1
|
Shah S, Chu Y, Cegielski V, Chu XP. Acid-Sensing Ion Channel 1 Contributes to Weak Acid-Induced Migration of Human Malignant Glioma Cells. Front Physiol 2021; 12:734418. [PMID: 34557113 PMCID: PMC8452845 DOI: 10.3389/fphys.2021.734418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sareena Shah
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yuyang Chu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victoria Cegielski
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
2
|
Bulli I, Dettori I, Coppi E, Cherchi F, Venturini M, Di Cesare Mannelli L, Ghelardini C, Nocentini A, Supuran CT, Pugliese AM, Pedata F. Role of Carbonic Anhydrase in Cerebral Ischemia and Carbonic Anhydrase Inhibitors as Putative Protective Agents. Int J Mol Sci 2021; 22:5029. [PMID: 34068564 PMCID: PMC8126098 DOI: 10.3390/ijms22095029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.
Collapse
Affiliation(s)
- Irene Bulli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Elisabetta Coppi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Alessio Nocentini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Claudiu T. Supuran
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Anna Maria Pugliese
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Felicita Pedata
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| |
Collapse
|
3
|
Bertling E, Blaesse P, Seja P, Kremneva E, Gateva G, Virtanen MA, Summanen M, Spoljaric I, Uvarov P, Blaesse M, Paavilainen VO, Vutskits L, Kaila K, Hotulainen P, Ruusuvuori E. Carbonic anhydrase seven bundles filamentous actin and regulates dendritic spine morphology and density. EMBO Rep 2021; 22:e50145. [PMID: 33719157 PMCID: PMC8025036 DOI: 10.15252/embr.202050145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.
Collapse
Affiliation(s)
- Enni Bertling
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Peter Blaesse
- Institute of Physiology IWestfälische Wilhelms‐Universität MünsterMünsterGermany
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Patricia Seja
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Mari A Virtanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Milla Summanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Inkeri Spoljaric
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pavel Uvarov
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Laszlo Vutskits
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Kai Kaila
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pirta Hotulainen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Eva Ruusuvuori
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 2005; 50:287-298. [PMID: 15846806 DOI: 10.1002/glia.20181] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asrocytic responses constitute one of the earliest and most prominent changes in the CNS following ischemic injury. Astrocytes are known to carry out critical functions such as maintenance of ionic homeostasis, prevention of excitotoxicity, scavenging free radicals, provision of nutrients and growth factors, promotion of neovascularization, and support of synaptogenesis and neurogenesis that potentially may influence the outcome of ischemic injury. This article reviews ischemia-associated alterations in astrocytes and their potential significance. Interactions with neurons, microglia, and endothelial cells are also considered. This article highlights the critical role of astrocytes in the CNS response to ischemic injury.
Collapse
Affiliation(s)
- Kiran S Panickar
- Department of Pathology, University of Miami School of Medicine, Miami, Florida
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, Florida
- Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida
- Veterans Affairs Medical Center, Miami, Florida
| |
Collapse
|
5
|
Dean JB, Mulkey DK, Garcia AJ, Putnam RW, Henderson RA. Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J Appl Physiol (1985) 2003; 95:883-909. [PMID: 12909594 DOI: 10.1152/japplphysiol.00920.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As ambient pressure increases, hydrostatic compression of the central nervous system, combined with increasing levels of inspired Po2, Pco2, and N2 partial pressure, has deleterious effects on neuronal function, resulting in O2 toxicity, CO2 toxicity, N2 narcosis, and high-pressure nervous syndrome. The cellular mechanisms responsible for each disorder have been difficult to study by using classic in vitro electrophysiological methods, due to the physical barrier imposed by the sealed pressure chamber and mechanical disturbances during tissue compression. Improved chamber designs and methods have made such experiments feasible in mammalian neurons, especially at ambient pressures <5 atmospheres absolute (ATA). Here we summarize these methods, the physiologically relevant test pressures, potential research applications, and results of previous research, focusing on the significance of electrophysiological studies at <5 ATA. Intracellular recordings and tissue Po2 measurements in slices of rat brain demonstrate how to differentiate the neuronal effects of increased gas pressures from pressure per se. Examples also highlight the use of hyperoxia (<or=3 ATA O2) as a model for studying the cellular mechanisms of oxidative stress in the mammalian central nervous system.
