000; 279:C648-57. [PMID: 10942715 DOI: 10.1152/ajpcell.2000.279.3.c648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two pools of phosphate-activated glutaminase (PAG) were separated from pig and rat renal mitochondria. The partition of enzyme activity corresponded with that of the immunoreactivity and also with the postembedding immunogold labeling of PAG, which was associated partly with the inner membrane and partly with the matrix. The outer membrane was not labeled. PAG in intact mitochondria showed enzymatic characteristics that were similar to that of the membrane fraction and also mimicked that of the polymerized form of purified pig renal PAG. PAG in the soluble fraction showed properties similar to that of the monomeric form of purified enzyme. It is indicated that the pool of PAG localized inside the inner mitochondrial membrane is dormant due to the presence of high concentrations of the inhibitor glutamate. Thus the enzymatically active PAG is assumed to be localized on the outer face of the inner mitochondrial membrane. The activity of this pool of PAG appears to be regulated by compounds in the cytosol, of which glutamate may be most important.
Collapse
Affiliation(s)
- B Roberg
- Neurochemical Laboratory, Domus Medica, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
15
|
Zhou Q, Petersen CC, Nicoll RA. Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J Physiol 2000; 525 Pt 1:195-206. [PMID: 10811737 PMCID: PMC2269926 DOI: 10.1111/j.1469-7793.2000.t01-1-00195.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 02/21/2000] [Indexed: 11/28/2022] Open
Abstract
The consequence of reduced uptake of neurotransmitters into synaptic vesicles on synaptic transmission was examined in rat hippocampal slices and culture using bafilomycin A1 (Baf), a potent and specific blocker of the vacuolar-type (V-type) ATPase, which eliminates the driving force for the uptake of both glutamate and GABA into synaptic vesicles. After incubation with Baf, both the amplitude and frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were reduced in the slice preparation. Similar effects were seen with glutamatergic miniature excitatory postsynaptic currents (mEPSCs) and GABAergic mIPSCs from cultured neurons. This result indicates that vesicular content is reduced by Baf. The dramatic reduction in the frequency of mPSCs could result either from the exocytosis of empty vesicles or from a mechanism which prevents the exocytosis of depleted vesicles. Vesicle cycling was directly examined using confocal imaging with FM 1-43. In the presence of Baf, vesicles could still be endocytosed and they were released at the same probability as from control untreated synapses. Prolonged high-frequency electrical stimulation of synapses in culture failed to alter the amplitude of mEPSCs, suggesting that the filling of vesicles is rapid compared to the rate of vesicle recycling during repetitive synaptic stimulation. Profound release of glutamate with alpha-latrotoxin did cause a small, but reproducible, reduction in quantal size. These results indicate that decreasing the amount of glutamate and GABA in synaptic vesicles reduces quantal size. Furthermore, the probability of vesicle exocytosis appears to be entirely independent of the state of filling of the vesicle. However, even during high-frequency action potential-evoked release of glutamate, quantal size remained unchanged.
Collapse
Affiliation(s)
- Q Zhou
- Departments of Cellular & Molecular Pharmacology and Physiology, University of California, San Francisco, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
16
|
Stark H, Grassmann S, Reichert U. [Structure, function and potential therapeutic possibilites of NMDA receptors. 1. Architecture and modulation of receptors]. PHARMAZIE IN UNSERER ZEIT 2000; 29:159-66. [PMID: 10881600 DOI: 10.1002/(sici)1615-1003(200005)29:3<159::aid-pauz159>3.0.co;2-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- H Stark
- Freie Universität Berlin, Institut für Pharmazie, Germany.
| | | | | |
Collapse
|