Collapse
Affiliation(s)
- Jay B Dean
- Department of Anatomy and Physiology, Wright State University, Dayton, OH 45435, USA.
| | | | | | | | | |
Collapse
|
6
|
Douglas RM, Xue J, Chen JY, Haddad CG, Alper SL, Haddad GG. Chronic intermittent hypoxia decreases the expression of Na/H exchangers and HCO3-dependent transporters in mouse CNS. J Appl Physiol (1985) 2003; 95:292-9. [PMID: 12665539 DOI: 10.1152/japplphysiol.01089.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a component of several disease states, including obstructive sleep apnea, which results in neurocognitive and cardiovascular morbidity. Because chronic hypoxia can induce changes in metabolism and pH homeostasis, we hypothesized that CIH induces changes in the expression of acid-base transporters. Two- to three-day-old mice, exposed to alternating cycles of 2 min of hypoxia (6.0-7.5% O2) and 3 min of normoxia (21% O2) for 8 h/day for 28 days, demonstrated decreases in specific acid-base transport protein expression in most of the central nervous system (CNS). Sodium/hydrogen exchanger isoform 1 (NHE1) and sodium-bicarbonate cotransporter expression were decreased in all regions of the CNS but especially so in the cerebellum. NHE3, which is only expressed in the cerebellum, was also significantly decreased. Anion exchanger 3 protein was decreased in most brain regions, with the decrease being substantial in the hippocampus. These results indicate that CIH induces downregulation of the major acid-extruding transport proteins, NHE1 and sodium-bicarbonate cotransporter, in particular regions of the CNS. This downregulation in acid-extruding capacity may render neurons more prone to acidity and possibly to injury during CIH, especially in the cerebellum and hippocampus. Alternatively, it is possible that O2 consumption in these regions is decreased after CIH, with consequential downregulation in the expression of certain cellular proteins that may be less needed under such circumstances.
Collapse
Affiliation(s)
- R M Douglas
- Department of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hong SJ, Wu KY, Wang HZ, Fong JC. Effects of commercial antiglaucoma drugs to glutamate-induced [Ca2+)]i increase in cultured neuroblastoma cells. J Ocul Pharmacol Ther 2003; 19:205-15. [PMID: 12828839 DOI: 10.1089/108076803321908338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over releasing of glutamate and cellular calcium influx always results in neuronal death. In the present study, we investigated various commercial antiglaucoma drugs including timolol (0.58 microM to 58 microM), betaxolol (1.62 microM to 162 microM), carteolol (6.8 microM to 680 microM), pilocarpine (4.08 microM to 408 microM), latanoprost (0.01 microM to 1.1 microM), dorzolamide (6.16 microM to 616 microM), brinzolamide (2.6 microM to 260 microM), brimonidine (0.68 microM to 68 microM), dipivefrin (0.28 microM to 28 microM) and preservative benzalkonium chloride on their effects to inhibit glutamate-induced intracellular free Ca(2+) ([Ca(2+)](i)) increase in cultured N1E-115 neuroblastoma cells. These drugs were diluted from original concentrations to 1/100, 1/1000 and 1/10000. The [Ca(2+)](i) mobility was studied after loading with fura-2-AM and analyzed by spectrofluorometry. It was found that betaxolol, dipivefrin and brimonidine have remarkable effects not only to inhibit the glutamate-induced [Ca(2+)](i) increase but also to decrease the basal [Ca(2+)](i). In the case of other drugs, only high concentration of timolol (58 microM) exhibited significant effect to completely prevent glutamate-induced [Ca(2+)](i) increase. Moreover, benzalkonium chloride did not exhibit any inhibitive effect. These results indicate that betaxolol, dipivefrin and brimonidine may have neuroprotective effects to inhibit the glutamate-induced over Ca(2+) influx damage.
Collapse
Affiliation(s)
- Show-Jen Hong
- Department of Pharmacology, Kaohsiung Medical University, Taiwan.
| | | | | | | |
Collapse
|
8
|
Bonnet U, Leniger T, Wiemann M. Moclobemide reduces intracellular pH and neuronal activity of CA3 neurones in guinea-pig hippocampal slices-implication for its neuroprotective properties. Neuropharmacology 2000; 39:2067-74. [PMID: 10963750 DOI: 10.1016/s0028-3908(00)00033-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms underlying the neuroprotective properties of the weak MAO-A inhibitor moclobemide are not understood. Increasing evidence suggests that a moderate increase in intracellular free protons may contribute to neuroprotective properties due to a proton-mediated decrease in neuronal activity. Therefore, we studied effects of 10-700 microM moclobemide (i) on the intracellular pH (pH(i)) of BCECF-AM loaded CA3 neurones as well as (ii) on spontaneous action potentials and epileptiform activity (induced by bicuculline-methiodide, caffeine, or 4-aminopyridine) of CA3 neurones in the stratum pyramidale. Moclobemide-concentrations of > or = 300 microM reversibly reduced the steady-state pH(i) by up to 0. 25 pH-units within 5-20 min. Simultaneously, the frequency of spontaneous action potentials and epileptiform discharges became depressed. Moclobemide also abolished 4-aminopyridine-induced GABA-mediated hyperpolarisations suggesting that the inhibitory and acidifying effects of moclobemide do not result from an amplification of the GABA system. The stronger MAO-A inhibitors clorgyline or pargyline (both 10 microM) mimicked the moclobemide-effects. Investigating effects on pH(i)-regulation we found that 700 microM moclobemide impaired the recovery from intracellular acidification elicited by an ammonium prepulse which demonstrates an impairment of transmembrane acid extrusion. We suggest that the latter effect is responsible for the moderate decrease in the steady-state pH(i) which in turn reduced neuronal activity. This mechanism may substantially contribute to the neuroprotective properties of moclobemide.
Collapse
Affiliation(s)
- U Bonnet
- Rheinische Kliniken, Universitätsklinik für Psychiatrie und Psychotherapie, Virchowstrasse 174, D-45147 Essen, Germany.
| | | | | |
Collapse
|
9
|
Katsura K, Kurihara J, Siesjö BK, Wieloch T. Acidosis enhances translocation of protein kinase C but not Ca(2+)/calmodulin-dependent protein kinase II to cell membranes during complete cerebral ischemia. Brain Res 1999; 849:119-27. [PMID: 10592293 DOI: 10.1016/s0006-8993(99)02072-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Systemic hyperglycemia and hypercapnia severely aggravate ischemic brain damage when instituted prior to cerebral ischemia. An aberrant cell signaling following ischemia has been proposed to be involved in ischemic cell death, affecting protein kinase C (PKC) and the calcium calmodulin kinase II (CaMKII). Using a cardiac arrest model of global brain ischemia of 10 min duration, we investigated the effect of hyperglycemia (20 mM) and hypercapnia (pCO(2) 300 mmHg) on the subcellular redistribution of PKC (alpha, beta, gamma) and CaMKII to synaptic membranes and to the microsomes, as well as the effect on PKC activity. We confirmed the marked translocation of PKC and CaMKII to cell membranes induced by ischemia, concomitantly with a decrease in the PKC activity in both the membrane fraction and cytosol. Hyperglycemia and hypercapnia markedly enhanced the translocation of PKC-gamma to cell membranes while other PKC isoforms were less affected. There was no effect of acidosis on PKC activity, or on translocation of CaMKII to cell membranes. Our data strongly suggest that the enhanced translocation of PKC to cell membranes induced by hyperglycemia and hypercapnia may contribute to the detrimental effect of tissue acidosis on the outcome following ischemia.
Collapse
Affiliation(s)
- K Katsura
- The Second Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
Hoxworth JM, Xu K, Zhou Y, Lust WD, LaManna JC. Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation. Brain Res 1999; 821:467-79. [PMID: 10064834 DOI: 10.1016/s0006-8993(98)01332-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cortical metabolites and regional cerebral intracellular pH (pHi) were measured in normoglycemic (NM), acute hyperglycemic (AH), and chronic hyperglycemic (CH, 2 week duration, streptozotocin-induced) Wistar rat brains during cardiac arrest and resuscitation. During total ischemia in AH and CH rats (plasma glucose approximately 30 mM), cortical ATP, PCr, glucose, and glycogen all fell significantly as expected. Lactate levels increased dramatically in association with a concomitant intracellular acidosis. Although lactate reached higher concentrations in AH and CH than NM, pHi was significantly lower only in the AH group. With 5 min of reperfusion, all groups recovered to near baseline in all variables, though lactate remained elevated. In a separate aspect of the study, animals from each experimental group were allowed to recover for 4 days following resuscitation, with outcome being gauged by mortality rate and hippocampal CA1 neuron counts. NM survival rate was significantly better than AH and CH. In particular, no CH rats survived for 4 days despite rapid initial recovery. After 4 days, the AH group had suffered significantly greater CA1 neuron loss than the NM rats. In summary, our research identified differences in intra-ischemic acid-base status in the two hyperglycemic groups, suggesting that chronic hyperglycemia may alter the brain's buffering capacity. These observations may account for differences between acutely and chronically hyperglycemic subjects regarding outcome, and they suggest that factors other than hydrogen ion production during ischemia are responsible for modulating outcome.
Collapse
Affiliation(s)
- J M Hoxworth
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4938, USA
| | | | | | | | | |
Collapse
|
11
|
Nakashima K, Yamashita K, Uesugi S, Ito H. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat. J Neurotrauma 1999; 16:143-51. [PMID: 10098959 DOI: 10.1089/neu.1999.16.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is involved in the pathogenesis of cerebral ischemia. Previous studies have confirmed that the brain surrounding an intracerebral hematoma develops ischemia. We investigated the number and distribution of cells exhibiting DNA fragmentation with apoptotic morphology in the transient intracerebral mass lesion to determine whether apoptosis contributed to the lesion progress after intracerebral hemorrhage (ICH). Transient intracerebral mass was created by inflation of a microballoon for 10 min (group A) or 2 h (group B) in the caudoputamen in rats, and brains were examined 1, 3, 6, 24, and 48 h after microballoon deflation. The lesion volume was calculated using parallel coronal sections with cresyl violet staining. Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine (dUTP)-biotin nick end labeling (TUNEL) was used to detect cells undergoing DNA fragmentation. Immunohistochemistry for Fas antigen was also done to ascertain molecular mechanisms of apoptosis. Histological examination of hematoxylin and eosin-stained sections showed the typical appearance of neuronal necrosis in the caudoputaminal lesion. Lesion volume in the caudoputamen gradually increased as time advanced from 1 to 48 h. Cells stained heavily by TUNEL with apoptotic morphology were detected in the lesion, but not in the inner boundary zone of the lesion. The number of these cells significantly increased from 6 to 24 h in each experimental group (p < 0.05). The cells with positive immunoreactivity for Fas antigen was prominently observed in the lesion at 6 h. The distribution of apoptotic cells and the rapid increase in the number of apoptotic cells after 24 h propose that apoptotic cell death may contribute to lesion core formation but not to gradual development of the lesion.
Collapse
Affiliation(s)
- K Nakashima
- Department of Neurosurgery, Yamaguchi University School of Medicine, Japan
| | | | | | | |
Collapse
|
12
|
Terwel D, Bothmer J, Wolf E, Meng F, Jolles J. Affected enzyme activities in Alzheimer's disease are sensitive to antemortem hypoxia. J Neurol Sci 1998; 161:47-56. [PMID: 9879681 DOI: 10.1016/s0022-510x(98)00240-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many enzyme activities in Alzheimer's disease (AD) are changed. Some of these enzyme activities are related to certain neurotransmitter systems. Enzymes in the brain can also be sensitive to antemortem hypoxia. In the present study it was determined if enzyme activities that are altered in AD are also subject to alteration by antemortem hypoxia. As an indicator of antemortem hypoxia brain lactate concentration was used. Enzyme activities measured were those of prolyl endopeptidase (PE), aminopeptidase (AP), phosphatidylinositol (PI) kinase, phosphatidylinositol phosphate kinase, alpha-ketoglutarate dehydrogenase (alpha-KGDH), choline acetyltransferase and beta-glucuronidase. All of these enzyme activities have been measured in AD patients before and several of them have been found to be decreased. In accordance with previous findings, PE, alpha-KGDH and ChAT activities were reduced in AD patients. PI kinase and beta-glucuronidase activities, however, were not reduced, contrary to previous findings. All enzyme activities, except that of beta-glucuronidase, correlated with brain lactate concentration, suggesting that antemortem hypoxia has a major influence on the activity of enzymes in the brain. PE, AP, alpha-KGDH and ChAT activities were still different between AD and control samples when these were matched for lactate concentration. The enzyme activities that were changed in AD were also significantly correlated with lactate concentration, an indicator of antemortem hypoxia, in brain specimens. This suggests that antemortem hypoxia and AD have some factor in common that may be responsible for changes in enzyme activities. Since both PE and alpha-KGDH are known to be sensitive to oxidative stress this factor could be oxidative stress.
Collapse
Affiliation(s)
- D Terwel
- European Graduate School of Neuroscience (Euron), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Albensi BC, Schweizer MP, Rarick TM, Filloux F. Magnetic resonance imaging of hypoxic-ischemic brain injury in the neonatal rat. Invest Radiol 1998; 33:377-85. [PMID: 9659589 DOI: 10.1097/00004424-199807000-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Magnetic resonance (MR) imaging was used for the in vivo evaluation of bihemispheric hypoxic-ischemic (HI) injury in the neonatal rat. METHODS Seven-day-old rats underwent sham surgery (n = 7) or bilateral carotid artery ligation and hypoxia (30-45 min) (n = 8). T2-weighted imaging was used to study the temporal evolution of injury. Histopathology was used to correlate injury with MR signal changes. RESULTS T2-weighted images exhibited considerable anatomic detail (0.2 mm resolution in-plane). The cortex, dorsolateral striatum and thalamus were affected, while the hippocampus was spared. Magnetic resonance signal change was seen as early as 1.5 hrs post-HI (lesion extent, 27%-39%), and reached a maximum at 48 hrs (37%-49%). Magnetic resonance imaging estimation of injury at 72 hours after HI was compared with histopathology and correlated well (r = 0.98). CONCLUSIONS The study demonstrates the feasibility of magnetic resonance imaging for in vivo evaluation of neonatal brain injury and that vulnerability in the neonatal hippocampus is strikingly different than in adult HI models.
Collapse
Affiliation(s)
- B C Albensi
- Neuroscience Program, University of Utah School of Medicine, Salt Lake City, USA. bcalbe0pop.uky.edu
| | | | | | | |
Collapse
|
14
|
Novack TA, Dillon MC, Jackson WT. Neurochemical mechanisms in brain injury and treatment: a review. J Clin Exp Neuropsychol 1996; 18:685-706. [PMID: 8941854 DOI: 10.1080/01688639608408292] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article reviews cellular energy transformation processes and neurochemical events that take place at the time of brain injury and shortly thereafter emphasizing hypoxia-ischemia, cerebrovascular accident, and traumatic brain injury. New interpretations of established concepts, such as diffuse axonal injury, are discussed; specific events, such as free radical production, excess production of excitatory amino acids, and disruption of calcium homeostasis, are reviewed. Neurochemically-based interventions are also presented: calcium channel blockers, excitatory amino acid antagonists, free radical scavengers, and hypothermia treatment. Concluding remarks focus on the role of clinical neuropsychologists in validation of treatment interventions.
Collapse
Affiliation(s)
- T A Novack
- Department of Rehabilitation Medicine, University of Alabama at Birmingham 35233-7330, USA
| | | | | |
Collapse
|
15
|
5 Selective modulation of voltage-gated sodium channels: a rational approach for neuroprotection. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0950-3501(96)80029-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Katsura KI, Folbergrová J, Siesjö BK. Changes in labile energy metabolites, redox state and intracellular pH in postischemic brain of normo- and hyperglycemic rats. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00317-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Folbergrova J, Katsura KI, Siesjo BK. Glycogen accumulated in the brain following insults is not degraded during a subsequent period of ischemia. J Neurol Sci 1996; 137:7-13. [PMID: 9120490 DOI: 10.1016/0022-510x(96)82226-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The primary objective of this study was to attempt to induce excessive intraglial acidosis during ischemia by subjecting rats to an initial insult which leads to post insult accumulation of glycogen, presumed to accumulate primarily in astrocytes. The initial insults were 15 min of transient forebrain ischemia, 30 min of hypoglycemic coma, and intraperitonial injection of methionine-sulphoximine (MSO). In the first two of these insults, glycogen content in neocortex increased to 6-7 mM kg(-1) after 6 h of recovery, and in MSO-treated animals even higher values were measured 24 h after administration ( 12 mM kg(-1)). In spite of this glycogen loading, the amount of lactate formed during a subsequent ischemic insult (of 5-30 min duration) did not exceed values usually obtained during complete ischemia in animals with normal glycogen contents (tissue lactate contents of 15 mM kg(-1)) This was because appreciable amounts of glycogen (3-7 mM kg(-1)) remained undegraded even after 30 min of ischemia. The undigested part largely reflected the extra amount of glycogen accumulated after the initial insults. It is discussed whether this part is unavailable to degradation by phosphorylase.
Collapse
Affiliation(s)
- J Folbergrova
- Laboratory for Experimental Brain Research, Experimental Research Center, Lund University Hospital, Sweden
| | | | | |
Collapse
|
18
|
|
19
|
Hurn PD, Koehler RC, Blizzard KK, Traystman RJ. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke 1995; 26:688-94; discussion 694-5. [PMID: 7709418 DOI: 10.1161/01.str.26.4.688] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Postischemic metabolic injury may be mediated by acidosis and tissue bicarbonate depletion, with consequent-iron mobilization and oxygen radical formation during reperfusion. We have previously shown that reducing intracellular pH to below 5.7 and bicarbonate ion to below 1 to 2 mmol/L during hyperglycemic ischemia produces a profound secondary deterioration of brain ATP and cerebral blood flow during reperfusion. This study tested the hypothesis that pretreatment with free deferoxamine ameliorates metabolic decay and delayed hypoperfusion after global hyperglycemic ischemia. In addition, deferoxamine conjugated to a high-molecular-weight starch was administered to determine the importance of an intravascular site of action. Iron-loaded deferoxamine was used to determine whether the iron chelation properties of deferoxamine are important to postischemic viability as distinguished from the agent's significant radical scavenging potential. METHODS Cerebral ATP, phosphocreatine, and pH were measured by 31P magnetic resonance spectroscopy in anesthetized dogs. Tissue bicarbonate concentration was calculated from the Henderson-Hasselbalch equation. Incomplete cerebral ischemia was produced by intracranial pressure elevation for 30 minutes with plasma glucose at 540 +/- 15 mg/dL. Free deferoxamine, saline vehicle, hydroxyethyl starch-conjugated deferoxamine, hydroxyethyl starch vehicle, and deferoxamine loaded with equimolar ferric chloride were administered intravenously in five groups of dogs. The dose of deferoxamine was 50 mg/kg before ischemia, 50 mg/kg at the onset of reperfusion, and 50 mg/kg over the 180-minute reperfusion period. RESULTS Ischemic hemispheric blood flow (mean, 6 to 8 mL/min per 100 g), intracellular pH (5.7 to 6.0), and bicarbonate levels (1 to 2 mmol/L) were similar in all groups. During reperfusion, cerebral pH and bicarbonate recovered only in the free-deferoxamine group. Both ATP and phosphocreatine initially increased in all groups, but recovery was sustained only in the free-deferoxamine group. Secondary losses of energy phosphates and cerebral oxygen consumption were observed in all other groups, accompanied by progressive reduction of perfusion. CONCLUSIONS These data support the hypothesis that iron catalyzed oxygen radical production plays an important role in acidosis-mediated mechanisms of ischemic brain injury. The results with free and iron-loaded deferoxamine suggest that iron scavenging is an important, but not necessarily the principal, component of this mechanism. The poor recovery seen with conjugated deferoxamine indicates that the beneficial action of deferoxamine is not localized within the intravascular compartment.
Collapse
Affiliation(s)
- P D Hurn
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD 21287-4961, USA
| | | | | | | |
Collapse
|